首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transmembrane chemokine CXCL16 is expressed by dendritic and vascular cells and mediates chemotaxis and adhesion of activated T cells via the chemokine receptor CXCR6/Bonzo. Here we describe the expression and shedding of this chemokine by glioma cells in situ and in vitro. By quantitative RT-PCR and immunohistochemistry, we show that CXCL16 is highly expressed in human gliomas, while expression in normal brain is low and mainly restricted to brain vascular endothelial cells. In cultivated human glioma cells as well as in activated mouse astroglial cells, CXCL16 mRNA and protein is constitutively expressed and further up-regulated by tumour necrosis factor alpha (TNFalpha) and interferon-gamma (IFNgamma). CXCL16 is continuously released from glial cells by proteolytic cleavage which is rapidly enhanced by stimulation with phorbol-12-myristate-13-acetate (PMA). As shown by inhibitor studies, two distinct members of the disintegrin-like metalloproteinase family ADAM10 and 17 are involved in the constitutive and PMA-induced shedding of glial CXCL16. In addition to the chemokine, its receptor CXCR6 could be detected by quantitative RT-PCR in human glioma tissue, cultivated murine astrocytes and at a lower level in microglial cells. Functionally, recombinant soluble CXCL16 enhanced proliferation of CXCR6-positive murine astroglial and microglial cells. Thus, the transmembrane chemokine CXCL16 is expressed in the brain by malignant and inflamed astroglial cells, shed to a soluble form and targets not only activated T cells but also glial cells themselves.  相似文献   

2.
3.
Propagation of electrical activity between myocytes in the heart requires gap junction channels, which contribute to coordinated conduction of the heartbeat. Some antipsychotic drugs, such as thioridazine and its active metabolite, mesoridazine, have known cardiac conduction side-effects, which have resulted in fatal or nearly fatal clinical consequences in patients. The physiological mechanisms responsible for these cardiac side-effects are unknown. We tested the effect of thioridazine and mesoridazine on gap junction-mediated intercellular communication between cells that express the major cardiac gap junction subtype connexin 43. Micromolar concentrations of thioridazine and mesoridazine inhibited gap junction-mediated intercellular communication between WB-F344 epithelial cells in a dose-dependent manner, as measured by fluorescent dye transfer. Kinetic analyses demonstrated that inhibition by 10 μmol/L thioridazine occurred within 5 min, achieved its maximal effect within 1 h, and was maintained for at least 24 h. Inhibition was reversible within 1 h upon removal of the drug. Western blot analysis of connexin 43 in a membrane-enriched fraction of WB-F344 cells treated with thioridazine revealed decreased amounts of unphosphorylated connexin 43, and appearance of a phosphorylated connexin 43 band that co-migrated with a “hyperphosphorylated” connexin 43 band present in TPA-inhibited cells. When tested for its effects on cardiomyocytes isolated from neonatal rats, thioridazine decreased fluorescent dye transfer between colonies of beating myocytes. Microinjection of individual cells with fluorescent dye also showed inhibition of dye transfer in thioridazine-treated cells compared to vehicle-treated cells. In addition, thioridazine, like TPA, inhibited rhythmic beating of myocytes within 15 min of application. In light of the fact that the thioridazine and mesoridazine concentrations used in these experiments are in the range of those used clinically in patients, our results suggest that inhibition of gap junction intercellular communication may be one factor contributing to the cardiac side-effects observed in some patients taking these medications.  相似文献   

