首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Heterotopic ossification (HO) is a pathological process that often occurs in soft tissues following severe trauma. There is no effective therapy for HO. The BMP signalling pathway plays an essential role in the pathogenesis of HO. Our previous study showed that AMPK negatively regulates the BMP signalling pathway and osteogenic differentiation. The present study aims to study the effect of two AMPK activators berberine and aspirin on osteogenic differentiation and HO induced by traumatic injury. The effects of two AMPK activators, berberine and aspirin, on BMP signalling and osteogenic differentiation were measured by western blot, ALP and Alizarin red S staining in C3H10T1/2 cells. A mouse model with Achilles tenotomy was employed to assess the effects of berberine and aspirin on HO using μCT and histological analysis. First, our study showed that berberine and aspirin inhibited phosphorylation of Smad1/5 induced by BMP6 and the inhibition was attributed to the down-regulation of ALK2 expression. Second, the combination of berberine and aspirin yielded more potent effects on BMP signalling. Third, we further found that there was an additive effect of berberine and aspirin combination on osteogenic differentiation. Finally, we found that berberine and aspirin blocked trauma-induced ectopic bone formation in mice, which may be through suppression of phosphorylation of Smad1/5 in injured tissues. Collectively, these findings indicate that berberine and aspirin inhibit osteogenic differentiation in C3H10T1/2 cells and traumatic HO in mice, possibly through the down-regulation of the BMP signalling pathway. Our study sheds a light on prevention and treatment of traumatic HO using AMPK pharmacological activators berberine and aspirin.  相似文献   

2.
3.
4.
Desferrioxamine, an iron chelator with “hypoxia-mimetic” activity, promotes bone mineralization when used in aluminum-overloaded dialysis patients. However, the effect of desferrioxamine on osteoblastic differentiation from pluripotent mesenchymal stem cells (MSCs) has not been reported. In this study, pluripotent human MSCs and murine mesenchymal C3H10T1/2 cells were simultaneously treated with desferrioxamine and bone morphogenetic protein-2 (BMP2). In BMP2-treated MSCs, desferrioxamine levels of 15 μΜ were found to increase alkaline phosphatase (ALP) activity and calcium deposition, which were the markers of osteoblastic differentiation. These effects of desferrioxamine were accompanied by promoted phosphorylation of glycogen synthase kinase 3β (GSK-3β) and increased β-catenin protein content, a direct GSK-3β substrate. Knockdown of β-catenin by RNA interference eliminates this positive effect of desferrioxamine on ALP activity. Taken together, these data demonstrate that desferrioxamine plays a direct role in the differentiation of mesenchymal stem cells by activating β-catenin signaling cascades.  相似文献   

5.
6.
7.
Bone marrow mesenchymal stem/stromal cells (MSCs) maintain bone homeostasis and repair through the ability to expand in response to mitotic stimuli and differentiate into skeletal lineages. Signalling mechanisms that enable precise control of MSC function remain unclear. Here we report that by initially examining differences in signalling pathway expression profiles of individual MSC clones, we identified a previously unrecognised signalling mechanism regulated by epidermal growth factor (EGF) in primary human MSCs. We demonstrate that EGF is able to activate β-catenin, a key component of the canonical Wnt signalling pathway. EGF is able to induce nuclear translocation of β-catenin in human MSCs but does not drive expression of Wnt target genes or T cell factor (TCF) activity in MSC reporter cell lines. Using an efficient Design of Experiments (DoE) statistical analysis, with different combinations and concentrations of EGF and Wnt ligands, we were able to confirm that EGF does not influence the Wnt/β-catenin pathway in MSCs. We show that the effects of EGF on MSCs are temporally regulated to initiate early “classical” EGF signalling mechanisms (e.g via mitogen activated protein kinase) with delayed activation of β-catenin. By RNA-sequencing, we identified gene sets that were exclusively regulated by the EGF/β-catenin pathway, which were distinct from classical EGF-regulated genes. However, subsets of classical EGF gene targets were significantly influenced by EGF/β-catenin activation. These signalling pathways cooperate to enable EGF-mediated proliferation of MSCs by alleviating the suppression of cell cycle pathways induced by classical EGF signalling.  相似文献   

