首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
During pregnancy, apoptosis is a physiological event critical in the remodeling and aging of the placenta. Increasing evidence has pointed towards the relevance of endocannabinoids (ECs) and hypoxia as modulators of trophoblast cell death. However, the relation between these factors is still unknown. In this report, we evaluated the participation of ECs in placental apoptosis induced by cobalt chloride (CoCl2), a hypoxia mimicking agent that stabilizes the expression of hypoxia inducible factor-1 alpha (HIF-1α). We found that HIF-1α stabilization decreased FAAH mRNA and protein levels, suggesting an increase in ECs tone. Additionally, CoCl2 incubation and Met-AEA treatment reduced cell viability and increased TUNEL-positive staining in syncytiotrophoblast layer. Immunohistochemical analysis demonstrated Bax and Bcl-2 protein expression in the cytoplasm of syncytiotrophoblast. Finally, HIF-1α stabilization produced an increase in Bax/Bcl-2 ratio, activation of caspase 3 and PARP cleavage. All these changes in apoptotic parameters were reversed with AM251, a CB1 antagonist. These results demonstrate that HIF-1α may induce apoptosis in human placenta via intrinsic pathway by a mechanism that involves activation of CB1 receptor suggesting a role of the ECs in this process.  相似文献   

3.
Induction of HIF-1α by oxygen limitation promotes increased phosphorylation and catalytic depression of mitochondrial pyruvate dehydrogenase (PDH) and an enhanced glycolytic poise in cells. Cobalt chloride and desferrioxamine are widely used as mimics for hypoxia because they increase the levels of HIF-1α. We evaluated the ability of these agents to elicit selected physiological responses to hypoxia as a means to metabolically precondition mammalian cells, but without the detrimental effects of hypoxia. We show that, while CoCl2 does increase HIF-1α in a dose-dependent manner, it unexpectedly and strikingly decreases PDH phosphorylation at E1α sites 1, 2, and 3 (Ser293, Ser300, and Ser232, respectively) in HepG2 cells. This same effect is also observed for site 1 in mouse NIH/3T3 fibroblasts and J774 macrophages. CoCl2 unexpectedly decreases the mRNA expression for PDH kinase-2 in HepG2 cells, which likely explains the dephosphorylation of PDH observed. And nor does desferrioxamine promote the expected increase in PDH phosphorylation. Dimethyloxaloylglycine (a prolyl hydroxylase inhibitor) performs better in this regard, but failed to promote the stronger effects seen with hypoxia. Consequently, CoCl2 and desferrioxamine are unreliable mimics of hypoxia for physiological events downstream of HIF-1α stabilization. Our study demonstrates that mimetic chemicals must be chosen with caution and evaluated thoroughly if bona fide cellular outcomes are to be promoted with fidelity.  相似文献   

4.
5.
Low O2 levels in solid tumors are associated with increase in hypoxia-inducible factor 1α (HIF-1α). The present study examines functional changes involved in adaptation to hypoxia of the LMM3 mammary tumor cell line, using CoCl2 as hypoxic mimetic. Our results showed that LMM3 cells were not only tolerant to 150 μM CoCl2 but they can overgrowth in vitro respect to untreated cells. Hypoxia inhibited cell invasion, migration, MMP-9 activity and NO levels. Macrophage cytotoxicity augmented under hypoxia but was blunted by conditioned media from tumor cells. In vivo tumorigenicity of CoCl2-treated cells was greater than controls. Our results show stabilization of HIF-1α in LMM3 cells under CoCl2 and functional changes associated with enhanced cell survival and growth but not with tumor dissemination.  相似文献   