4.
5.
6.
Glioma glutamate release has been shown to promote the growth of glioma cells and induce neuronal injuries from epilepsy to neuronal death. However, potential counteractions from normal astrocytes against glioma glutamate release have not been fully evaluated. In this study, we investigated the glutamate/glutamine cycling between glioma cells and astrocytes and their impact on neuronal function. Co-cultures of glioma cells with astrocytes (CGA) in direct contact were established under different mix ratio of astrocyte/glioma. Culture medium conditioned in these CGAs were sampled for HPLC measurement, for neuronal ratiometric calcium imaging, and for neuronal survival assay. We found: (1) High levels of glutaminase expression in glioma cells, but not in astrocytes, glutaminase enables glioma cells to release large amount of glutamate in the presence of glutamine. (2) Glutamate levels in CGAs were directly determined by the astrocyte/glioma ratios, indicating a balance between glioma glutamate release and astrocyte glutamate uptake. (3) Culture media from CGAs of higher glioma/astrocyte ratios induced stronger neuronal Ca2+ response and more severe neuronal death. (4) Co-culturing with astrocytes significantly reduced the growth rate of glioma cells. These results indicate that normal astrocytes in the brain play pivotal roles in glioma growth inhibition and in reducing neuronal injuries from glioma glutamate release. However, as tumor growth, the protective role of astrocytes gradually succumb to glioma cells.  相似文献   

7.
Connexin43 (Cx43) is a ubiquitously expressed member of the gap junction protein family that mediates gap junction intercellular communication (GJIC) by allowing exchange of cytosolic materials. Previous studies have used Cx43 truncated at the cytoplasmic tail (C‐tail) to demonstrate that the C‐tail is essential to regulate cell growth and motility. Therefore, the aim of our study was to delineate the respective role of the truncated Cx43 and the C‐tail in mediating Cx43‐dependent signaling. A truncated Cx43 expressing the channel part of the protein (TrCx43, amino acid 1–242) and a construct encompassing only the C‐tail from amino acid 243 (243Cx43) were transduced into LN18 human glioma cells. Our results showed that the ability of Cx43 to suppress growth was independent of GJIC as assessed by dye transfer, but was dependent on the presence of a rigid extracellular matrix. We further demonstrated that the C‐tail alone is sufficient to promote motility. Surprisingly, Cx43 is also able to increase migration in the absence of the C‐tail, suggesting the presence of at least two distinct signaling mechanisms utilized by Cx43 to affect motility. Finally, we used time‐lapse imaging to examine the behavior of migrating cells and it was apparent that the C‐tail was associated with a lamellipodia‐based migration not observed in either mock or TrCx43 expressing LN18 cells. Our study shows for the first time that a free C‐tail is sufficient to induce Cx43‐dependent changes in cell morphology and that Cx43 signaling is linked to the regulation of the actin cytoskeleton. J. Cell. Biochem. 110: 589–597, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Protein phosphatase magnesium-dependent 1B (PPM1B) functions as IKKβ phosphatases to terminate nuclear factor kappa B (NF-κB) signaling. NF-κB signaling was constitutively activated in glioma cells. At present, little is known about the role of PPM1B in glioma. In the current study, we found that the expression of PPM1B was reduced in glioma tissues and cells, and decreased expression of PPM1B was related to poor overall survival of patients. Overexpression of PPM1B inhibited the proliferation and promoted apoptosis of glioma cells. Moreover, PPM1B overexpression reduced the phosphorylation of IKKβ and inhibited the nuclear localization of NF-κBp65. PDTC, an inhibitor of NF-κB signaling, reversed PPM1B-knockdown-induced cell proliferation. Furthermore, overexpression of PPM1B enhanced the sensitivity of glioma cells to temozolomide. In vivo experiments showed that overexpression of PPM1B could inhibit tumor growth, improve the survival rate of nude mice, and enhance the sensitivity to temozolomide. In conclusion, PPM1B suppressed glioma cell proliferation and the IKKβ-NF-κB signaling pathway, and enhanced temozolomide sensitivity of glioma cells.  相似文献   