8.
Recent studies have shown that block wnt/β-catenin signaling pathway is integrant for cardiomyocytes differentiation from bone marrow mesenchymal stem cells (MSCs). By transducing the MSCs with lentivirus which contain β-catenin interference RNA, we screened out the non β-catenin expression clone. In the establishment of knockdown β-catenin in MSCs, we investigated the role of 5-azacytidine (5-aza), salvianolic acid B (salB), and cardiomyocytes lysis medium (CLM) in inducing MSCs to differentiate into cardiomyocyte-like cells. A method for culturing MSCs and cardiomyocytes was established. Purified MSCs were investigated by flow cytometry. The MSCs were positive for CD90 and CD29, but negative for CD34 and CD45. Meanwhile, the cardiomyocytes contracted spontaneously after 24 h of seeding into the plates. The fourth-passage non-β-catenin expression MSCs were divided into eight groups: control group, 5-aza, salB, CLM, 5-aza + salB, 5-aza + CLM, salB + CLM, and 5-aza + salB + CLM. The gene and protein expression of cTnT, α-actin, β-myosin, β-catenin, and GSK-3β were detected by quantitative real-time PCR and Western blotting. Our results showed that cTnT expression in 5-aza + salB + CLM group was ninefold higher than in the control group in the non-β-catenin MSCs model, implying that cardiomyocytes differentiation from MSCs is an extremely complicated process and it is necessary to consider the internal and external environmental conditions, such as suitable pharmaceutical inducers, cardiomyocytes microenvironments, inhibition of the negative signaling pathway and so on.  相似文献   

9.
Teeth arise from the tooth germ through sequential and reciprocal interactions between immature epithelium and mesenchyme during development. However, the detailed mechanism underlying tooth development from tooth germ mesenchymal cells (TGMCs) remains to be fully understood. Here, we investigate the role of Wnt/β-catenin signalling in BMP9-induced osteogenic/odontogenic differentiation of TGMCs. We first established the reversibly immortalized TGMCs (iTGMCs) derived from young mouse mandibular molar tooth germs using a retroviral vector expressing SV40 T antigen flanked with the FRT sites. We demonstrated that BMP9 effectively induced expression of osteogenic markers alkaline phosphatase, collagen A1 and osteocalcin in iTGMCs, as well as in vitro matrix mineralization, which could be remarkably blunted by knocking down β-catenin expression. In vivo implantation assay revealed that while BMP9-stimulated iTGMCs induced robust formation of ectopic bone, knocking down β-catenin expression in iTGMCs remarkably diminished BMP9-initiated osteogenic/odontogenic differentiation potential of these cells. Taken together, these discoveries strongly demonstrate that reversibly immortalized iTGMCs retained osteogenic/odontogenic ability upon BMP9 stimulation, but this process required the participation of canonical Wnt signalling both in vitro and in vivo. Therefore, BMP9 has a potential to be applied as an efficacious bio-factor in osteo/odontogenic regeneration and tooth engineering. Furthermore, the iTGMCs may serve as an important resource for translational studies in tooth tissue engineering.  相似文献   

10.
11.
Type 1 diabetes (T1D) is correlated with osteopenia primarily due to low bone formation. Parathyroid hormone (PTH) is a known anabolic agent for bone, the anabolic effects of which are partially mediated through the Wnt/β-catenin signaling pathway. In the present study, we first determined the utility of intermittent PTH treatment in a streptozotocin-induced T1D mouse model. It was shown that the PTH-induced anabolic effects on bone mass and bone formation were attenuated in T1D mice compared with nondiabetic mice. Further, PTH treatment failed to activate β-catenin signaling in osteoblasts of T1D mice and was unable to improve osteoblast proliferation and differentiation. Next, the Col1–3.2 kb-CreERTM; β-cateninfx(ex3) mice were used to conditionally activate β-catenin in osteoblasts by injecting tamoxifen, and we addressed whether or not preactivation of β-catenin boosted the anabolic action of PTH on T1D-related bone loss. The results demonstrated that pretreatment with activation of osteoblastic β-catenin followed by PTH treatment outperformed PTH or β-catenin activation monotherapy and led to greatly improved bone structure, bone mass, and bone strength in this preclinical model of T1DM. Further analysis demonstrated that osteoblast proliferation and differentiation, as well as osteoprogenitors in the marrow, were all improved in the combination treatment group. These findings indicated a clear advantage of developing β-catenin as a target to improve the efficacy of PTH in the treatment of T1D-related osteopenia.  相似文献   

12.
Mesenchymal stem cells (MSCs) are multipotent adult stem cells that can differentiate into osteoblasts, chondrocytes and adipocytes, providing a potential source for musculoskeletal tissue engineering. Retinoid signaling plays very important roles in skeletal development. CRBP1 (cellular retinol binding protein 1), a key component of retinoid signaling pathway, is known to take part in vitamin A metabolism and intracellular transporting of retinoids. However, the role of CRBP1 in MSCs remains still obscure. In this study, we investigated the cellular effects of CRBP1 on osteogenic and adipogenic differentiation of bone marrow derived MSCs in vitro and in vivo. Our results showed that CRBP1 overexpression promoted osteogenic differentiation of bone marrow derived MSCs, while inhibited their adipogenic differentiation. We also demonstrated that the possible underlying mechanism for CRBP1 promoting osteogenic differentiation of MSCs was by inhibiting RXRα-induced β-catenin degradation, maintaining β-catenin and pERK1/2 at higher levels. These findings reveal a potential role of CRBP1 in the regulation of β-catenin turnover which can greatly affect the process of osteogenesis and adipogenesis of MSCs.  相似文献   