6.
Hypoxia presents pro-apoptotic and anti-apoptotic biphasic effects that appear to be dependent upon cell types and conditions around cells. The substantial reports demonstrated that commonly used hypoxia-mimetic agents cobalt chloride (CoCl2) and desferrioxamine (DFO) could also induce apoptosis in many different kinds of cells, but the mechanism was poorly understood. In this work, we compare the apoptosis-inducing effects of these two hypoxia-mimetic agents with acute myeloid leukemic cell lines NB4 and U937 as in vitro models. The results show that both of them induce these leukemic cells to undergo apoptosis with a loss of mitochondrial transmembrane potentials (ΔΨ m), the activation of caspase-3/8 and the cleavage of anti-apoptotic protein Mcl-1, together with the accumulation of hypoxia-inducible factor-1 alpha (HIF-1α) protein, a critical regulator for the cellular response to hypoxia. Metavanadate and sodium nitroprusside significantly abrogate DFO rather than CoCl2-induced mitochondrial Δ Ψ m collapse, caspase-3/8 activation, Mcl-1 cleavage and apoptosis, but they fail to influence DFO and CoCl2-induced HIF-1α protein accumulation. Moreover, inducible expression of HIF-1α gene dose not alter DFO and CoCl2-induced apoptosis in U937 cells. In conclusion, these results propose that although both DFO and CoCl2-induced leukemic cell apoptosis by mitochondrial pathway-dependent and HIF-1α-independent mechanisms, DFO and CoCl2-induced apoptosis involves different initiating signal pathways that remain to be investigated.  相似文献   

7.
《Autophagy》2013,9(8):829-839
Beclin 1, a tumor suppressor protein, acts as an initiator of autophagy in mammals. Heterozygous disruption of Beclin 1 accelerates tumor growth, but the underlying mechanisms remain unclear. We examined the role of Beclin 1 in tumor proliferation and angiogenesis, using a primary mouse melanoma tumor model. Beclin 1 (Becn1+/-) hemizygous mice displayed an aggressive tumor growth phenotype with increased angiogenesis under hypoxia, associated with enhanced levels of circulating erythropoietin but not vascular endothelial growth factor, relative to wild-type mice. Using in vivo and ex vivo assays, we demonstrated increased angiogenic activity in Becn1+/- mice relative to wild-type mice. Endothelial cells from Becn1+/- mice displayed increased proliferation, migration and tube formation in response to hypoxia relative to wild-type cells. Moreover, Becn1+/- cells subjected to hypoxia displayed increased hypoxia-inducible factor-2α (HIF-2α) expression relative to HIF-1α. Genetic interference of HIF-2α but not HIF-1α, dramatically reduced hypoxia-inducible proliferation, migration and tube formation in Becn1+/- endothelial cells. We demonstrated that mice deficient in the autophagic protein Beclin 1 display a pro-angiogenic phenotype associated with the upregulation of HIF-2α and increased erythropoietin production. These results suggest a relationship between Beclin 1 and the regulation of angiogenesis, with implications in tumor growth and development.  相似文献   

8.
9.
The proliferation of pulmonary artery smooth muscle cells (PASMCs) is an important cause of pulmonary vascular remodelling in hypoxia-induced pulmonary hypertension (HPH). However, its underlying mechanism has not been well elucidated. Connexin 43 (Cx43) plays crucial roles in vascular smooth muscle cell proliferation in various cardiovascular diseases. Here, the male Sprague-Dawley (SD) rats were exposed to hypoxia (10% O2) for 21 days to induce rat HPH model. PASMCs were treated with CoCl2 (200 µM) for 24 h to establish the HPH cell model. It was found that hypoxia up-regulated the expression of Cx43 and phosphorylation of Cx43 at Ser 368 in rat pulmonary arteries and PASMCs, and stimulated the proliferation and migration of PASMCs. HIF-1α inhibitor echinomycin attenuated the CoCl2-induced Cx43 expression and phosphorylation of Cx43 at Ser 368 in PASMCs. The interaction between HIF-1α and Cx43 promotor was also identified using chromatin immunoprecipitation assay. Moreover, Cx43 specific blocker (37,43Gap27) or knockdown of Cx43 efficiently alleviated the proliferation and migration of PASMCs under chemically induced hypoxia. Therefore, the results above suggest that HIF-1α, as an upstream regulator, promotes the expression of Cx43, and the HIF-1α/Cx43 axis regulates the proliferation and migration of PASMCs in HPH.  相似文献   