9.
Effects of increased levels of arachidonic acid (AA) were analyzed in vitro by employment of C6 glioma cells and astrocytes from primary culture. The cells were suspended in a physiological medium added with arachidonic acid (AA) in a concentration range from 0.01 to 0.5 mM. The concentration profiles of the fatty acid and AA-metabolited were subsequently followed for 90 min. AA was measured by gas chromatography, whereas the AA-metabolites PGF2 and LTB4 by radioimmunoassay (RIA). Following administration of AA at 0.05 or 0.1 mM the medium was completely cleared from the fatty acid within 10 to 15 min. However, when 0.5 mM were added, AA concentrations of 0.36±0.055 mM were found at 20 min, while 0.275±0.045 mM at 90 min. Addition of AA (0.1 mM) to cell-free medium was also associated with a steady decline of its concentration, although the decrease was markedly delayed as compared to the clearance in the presence of glial cells. AA was subjected to dose-dependent metabolisation in the cell suspension as demonstrated by the production of PGF2 and LTB4. Following addition of 0.01 or 0.5 mM, concentrations of PGF2 increased to a 1.9- or 4.9-fold level within 10 min, whereas those of LTB4 rose to a 1.3- or 33.7-fold level. This was attenuated or completely blocked, respectively, by the cyclo- and lipoxygenase inhibitor BW 755C. Formation of both metabolites from AA was also observed when studying astrocytes from primary culture. The current findings demonstrate an impressive efficacy of C6 glioma cells and astrocytes to clear arachidonic acid from the suspension medium and to convert the lipid compound into prostaglandins and leukotrienes. Uptake and metabolisation of AA by the glial elements may play an important role in vivo, for example in cerebral ischemia.  相似文献   

10.
Gap junctions form channels that allow exchange of materials between cells and are composed of transmembrane protein subunits called connexins. While connexins are believed to mediate cellular signaling by permitting intercellular communication to occur, there is also increasing evidence that suggest connexins may mediate growth control via a junction-independent mechanism. Connexin43 (Cx43) is the most abundant gap junction protein found in astrocytes, and gliomas exhibit reduced Cx43 expression. We have previously observed that restoration of Cx43 levels in glioma cells led to increased expression of CCN3 (NOV) proteins. We now report that overexpression of Cx43 in C6-glioma cells (C6-Cx43) also upregulates the expression of CCN1 (Cyr61). Both CCN1 and CCN3 belong to the Cyr61/Connective tissue growth factor/Nephroblastoma-overexpressed (CCN) family of secretory proteins. The CCN proteins are tightly associated with the extracellular matrix and have important roles in cell proliferation and migration. CCN1 promotes growth in glioma cells, as shown by the increased proliferation rate of CCN1-overexpressing C6 cells. In addition to its effect on cell growth, CCN1 also increased the motility of glioma cells in the presence of extracellular substrates such as fibronectin. Gliomas expressing high levels of Cx43 preferentially upregulated CCN3 which resulted in reduced growth rate. CCN3 could also be observed in Cx43 gap junction plaques in confluent C6-Cx43H culture at the stationary phase of their growth. Our results suggest that the dissimilar growth characteristics between high and low Cx43 expressors may be due to differential regulation of CCN3 by varying levels of Cx43.  相似文献   

11.
12.
Gap junction channels are made of a family proteins called connexins. The best-studied type of connexin, Connexin43 (Cx43), is phosphorylated at several sites in its C-terminus. The tumor-promoting phorbol ester TPA strongly inhibits Cx43 gap junction channels. In this study we have investigated mechanisms involved in TPA-induced phosphorylation of Cx43 and inhibition of gap junction channels. The data show that TPA-induced inhibition of gap junction intercellular communication (GJIC) is dependent on both PKC and the MAP kinase pathway. The data suggest that PKC-induced activation of MAP kinase partly involves Src-independent trans-activation of the EGF receptor, and that TPA-induced shift in SDS-PAGE gel mobility of Cx43 is caused by MAP kinase phosphorylation, whereas phosphorylation of S368 by PKC does not alter gel migration of Cx43. We also show that TPA, in addition to phosphorylation of S368, also induces phosphorylation of S255 and S262, in a MAP kinase-dependent manner. The data add to our understanding of the molecular mechanisms involved in the interplay between signaling pathways in regulation of GJIC.  相似文献   