13.
Mesenchymal stem cells (MSCs) are multipotent progenitors, which give rise to several lineages, including bone, cartilage and fat. Epidermal growth factor (EGF) stimulates cell growth, proliferation and differentiation. EGF acts by binding with high affinity to epidermal growth factor receptor (EGFR) on the cell surface and stimulating the intrinsic protein tyrosine kinase activity of its receptor, which initiates a signal transduction cascade causing a variety of biochemical changes within the cell and regulating cell proliferation and differentiation. We have identified BMP9 as one of the most osteogenic BMPs in MSCs. In this study, we investigate if EGF signalling cross‐talks with BMP9 and regulates BMP9‐induced osteogenic differentiation. We find that EGF potentiates BMP9‐induced early and late osteogenic markers of MSCs in vitro, which can be effectively blunted by EGFR inhibitors Gefitinib and Erlotinib or receptor tyrosine kinase inhibitors AG‐1478 and AG‐494 in a dose‐ and time‐dependent manner. Furthermore, EGF significantly augments BMP9‐induced bone formation in the cultured mouse foetal limb explants. In vivo stem cell implantation experiment reveals that exogenous expression of EGF in MSCs can effectively potentiate BMP9‐induced ectopic bone formation, yielding larger and more mature bone masses. Interestingly, we find that, while EGF can induce BMP9 expression in MSCs, EGFR expression is directly up‐regulated by BMP9 through Smad1/5/8 signalling pathway. Thus, the cross‐talk between EGF and BMP9 signalling pathways in MSCs may underline their important roles in regulating osteogenic differentiation. Harnessing the synergy between BMP9 and EGF should be beneficial for enhancing osteogenesis in regenerative medicine.  相似文献   

14.
15.
Mesenchymal stem cells (MSCs) have the ability to differentiate into osteoblasts and chondrocytes. In vitro osteogenic differentiation is critical but the molecular mechanism has yet to be further clarified. The role of TGF-β activated kinase 1 (TAK1) in MSCs osteogenesis differentiation has not been reported. By adding si-TAK1 and rhTAK1, the osteogenic differentiation of MSCs was measured. Expression levels of the osteoblastic marker genes during osteogenic differentiation of MSCs were checked. As well as molecules involved in BMP and Wnt/β-catenin signaling pathways. The phosphorylation of p38 and JNK was also checked. TAK1 is essential for mineralization of MSCs at low concentration, but excessive rhTAK1 inhibits mineralization of MSCs. It up regulates the expression levels of bone sialoprotein (BSP), osteocalcin (OSC), Alkaline phosphatase (ALP), and RUNX2 during osteogenic differentiation of MSCs. It can also promote TGF-β/BMP-2 gene expression and β-catenin expression, and down regulate GSK-3β expression. Meanwhile, TAK1 promotes the phosphorylation of p38 and JNK. Additionally, TAK1 up regulates the expression of BMP-2 at all concentration under the inhibition of p38 and JNK. Our results suggested that TAK1 is essential in MSCs osteogenesis differentiation, and functions as a double-edged sword, probably through regulation of β-catenin and p38/JNK.  相似文献   

16.
17.
Wnt/β-catenin signaling is a critical regulator of skeletal physiology. However, previous studies have mainly focused on its roles in osteoblasts, while its specific function in osteoclasts is unknown. This is a clinically important question because neutralizing antibodies against Wnt antagonists are promising new drugs for bone diseases. Here, we show that in osteoclastogenesis, β-catenin is induced during the macrophage colony-stimulating factor (M-CSF)-mediated quiescence-to-proliferation switch but suppressed during the RANKL-mediated proliferation-to-differentiation switch. Genetically, β-catenin deletion blocks osteoclast precursor proliferation, while β-catenin constitutive activation sustains proliferation but prevents osteoclast differentiation, both causing osteopetrosis. In contrast, β-catenin heterozygosity enhances osteoclast differentiation, causing osteoporosis. Biochemically, Wnt activation attenuates whereas Wnt inhibition stimulates osteoclastogenesis. Mechanistically, β-catenin activation increases GATA2/Evi1 expression but abolishes RANKL-induced c-Jun phosphorylation. Therefore, β-catenin exerts a pivotal biphasic and dosage-dependent regulation of osteoclastogenesis. Importantly, these findings suggest that Wnt activation is a more effective treatment for skeletal fragility than previously recognized that confers dual anabolic and anti-catabolic benefits.  相似文献   

18.