10.
The retina is the most metabolically active tissue in the human body and hypoxia-induced retinal ganglion cell (RGC) death has been implicated in glaucomatous optic neuropathy. The aim of this study is to determine whether muscarinic receptor agonist pilocarpine, a classic antiglaucoma drug, possesses neuroprotection against cobalt chloride (CoCl2)-mimetic hypoxia-induced apoptosis of rat retinal ganglion cells (RGC-5 cells) and its underlying mechanisms. Cell viability was determined by Cell Counting Kit-8 assay and apoptosis was examined by annexin V and mitochondrial membrane potential (MMP) assays. Expressions of hypoxia-induced factor-1α (HIF-1α), p53, and BNIP3 were investigated by quantitative real-time PCR and western blot analysis. After treatment of 200 μM CoCl2 for 24 h, RGC-5 cells showed a marked decrease of cell viability by approximately 30%, increased apoptosis rate and obvious decline in MMP, which could largely be reversed by the pretreatment of 1 μM pilocarpine mainly via the activation of muscarinic receptors. Meanwhile, pretreatment of 1 μM pilocarpine could significantly prevent CoCl2-induced HIF-1α translocation from cytoplasm to nucleus and down-regulate the expression of HIF-1α, p53, and BNIP3. These studies demonstrated that pilocarpine had effective protection against hypoxia-induced apoptosis in RGCs via muscarinic receptors and HIF-1α pathway. The findings suggest that HIF-1α pathway as a “master switch” may be used as a therapeutic target in the cholinergic treatment of glaucoma.  相似文献   

11.
Embryonic hypoxia/ischemia is a major cause of a poor fetal outcome and future neonatal and adult handicaps. However, biochemical cellular events in mouse embryonic stem (mES) cells during hypoxia remains unclear. This study investigated the underlying mechanism of apoptosis in mES cells under CoCl2-induced hypoxic/ischemic conditions. CoCl2 enhanced the expression of hypoxia-inducible factor-1α (HIF-1α) and the accumulation of reactive oxygen species in mES cells. The CoCl2-treated mES cells showed a decrease in cell viability as well as typical apoptotic changes, cell shrinkage, chromatin condensation, and nuclear fragmentation and an extended G2/M phase of the cell cycle. CoCl2 augmented the release of cytochrome c into the cytosol from the mitochondria with a concomitant loss of the mitochondrial transmembrane potential (ΔΨm) and upregulated the voltage-dependent anion channel. In addition, CoCl2-induced caspase-3, -8, and -9 activation and upregulation of p53 level, whereas downregulated Bcl-2 and Bcl-xL, a member of the anti-apoptotic Bcl-2 family in mES cells. Furthermore, CoCl2 led to the upregulation of Fas and Fas-ligand, which are the death receptor assemblies, as well as the cleavage of Bid in mES cells. These results suggest that CoCl2 induces apoptosis through both mitochondria- and death receptor-mediated pathways that are regulated by the Bcl-2 family in mES cells.  相似文献   

12.
13.
14.
15.
16.
17.
Human mesenchymal stem cells (hMSCs) are known to have the capacity to differentiate into various cell types, including neurons. To examine our hypothesis that miRNA was involved in neuronal differentiation of hMSCs, CoCl2, a hypoxia-mimicking agent was used to induce neuronal differentiation, which was assessed by determining the expression of neuronal markers such as nestin and Tuj1. Treatment of hMSCs with CoCl2 led to increased expression of miR-124a, a neuron-specific miRNA. HIF-1α silencing and JNK inhibition abolished CoCl2-induced miR-124a expression, suggesting that JNK and HIF-1α signals were required for the miR-124a expression induced by CoCl2 in hMSCs. Overexpression of miR-124a or CoCl2 treatment suppressed the expression of anti-neural proteins such as SCP1 and SOX9. Silencing of both SCP1 and SOX9 induced neuronal differentiation of hMSCs, indicating that suppression of miR-124a targets is important for CoCl2-induced neuronal differentiation of hMSCs. Knockdown of HIF-1α or inhibition of JNK restored the expression of SCP1 and SOX9 in CoCl2-treated cells. Inhibition of miR-124a blocked CoCl2-induced suppression of SCP1 and SOX9 and abolished CoCl2-induced neuronal differentiation of hMSCs. Taken together, we demonstrate that miR-124a is critically regulates CoCl2-induced neuronal differentiation of hMSCs by suppressing the expression of SCP1 and SOX9.  相似文献   