13.
Cx43 is a widely expressed gap junction protein that mediates communication between many cell types. In general, tumor cells display less intercellular communication than their nontransformed precursors. The Src tyrosine kinase has been implicated in progression of a wide variety of cancers. Src can phosphorylate Cx43, and this event is associated with the suppression of gap junction communication. However, Src activates multiple signaling pathways that can also affect intercellular communication. For example, serine kinases including PKC and MAPK are downstream effectors of Src that can also phosphorylate Cx43 and disrupt gap junctional communication. In addition, Src can affect the expression of other proteins that may affect intercellular communication. Indeed, disruption of gap junctions by Src appears to be complex. It has become clear that Src can affect Cx43 activity by multiple mechanisms. Here, we review how Src may orchestrate events that regulate intercellular communication mediated by Cx43.  相似文献   

14.
CadherinsaremembranousCa2+dependent,homophilic,adhesionmoleculesthatareassumedtoplayessentialrolesincellrecognition,cellsorting,embryonicmorphogenesisandsignaltransduction[1,2].ThesetransmembranemoleculesformaplaquethroughitscytoplasmicdomainatCtailwiththe…  相似文献   

15.
Human lung neoplasms frequently express mutations that down‐regulate expression of various tumor suppressor molecules, including mitogen‐activated protein kinases such as p38 MAPK. Conversely, activation of p38 MAPK in tumor cells results in cancer cell cycle inhibition or apoptosis initiated by chemotherapeutic agents such as retinoids or cisplatin, and is therefore an attractive approach for experimental anti‐tumor therapies. We now report that 4‐phenyl‐3‐butenoic acid (PBA), an experimental compound that reverses the transformed phenotype at non‐cytotoxic concentrations, activates p38 MAPK in tumorigenic cells at concentrations and treatment times that correlate with decreased cell growth and increased cell‐cell communication. H2009 human lung carcinoma cells and ras‐transformed rat liver epithelial cells treated with PBA showed increased activation of p38 MAPK and its downstream effectors which occurred after 4 h and lasted beyond 48 h. Untransformed plasmid control cells showed low activation of p38 MAPK compared to ras‐transformed and H2009 carcinoma cells, which correlates with the reduced effect of PBA on untransformed cell growth. The p38 MAPK inhibitor, SB203580, negated PBA's activation of p38 MAPK downstream effectors. PBA also increased cell–cell communication and connexin 43 phosphorylation in ras‐transformed cells, which were prevented by SB203580. In addition, PBA decreased activation of JNK, which is upregulated in many cancers. Taken together, these results suggest that PBA exerts its growth regulatory effect in tumorigenic cells by concomitant up‐regulation of p38 MAPK activity, altered connexin 43 expression, and down‐regulation of JNK activity. PBA may therefore be an effective therapeutic agent in human cancers that exhibit down‐regulated p38 MAPK activity and/or activated JNK and altered cell–cell communication. J. Cell. Biochem. 113: 269–281, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

16.
目的:探讨维生素C(VC)联合替莫唑胺(TMZ)对胶质瘤细胞活力的毒性作用及其机制。方法:在体外条件下培养人胶质瘤细胞BMG-1和SHG44细胞,设对照组(不施加VC与TMZ)、TMZ组(0.2 mmol/L)、VC(0.5mmol/L)+TMZ(0.2 mmol/L)组,TMZ(0.2 mmol/L TMZ)+U0126(10μmol/L)组,每组实验重复3次。采用MTT实验检测细胞生存率;流式细胞术和Annexin V-FITC/PI染色检测细胞凋亡情况; ROS检测试剂盒检测活性氧簇(ROS)水平,Western blot检测与凋亡、自噬及ERK通路相关蛋白的表达。结果:与对照组比较,TMZ组胶质瘤细胞的存活率显著下降(P<0.05)。与TMZ组比较,VC+TMZ组胶质细胞瘤细胞的存活率显著下降(P<0.01),VC+TMZ组中细胞凋亡率显著升高,且Bax、Cleaved caspase-3及Cleaved PARP蛋白表达显著增加,Bcl-2表达显著降低,而ROS水平及细胞自噬率显著降低,LC3-Ⅱ/LC3-1表达显著降低,p62表达显著增加(P均<0.05)...  相似文献   

