首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acute kidney injury (AKI), mainly caused by Ischemia/reperfusion injury (IRI), is a common and severe life-threatening disease with high mortality. Accumulating evidence suggested a direct relationship between endoplasmic reticulum (ER) stress response and AKI progression. However, the role of the transmissible ER stress response, a new modulator of cell-to-cell communication, in influencing intercellular communication between renal tubular epithelial cells (TECs) and macrophages in the AKI microenvironment remains to be determined. To address this issue, we first demonstrate that TECs undergoing ER stress are able to transmit ER stress to macrophages via exosomes, promoting macrophage polarization towards the pro-inflammatory M1 phenotype in vitro and in vivo. Besides, the miR-106b-5p/ATL3 signalling axis plays a pivotal role in the transmission of ER stress in the intercellular crosstalk between TECs and macrophages. We observed an apparent increase in the expression of miR-106b-5p in ER-stressed TECs. Furthermore, we confirmed that ALT3 is a potential target protein of miR-106b-5p. Notably, the inhibition of miR-106b-5p expression in macrophages not only restores ATL3 protein level but also decreases transmissible ER stress and hinders M1 polarization, thus alleviating AKI progression. Additionally, our results suggest that the level of exosomal miR-106b-5p in urine is closely correlated with the severity of AKI patients. Taken together, our study sheds new light on the crucial role of transmissible ER stress in the treatment of AKI through the regulation of the miR-106b-5p/ATL3 axis, offering new ideas for treating AKI.  相似文献   

2.
3.
4.
5.
BackgroundSome microRNAs (miRNAs) are involved in osteogenic differentiation. In recent years, increasing evidences have revealed that exosomes contain specific miRNAs. However, the effect and mechanism of miR-23a-5p-containing exosomes in osteoblast remain largely unclear.MethodsWe extracted exosomes from RANKL-induced RAW 264.7 cells, and identified exosomes via transmission electron microscopy, western blot and flow cytometry analysis. In addition, exosome secretion was inhibited by GW4869 and Rab27a siRNAs. miR-23a-5p expression was analyzed by qRT-PCR, and the related protein levels were examined by western blot assay. Furthermore, the number and distribution of osteoclasts were detected by TRAP staining, and early osteogenesis was evaluated by ALP staining. Combination of YAP1 and Runx2 was verified by Co-IP assay, and the regulation of miR-23a-5p and Runx2 was measured by dual luciferase reporter assay.ResultsWe successfully extracted exosomes from RANKL-induced RAW 264.7 cells, and successfully verified exosomes morphology. We also indicated that miR-23a-5p was highly expressed in exosomes from RANKL-induced RAW 264.7 cells, and osteoclast-derived miR-23a-5p-containing exosomes inhibited osteoblast activity, while its inhibition weakened osteoclasts. In mechanism, we demonstrated that Runx2 was a target gene of miR-23a-5p, YAP interacted with Runx2, and YAP or Runx2 inhibited MT1DP expression. In addition, we proved that knockdown of MT1DP facilitated osteogenic differentiation by regulating FoxA1 and Runx2.ConclusionsWe demonstrated that osteoclast-derived miR-23a-5p-containing exosomes could efficiently suppress osteogenic differentiation by inhibiting Runx2 and promoting YAP1-mediated MT1DP. Therefore, we suggested miR-23a-5p in exosomes might provide a novel mechanism for osteoblast function.  相似文献   

6.
ObjectiveThe role of exosomes in human cancers has been identified, while the effect of cancer-associated fibroblasts (CAFs)-derived exosomes (CAF-exos) transmitting microRNAs (miRNAs) on colorectal cancer (CRC) remains largely unknown. We aim to explore the impact of CAF-derived exosomal miR-135b-5p on CRC progression by targeting thioredoxin-interacting protein (TXNIP).MethodsCRC tissues were collected to obtain CAF-exos, which were used to co-culture with LoVo and HT29 cells. The effect of miR-135b-5p and TXNIP on the in vivo growth, in vitro proliferation, apoptosis, migration, invasion and angiogenesis of CRC cells. miR-135b-5p and TXNIP expression in exosomes and CRC cells were detected and their targeting relationship was confirmed.ResultsMiR-135b-5p was upregulated whereas TXNIP was downregulated in CRC tissues and cells. The CAF-exos and CAF-exos upregulating miR-135b-5p promoted in vivo growth, in vitro proliferation, migration and invasion, and suppressed apoptosis of CRC cells, and also promoted the HUVEC angiogenesis. TXNIP was confirmed as a target of miR-135b-5p and overexpression of TXNIP could weaken the pro-CRC effect of exosomal miR-135b-5p,ConclusionCAF-exos upregulate miR-135b-5p to promote CRC cell growth and angiogenesis by inhibiting TXNIP.  相似文献   