Background

Understanding stem cell differentiation is essential for the future design of cell therapies. While retinoic acid (RA) is the most potent small molecule enhancer of skeletal myogenesis in stem cells, the stage and mechanism of its function has not yet been elucidated. Further, the intersection of RA with other signalling pathways that stimulate or inhibit myogenesis (such as Wnt and BMP4, respectively) is unknown. Thus, the purpose of this study is to examine the molecular mechanisms by which RA enhances skeletal myogenesis and interacts with Wnt and BMP4 signalling during P19 or mouse embryonic stem (ES) cell differentiation.

Results

Treatment of P19 or mouse ES cells with low levels of RA led to an enhancement of skeletal myogenesis by upregulating the expression of the mesodermal marker, Wnt3a, the skeletal muscle progenitor factors Pax3 and Meox1, and the myogenic regulatory factors (MRFs) MyoD and myogenin. By chromatin immunoprecipitation, RA receptors (RARs) bound directly to regulatory regions in the Wnt3a, Pax3, and Meox1 genes and RA activated a β-catenin-responsive promoter in aggregated P19 cells. In the presence of a dominant negative β-catenin/engrailed repressor fusion protein, RA could not bypass the inhibition of skeletal myogenesis nor upregulate Meox1 or MyoD. Thus, RA functions both upstream and downstream of Wnt signalling. In contrast, it functions downstream of BMP4, as it abrogates BMP4 inhibition of myogenesis and Meox1, Pax3, and MyoD expression. Furthermore, RA downregulated BMP4 expression and upregulated the BMP4 inhibitor, Tob1. Finally, RA inhibited cardiomyogenesis but not in the presence of BMP4.

Conclusion

RA can enhance skeletal myogenesis in stem cells at the muscle specification/progenitor stage by activating RARs bound directly to mesoderm and skeletal muscle progenitor genes, activating β-catenin function and inhibiting bone morphogenetic protein (BMP) signalling. Thus, a signalling pathway can function at multiple levels to positively regulate a developmental program and can function by abrogating inhibitory pathways. Finally, since RA enhances skeletal muscle progenitor formation, it will be a valuable tool for designing future stem cell therapies.  相似文献   

19.
Breast cancer patients have an extremely high rate of bone metastases. Morphological analyses of the bones in most of the patients have revealed the mixed bone lesions, comprising both osteolytic and osteoblastic elements. β-Catenin plays a key role in both embryonic skeletogenesis and postnatal bone regeneration. Although this pathway is also involved in many bone malignancy, such as osteosarcoma and prostate cancer-induced bone metastases, its regulation of breast cancer bone metastases remains unknown. Here, we provide evidence that the β-catenin signaling pathway has a significant impact on the bone lesion phenotype. In this study, we established a novel mouse model of mixed bone lesions using intratibial injection of TM40D-MB cells, a breast cancer cell line that is highly metastatic to bone. We found that both upstream and downstream molecules of the β-catenin pathway are up-regulated in TM40D-MB cells compared with non-bone metastatic TM40D cells. TM40D-MB cells also have a higher T cell factor (TCF) reporter activity than TM40D cells. Inactivation of β-catenin in TM40D-MB cells through expression of a dominant negative TCF4 not only increases osteoclast differentiation in a tumor-bone co-culture system and enhances osteolytic bone destruction in mice, but also inhibits osteoblast differentiation. Surprisingly, although tumor cells overexpressing β-catenin did induce a slight increase of osteoblast differentiation in vitro, these cells display a minimal effect on osteoblastic bone formation in mice. These data collectively demonstrate that β-catenin acts as an important determinant in mixed bone lesions, especially in controlling osteoblastic effect within tumor-harboring bone environment.  相似文献   

20.
Cartilage formation during both embryonic development and bone repairing processes involves mesenchymal stem cells (MSCs) differentiation. Wnt/β-catenin signaling pathway inhibits early chondrogenesis and is down-regulated during Transforming growth factor-β1 (TGF-β1)-induced chondrogenesis. However, the regulatory molecules that participate in the process is unknown. This study was designed to investigate the underlying mechanisms that down-regulate Wnt/β-catenin pathway during chondrogenesis. TGF-β1-induced micromass cultures of C3H10T1/2 were used as chondrocyte differentiation model. Gene expression profile was detected by realtime-PCR. Regulatory role of HDAC1 on β-catenin was investigated by luciferase assay, chromatin immunoprecipitation (ChIP) assay, co-immunoprecipitation (Co-IP) assay and in vitro ubiquitination assay. In this study, we showed that HDAC1 was induced and suppressed β-catenin gene expression through direct binding to its promoter. Besides, HDAC1 could also interact with deacetylate β-catenin protein through its deacetylase domain, which causes degradation of β-catenin. Our results indicate that HDAC1 plays an important role in chondrogenesis and may represent a therapeutic target for modulation of cartilage development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号