17.
1. Cultured astrocytes cells release a variety of low and high molecular weight messenger substances and express proteins of the exocytotic pathway including synaptic SNARE proteins. For analyzing the molecular mechanisms of astrocytic messenger release, permanent cell lines with astrocytic properties would provide useful tools.2. We analyzed the potential of the human malignant astrocytoma-derived cell line U373 MG to express proteins involved in regulated exo- and endocytosis. An immunoblot analysis identified the astrocyte marker glial fibrillary acidic protein, microtubule-associated protein 2, the v-SNAREs VAMP I, VAMP II, and cellubrevin and the t-SN AREs syntaxin I, SNAP-23, and SNAP-25.3. The cells also express the secretory granule protein secretogranin II. Although secretogranin II immunofluorescence reveals larger fluorescence spots, the majority of the SNARE proteins is associated with smaller organelles. The immunofluorescence is distributed throughout the cytoplasm and accumulates at processes and the growing edges of cells.4. The organellar association of SNARE proteins was confirmed by heterologous expression of recombinant fusion proteins. Following subcellular fractionation organelles of lower buoyant density carried the majority of VAMP II. Secretogranin II was associated with organelles of high buoyant density containing a small contribution of VAMP II.5. The results suggest that U373 MG cells have in common a considerable number of properties with long-term cultured astrocytes rather than with cultured oligodendrocytes or neurons. They contain two types of organelles that can be physically separated and may be employed in the differential release of messengers.  相似文献   

18.
Long noncoding RNAs (lncRNAs) have been proven to exert important functions in the various biological processes of human cancers. It has been reported that lncRNA HNF1 homeobox A antisense RNA 1 (HNF1A‐AS1) was abnormally expressed and played a role in the initiation and development of various human cancers. In this study, we confirmed that the expression level of HNF1A‐AS1 was increased in glioma tissues and cells. Knockdown of HNF1A‐AS1 inhibited cell proliferation and promoted cell apoptosis in glioma. Then, we disclosed the downregulation of miR‐363‐3p in glioma tissues and cell lines. The interaction between HNF1A‐AS1 and miR‐363‐3p was identified in glioma cells. Furthermore, an inverse correlation between HNF1A‐AS1 and miR‐363‐3p was observed in glioma tissues. Afterwards, we recognized that MAP2K4 was a direct target of miR‐363‐3p. The expression of MAP2K4 was negatively correlated with miR‐363‐3p while positively related to HNF1A‐AS1 in glioma tissues. We also found the regulatory effect of HNF1A‐AS1 on the MAP2K4‐dependent JNK signaling pathway. All findings indicated that HNF1A‐AS1 induces the upregulation of MAP2K4 to activate the JNK signaling pathway to promote glioma cell growth by acting as a miR‐363‐3p sponge.  相似文献   

19.
The oncogenic tyrosine kinase, v-Src, phosphorylates connexin43 (Cx43) on Y247 and Y265 and inhibits Cx43 gap junctional communication (GJC), the process of intercellular exchange of ions and metabolites. To test the role of a negative charge on Cx43 induced by tyrosine phosphorylation, we expressed Cx43 with glutamic acid substitutions at Y247 or Y265. The Cx43Y247E or Cx43Y265E channels were functional in Cx43 knockout fibroblasts, indicating that introducing a negative charge on Cx43 was not likely the mechanism for v-Src disruption of GJC. Cells coexpressing v-Src and the triple serine to alanine mutant, Cx43S255/279/282A, confirmed that mitogen-activated protein (MAP) kinase phosphorylation of Cx43 was not required for v-Src-induced disruption of GJC and that tyrosine phosphorylation was sufficient. In addition, v-Src cells containing v-Src-resistant gap junctions, Cx43Y247/265F, displayed properties of cell migration, adhesion, and proliferation similar to Cx43wt/v-Src cells, suggesting that Cx43 tyrosine phosphorylation and disruption of GJC are not involved in these transformed cell properties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号