7.
Exosomes participate in intercellular communication and glioma microenvironment modulation, but the exact mechanisms by which glioma-derived exosomes (GDEs) promote the generation of the immunosuppressive microenvironment are still unclear. Here, we investigated the effects of GDEs on autophagy, the polarization of tumor-associated macrophages (TAMs), and glioma progression. Compared with normoxic glioma-derived exosomes (N-GDEs), hypoxic glioma-derived exosomes (H-GDEs) markedly facilitated autophagy and M2-like macrophage polarization, which subsequently promoted glioma proliferation and migration in vitro and in vivo. Western blot and qRT-PCR analyses indicated that interleukin 6 (IL-6) and miR-155-3p were highly expressed in H-GDEs. Further experiments showed that IL-6 and miR-155-3p induced M2-like macrophage polarization via the IL-6-pSTAT3-miR-155-3p-autophagy-pSTAT3 positive feedback loop, which promotes glioma progression. Our study clarifies a mechanism by which hypoxia and glioma influence autophagy and M2-like macrophage polarization via exosomes, which could advance the formation of the immunosuppressive microenvironment. Our findings suggest that IL-6 and miR-155-3p may be novel biomarkers for diagnosing glioma and that treatments targeting autophagy and the STAT3 pathway may contribute to antitumor immunotherapy.Subject terms: Cancer microenvironment, Autophagy  相似文献   

8.
脂联素(adiponection)与骨关节炎(osteoarthritis, OA)的发病密切相关,且主要通过其受体adipoR1发挥作用。而骨关节炎中脂联素的表达是否受miRNA表达的影响却未见报道。本文旨在研究miR-127-5p对骨关节炎软骨细胞中脂联素及细胞增殖的影响。分离培养人原代OA软骨细胞及对应正常细胞,甲苯胺蓝染色和II型胶原免疫细胞化学染色进行鉴定。 Real-time PCR结果表明,OA软骨细胞中miR-127-5p的表达与正常软骨细胞中的相比较显著下降。MiR-127-5p转染可显著降低荧光素酶报告基因的荧光强度(P<0.05),表明adipoR1为miR-127-5p的靶向基因。MiR-127-5p mimic转染软骨细胞后,MTT法研究结果表明,miR-127-5p mimic 可显著促进软骨细胞增殖,Western 印迹结果表明,脂联素及其受体(adipoR1)表达显著上升,p65的表达以及p38、ERK1/2以及IkBα的磷酸化水平显著下降。ELISA结果表明,MMP-1、MMP-3、MMP-13的含量显著下降。实验结果提示,miR-127-5p通过靶向下调adipoR1及脂联素的表达,促进软骨细胞增殖,并且抑制NF-κB信号通路,进而抑制炎性反应。  相似文献   

