首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
JAK/STAT and NFκB signalling pathways play essential roles in regulating inflammatory responses, which are important pathogenic factors of various serious immune-related diseases, and function individually or synergistically. To find prodrugs that can treat inflammation, we performed a preliminary high-throughput screening of 18 840 small molecular compounds and identified scaffold compound L971 which significantly inhibited JAK/STAT and NFκB driven luciferase activities. L971 could inhibit the constitutive and stimuli-dependent activation of STAT1, STAT3 and IκBα and could significantly down-regulate the proinflammatory gene expression in mouse peritoneal macrophages stimulated by LPS. Gene expression profiles upon L971 treatment were determined using high-throughput RNA sequencing, and significant differentially up-regulated and down-regulated genes were identified by DESeq analysis. The bioinformatic studies confirmed the anti-inflammatory effects of L971. Finally, L971 anti-inflammatory character was further verified in LPS-induced sepsis shock mouse model in vivo. Taken together, these data indicated that L971 could down-regulate both JAK/STAT and NFκB signalling activities and has the potential to treat inflammatory diseases such as sepsis shock.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
Zhu C  Zhang X  Qiao H  Wang L  Zhang X  Xing Y  Wang C  Dong L  Ji Y  Cao X 《Neurochemical research》2012,37(10):2099-2107
Inflammatory damage plays a pivotal role in cerebral ischemia and may represent a target for treatment. Pigment epithelium-derived factor (PEDF) is proven to possess neuroprotective property. But there is little known about the intrinsic PEDF after cerebral ischemia. This study evaluated the time course expression of the intrinsic PEDF and its underlying regulation mechanisms after cerebral ischemia. Male Sprague-Dawley rats were subjected to permanent middle cerebral artery occlusion. Telmisartan (PPARγ agonist) and GW9662 (PPARγ antagonist) were systemically administered to explore the effect on PPARγ, PEDF, NF-κB and MMP-9 expression at 24?h after cerebral ischemia by western blot and qRT-PCR. The neurological deficits, brain water content and infarct volume were measured. Compared with normal group, the expressions of PEDF and PPARγ decreased, and the expression of NF-κB and MMP-9 increased at early stage after ischemia (P?相似文献   

10.
11.
12.
13.
The aim of this study was to screen for differential expression of signaling pathways in odontogenic differentiation of ectomesenchymal cells isolated from the first branchial arch of embryonic day 10 (E10) mice by real time RT-PCR microarray. Observations of cellular morphology, immunocytochemistry, and RT-PCR were used to identify the cell source. A real time RT-PCR microarray was then used to detect the differential expression of signaling pathways in cells dissected from animals at two different developmental stages. These assays identified 25 up-regulated genes and 16 down-regulated genes involved in odontogenic differentiation of the ectomesenchymal cells of the first branchial arch. They represented the main members of Wnt, Hedgehog, TGF-β, NF-κB, and LDL signaling pathways. This study determined that these signaling pathways are important for odontogenic differentiation of ectomesenchymal cells of the first branchial arch.  相似文献   

14.
Microglial inflammation plays an essential role in the pathogenesis of HIV-associated neurocognitive disorders. A previous study indicated that curcumin relieved microglial inflammatory responses. However, the mechanism of this process remained unclear. Autophagy is a lysosome-mediated cell content-dependent degradation pathway, and uncontrolled autophagy leads to enhanced inflammation. The role of autophagy in curcumin-attenuating BV2 cell inflammation caused by gp120 was investigated with or without pretreatment with the autophagy inhibitor 3-MA and blockers of NF-κB, IKK, AKT, and PI3K, and we then detected the production of the inflammatory mediators monocyte chemoattractant protein-1 (MCP-1) and IL17 using ELISA, and autophagy markers ATG5 and LC3 II by Western Blot. The autophagic flux was observed by transuding mRFP-GFP-LC3 adenovirus. The effect of the blockers on gp120-induced BV2 cells was examined by the expression of p-AKT, p-IKK, NF-κB, and p65 in the nuclei and LC3 II and ATG5. gp120 promoted the expression of MCP-1 and IL-17, enhanced autophagic flux, and up-regulated the expression of LC3 II and ATG5, while the autophagy inhibitor 3-MA down-regulated the phenomena above. Curcumin has similar effects with 3-MA, in which curcumin inhibited NF-κB by preventing the translocation of NF-κB p65. Curcumin also inhibited the phosphorylation of p-PI3K, p-AKT, and p-IKK, which leads to down-regulation of NF-κB. Curcumin reduced autophagy via PI3K/AKT/IKK/NF-κB, thereby reducing BV2 cellular inflammation induced by gp120.  相似文献   

15.
Cytotoxic exogenous RNases triggering apoptotic response in malignant cells have potential as anticancer drugs; surprisingly, detailed characterization of the RNase-induced apoptosis has not been conducted so far. Here we show that a cytotoxic RNase from Bacillus intermedius (binase) induces extrinsic and intrinsic apoptotic pathways in leukemic Kasumi-1 cells. The experiments were performed using TaqMan Array Human Apoptosis 96-well Plate for gene expression analysis, and flow cytometry. Cytometric studies demonstrated dissipation of the mitochondrial membrane potential, opening of mitochondrial permeability transition pores, activation of caspases, increase of intracellular Ca2+ and decrease of reactive oxygen species levels. We found that expression of 62 apoptotic genes is up-regulated, including 16 genes that are highly up-regulated, and only one gene was found to be down-regulated. The highest, 16 fold increase of the expression level was observed for TNF gene. Highly up-regulated genes also include the non-canonical NF-κB signaling pathway and inflammatory caspases 1,4. The obtained results suggest that binase induces evolutionary acquired cellular response to a microbial agent and triggers unusual apoptosis pathway.  相似文献   

16.
17.
18.
19.
20.
In melanoma, the activation of pro-survival signaling pathways, such as the AKT and NF-κB pathways, is critical for tumor growth. We have recently reported that the AKT inhibitor BI-69A11 causes efficient inhibition of melanoma growth. Here, we show that in addition to its AKT inhibitory activity, BI-69A11 also targets the NF-κB pathway. In melanoma cell lines, BI-69A11 inhibited TNF-α-stimulated IKKα/β and IκB phosphorylation as well as NF-κB reporter gene expression. Furthermore, the effective inhibition of melanoma growth by BI-69A11 was attenuated upon NF-κB activation. Mechanistically, reduced NF-κB signaling by BI-69-A11 is mediated by the inhibition of sphingosine kinase 1, identified in a screen of 315 kinases. Significantly, we demonstrate that BI-69A11 is well tolerated and orally active against UACC 903 and SW1 melanoma xenografts. Our results demonstrate that BI-69A11 inhibits both the AKT and the NF-κB pathways and that the dual targeting of these pathways may be efficacious as a therapeutic strategy in melanoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号