18.
Chemopreventive or anticancer agents induce cancer cells to apoptosis through the activation of adenosine AMP-activated protein kinase (AMPK), which plays a major role as energy sensors under ATP-deprived condition or ROS generation. In this study, we compared the effects of ascochlorin (ASC), from the fungus Ascochyta viciae, and its derivatives on AMPK activity. We also examined a regulatory mechanism for hypoxia-inducible factor-1α (HIF-1α) stabilization in response to 4-O-methylascochlorin (MAC). We found that AMPK activation was mainly involved with MAC, but not ASC and 4-O-carboxymethylascochlorin (AS-6), indicating that the substitution of 4-O-methyl group from 4-O-hydroxyl group of ASC is important in the activation of AMPK and the expression of HIF-1α. MAC-stabilized HIF-1α via AMPK activation triggered by lowering the intracellular ATP level, not by ROS generation, increases glucose uptake and the expression of vascular endothelial growth factor (VEGF) and glucose transporter 1 (GLUT-1), major target genes of HIF-1α. Moreover, MAC-induced AMPK activity suppressed survival factors, including mTOR and ERK1/2 or translational regulators, including p70S6K and 4E-BP1. Our data suggest that AMPK is a key determinant of MAC-induced HIF-1α expression in response to energy stress, further implying its involvement in MAC-induced apoptosis.  相似文献   

19.
Obesity is a multifactorial, chronic, inflammatory disease that involves different processes, such as adipose tissue hypoxia. The aim of the current study was to characterize the effects of conditioned medium (CM) from lipopolysaccharide (LPS)-activated macrophages on the regulation of hypoxia-inducible factor 1α (HIF-1α)-related genes in murine adipocytes. For the in vitro analyses, 3T3-L1 murine adipocytes (9 days postdifferentiation) were incubated either in CM (25% medium of RAW 264.7 murine macrophages with 24 hr 500 ng/ml LPS), LPS at 500 ng/ml, or hypoxia (Hx; 1% O2, 94% N2, 5% CO2) for 24 hr. For the in vivo experiments, mice were fed a high-fat diet. Both epididymal white adipose tissue (eWAT) and adipocytes in CM showed upregulation of Glut1, Mcp1, Il10, Tnf, and Il1b. The secretion of IL-6, TNF-α, and MCP-1 was also increased in CM-treated adipocytes. Moreover, increased levels of HIF-1α subunit and nuclear factor kappa B p65 were found after CM treatment, linking Hx, and inflammation. HIF-1α directly bound vascular endothelial growth factor A (Vegfa) and uncoupling protein 2 (Ucp2) genes, up- and downregulating its expression, respectively. Furthermore, the oxygen consumption rate was 30% lower in CM. The siRNA knockdown of mammalian target of rapamycin (Mtor) reversed the induction of HIF-1α found in CM. The macrophage infiltration simulated through CM seems to be a similar environment to an abnormally enlarged eWAT. We have evidenced that HIF-1α plays a regulatory role in the expression of Vegfa and Ucp2 in CM. Finally, the inhibition of the mTOR pathway prevented the HIF-1α activation induced by CM. The involvement of HIF-1α under proinflammatory conditions provides insight into the origins of Hx in obesity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号