9.
Membrane-coated extracellular vesicles (EVs) released by cells can serve as vehicles for delivery of biological materials and signals. Recently, we demonstrated that alcohol-treated hepatocytes cross-talk with immune cells via exosomes containing microRNA (miRNAs). Here, we hypothesized that alcohol-exposed monocytes can communicate with naive monocytes via EVs. We observed increased numbers of EVs, mostly exosomes, secreted by primary human monocytes and THP-1 monocytic cells in the presence of alcohol in a concentration- and time-dependent manner. EVs derived from alcohol-treated monocytes stimulated naive monocytes to polarize into M2 macrophages as indicated by increased surface expression of CD68 (macrophage marker), M2 markers (CD206 (mannose receptor) and CD163 (scavenger receptor)), secretion of IL-10, and TGFβ and increased phagocytic activity. miRNA profiling of the EVs derived from alcohol-treated THP-1 monocytes revealed high expression of the M2-polarizing miRNA, miR-27a. Treatment of naive monocytes with control EVs overexpressing miR-27a reproduced the effect of EVs from alcohol-treated monocytes on naive monocytes and induced M2 polarization, suggesting that the effect of alcohol EVs was mediated by miR-27a. We found that miR-27a modulated the process of phagocytosis by targeting CD206 expression on monocytes. Importantly, analysis of circulating EVs from plasma of alcoholic hepatitis patients revealed increased numbers of EVs that contained high levels of miR-27a as compared with healthy controls. Our results demonstrate the following: first, alcohol increases EV production in monocytes; second, alcohol-exposed monocytes communicate with naive monocytes via EVs; and third, miR-27a cargo in monocyte-derived EVs can program naive monocytes to polarize into M2 macrophages.  相似文献   

10.
11.
《Cytotherapy》2023,25(3):310-322
Background aimsAcute kidney injury (AKI) is often associated with poor patient outcomes. Extracellular vesicles (EVs) have a marked therapeutic effect on renal recovery. This study sought to explore the functional mechanism of EVs from adipose tissue-derived stromal cells (ADSCs) in tubular epithelial cell (TEC) repair in AKI.MethodsADSCs were cultured and EVs were isolated and identified. In vivo and in vitro AKI models were established using lipopolysaccharide (LPS).ResultsEVs increased human kidney 2 (HK-2) cell viability; decreased terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells and levels of kidney injury molecule 1, cleaved caspase-1, apoptosis-associated speck-like protein containing a CARD, gasdermin D-N, IL-18 and IL-1β; and elevated pro-caspase-1. EVs carried miR-21-5p into LPS-induced HK-2 cells. Silencing miR-21-5p partly eliminated the ability of EVs to suppress HK-2 cell pyroptosis and inflammation. miR-21-5p targeted toll-like receptor 4 (TLR4) and inhibited TEC pyroptosis and inflammation after AKI by inhibiting TLR4. TLR4 overexpression blocked the inhibitory effects of EVs on TEC pyroptosis and inflammation. EVs suppressed the nuclear factor-κB/NOD-like receptor family pyrin domain-containing 3 (NF-κB/NLRP3) pathway via miR-21-5p/TLR4. Finally, AKI mouse models were established and in vivo assays verified that ADSC-EVs reduced TEC pyroptosis and inflammatory response and potentiated cell repair by mediating miR-21-5p in AKI mice.ConclusionsADSC-EVs inhibited inflammation and TEC pyroptosis and promoted TEC repair in AKI by mediating miR-21-5p to target TLR4 and inhibiting the NF-κB/NLRP3 pathway.  相似文献   

12.
Xu  Chuan  Yu  Hailong  Chen  Beilei  Ma  Yuan  Lv  Penghua 《Neurochemical research》2022,47(4):907-920

Ischemic stroke (IS) is a cerebrovascular disease with high morbidity, recurrence, and mortality. The purpose of the present study was to investigate the role and mechanism of human serum exosomes on angiogenesis after IS. The middle cerebral artery occlusion (MCAO) in vivo model and oxygen-glucose deprivation (OGD) in vitro model were established. Human serum exosomes from healthy samples (NC-exo) and IS samples (IS-exo) were injected into MCAO mice. Neurobehavioral tests were performed to assess the extent of neurological deficits. The infarct volume was assessed by 2,3,5-triphenyl tetrazolium chloride (TTC) staining, and the levels of inflammatory cytokines were analyzed by enzyme-linked immunosorbent assay (ELISA). In addition, human serum exosomes were cocultured with brain microvascular endothelial cells (BMECs). Cell Counting Kit-8 (CCK-8), Transwell, and tubule formation assays were performed to investigate the proliferation, migration, invasion, length, and branching of BMECs. The miRNA expression profiles of NC-exo and IS-exo were analyzed by high-throughput sequencing and compared. Bioinformatics and luciferase reporter assays were performed to evaluate the relationship between miR-340-5p and CD147. Serum NC-exo and IS-exo had protective effects on IS injury and promoted BMEC angiogenesis. Interestingly, the protective effect of IS-exo was weaker than that of NC-exo. In addition, miR-340-5p was downregulated in IS-exo, and miR-340-5p accelerated angiogenesis of BMECs after OGD. Mechanistically, CD147 was confirmed as a direct target of miR-340-5p. Finally, miR-340-5p promoted angiogenesis by directly targeting CD147. Serum exosome-derived miR-340-5p promote angiogenesis in OGD-induced BMECs by targeting CD147.

  相似文献   

13.
Cancer stem cells promote tumorigenesis and progression of hepatocellular carcinoma (HCC). Recently, emerging evidence indicates tumor-associated macrophages (TAMs) play an important role in tumor progression. However, TAMs often occurs with unknown mechanisms. As an important mediator in intercellular communications, exosomes secreted by host cells mediate the exchange of genetic materials and proteins, which involves tumor aggressiveness. The aim of the study was to investigate whether exosomes derived from TAMs mediate stem cell properties in HCC. TAMs were isolated from the tissues of HCC. microRNA (miRNA) expression profiles of TAMs were analyzed using miRNA microarray. In vitro cell coculture was further conducted to investigate the crosstalk between TAMs and tumor cells mediated by TAMs exosomes. In this study, we showed that TAMs exosomes promote HCC cell proliferation and stem cell properties. Using miRNA profiles assay, we identified significantly lower levels of miR-125a and miR-125b in exosomes and cell lysate isolated from TAMs. Functional studies revealed that the HCC cells were treated with TAM exosomes or transfected with miR-125a/b suppressed cell proliferation and stem cell properties by targeting CD90, a stem cell marker of HCC stem cells. The study indicated that miR-125a/b targeting CD90 played important roles in cancer stem cells of HCC.  相似文献   

14.
15.
MicroRNAs (miRNAs), small non-coding molecules, regulate gene expression in response to stimuli. Lipopolysaccharide (LPS) was reported to induce the expression of miR-146 and miR-155 in HL-60. The effects of LPS and the related stimulus, tumour necrosis factor alpha (TNFα), on miRNA expression required to be further studied. Using T7-oligo ligation assay (OLA)-based miRNA array, we profiled the expression of 132 miRNAs and identified a number of TNFα-regulated miRNAs in HeLa cells, including miR-17-3p and miR-106a. TNFα induction of miR-17-3p and miR-106a was verified by Northern blot analysis with RNU48 normalization. Northern blot analysis also showed that LPS was able to induce the expression of both miR-17-3p and miR-106a in HeLa cells. Furthermore, both array assay and Northern blot analysis showed that the expression levels of miR-146 and miR-155 were either low or undetectable in HeLa cells and TNFα- and LPS-mediated induction of these two miRNAs was not found. Luciferase reporter analysis confirmed the induction of miR-17-3p and miR-106a in response to TNFα and LPS treatment in HeLa cells. These results suggested that the expression of miR-17-3p and miR-106a is regulated by TNFα and LPS in HeLa cells.  相似文献   

16.
17.
18.
Polycystic ovary syndrome (PCOS) is a heterogeneous reproductive disease, characterized by increased ovarian androgen biosynthesis, chronic anovulation and polycystic ovaries. The objective of this study was to identify the altered miRNA expression profiles in follicular fluid derived exosomes isolated from PCOS patients and to investigate the molecular functions of exosomal miR-424-5p. Herein, small RNA sequencing showed that twenty-five miRNAs were differentially expressed between control and PCOS group. The alterations in the miRNA profile were related to the endocrine resistance, cell growth and proliferation, cellular senescence and insulin signaling pathway. Among these differentially expressed miRNAs, we found that the expression of miR-424-5p was significantly decreased in PCOS exosomes and primary granulosa cells (GCs). Exosome-enriched miR-424-5p significantly promoted GCs senescence and suppressed cell proliferation. Similar to the results obtained in the cells transfected with miR-424-5p mimic, miR-424-5p mimic significantly decreased cell proliferation ability and induced senescence, but treatment with miR-424-5p inhibitor got the opposite results. In addition, cell division cycle associated 4 (CDCA4) gene displayed an inverse expression pattern to those of miR-424-5p, was identified as the direct target of miR-424-5p. Overexpression of CDCA4 reversed the effects of exosomal miR-424-5p on GCs via activation of Rb/E2F1 signaling pathway. These results demonstrate that exosomal miR-424-5p inhibits GCs proliferation and induces cellular senescence in PCOS through blocking CDCA4-mediated Rb/E2F1 signaling. Our findings provide new information on abnormal follicular development in PCOS.  相似文献   

19.
Emerging evidence has suggested the functions of exosomes in allergic diseases including asthma. By using a mouse model with asthma induced by ovalbumin (OVA), we explored the roles of M2 macrophage-derived exosomes (M2Φ-Exos) in asthma progression. M2Φ-Exos significantly alleviated OVA-induced fibrosis and inflammatory responses in mouse lung tissues, as well as inhibited abnormal proliferation, invasion, and fibrosis-related protein production in platelet derived growth factor (PDGF-BB) treated primary mouse airway smooth muscle cells (ASMCs). The OVA administration in mice or the PDGF-BB treatment in ASMCs reduced the expression of miR-370, which was detected in M2Φ-Exos by miRNA sequencing. However, treating the mice or ASMCs with M2Φ-Exos reversed the inhibitory effect of OVA or PDGF-BB on miR-370 expression. We identified that the target of miR-370 was fibroblast growth factor 1 (FGF1). Downregulation of miR-370 by Lv-miR-370 inhibitor or overexpression of FGF1 by Lv-FGF1 blocked the protective roles of M2Φ-Exos in asthma-like mouse and cell models. M2Φ-Exos were found to inactivate the MAPK signaling pathway, which was recovered by miR-370 inhibition or FGF1 overexpression. Collectively, we conclude that M2Φ-Exos carry miR-370 to alleviate asthma progression through downregulating FGF1 expression and the MAPK/STAT1 signaling pathway. Our study may offer a novel insight into asthma treatment.  相似文献   

20.
It has been widely reported that exosomes derived from mesenchymal stem cells (MSCs) have a protective effect on myocardial infarction (MI). However, the specific molecules which play a damaging role in MSCs shuttled miRNAs are much less explored. MiRNA-153-3p (miR-153-3p) is a vital miRNA which has been proved to modulate cell proliferation, apoptosis, angiogenesis, peritoneal fibrosis and aortic calcification. Here, we aim to study the effect and mechanism of miR-153-3p in MSC-derived exosomes on hypoxia-induced myocardial and microvascular damage. The exosomes of MSCs were isolated and identified, and the MSCs-exosomes with low expression of miR-153-3p (exo-miR-153-3p) were constructed to interfere with the endothelial cells and cardiomyocytes in the oxygen-glucose deprivation (OGD) model. The viability, apoptosis, angiogenesis of endothelial cells and cardiomyocytes were determined. Additionally, ANGPT1/VEGF/VEGFR2/PI3K/Akt/eNOS pathway was detected by ELISA and/or western blot. The results illustrated that exo-miR-153-3p significantly reduced the apoptosis of endothelial cells and cardiomyocytes and promoted their viability. Meanwhile, exo-miR-153-3p can promote the angiogenesis of endothelial cells. Mechanistically, miR-153-3p regulates the VEGF/VEGFR2/PI3K/Akt/eNOS pathways by targeting ANGPT1. Intervention with VEGFR2 inhibitor (SU1498, 1 μM) remarkably reversed the protective effect of exo-miR-153-3p in vascular endothelial cells and cardiomyocytes treated by OGD. Collectively, MSCs-derived exosomes with low-expressed miR-153-3p notably promotes the activation of ANGPT1 and the VEGF/VEGFR2 /PI3K/Akt/eNOS pathways, thereby preventing the damages endothelial cells and cardiomyocytes against hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号