首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We aimed at elucidating the roles of transforming growth factor (TGF)-β and Smad3 signaling in adipocyte differentiation (adipogenesis) and in the pathogenesis of obesity. TGF-β/Smad3 signaling in white adipose tissue (WAT) was determined in genetically obese (ob/ob) mice. The effect of TGF-β on adipogenesis was evaluated in mouse embryonic fibroblasts (MEF) isolated both from WT controls and Smad3 KO mice by Oil red-O staining and gene expression analysis. Phenotypic analyses of high-fat diet (HFD)-induced obesity in Smad3 KO mice compared to WT controls were performed. TGF-β/Smad3 signaling was elevated in WAT from ob/ob mice compared to the controls. TGF-β significantly inhibited adipogenesis in MEF, but the inhibitory effects of TGF-β on adipogenesis were partially abolished in MEF from Smad3 KO mice. TGF-β inhibited adipogenesis independent from the Wnt and β-catenin pathway. Smad3 KO mice were protected against HFD-induced insulin resistance. The size of adipocytes from Smad3 KO mice on the HFD was significantly smaller compared to the controls. In conclusion, the TGF-β/Smad3 signaling pathway plays key roles not only in adipogenesis but also in development of insulin resistance.  相似文献   

2.
Regulation of TGF-β1/Smad3 signaling in fibrogenesis is complex. Previous work by our lab suggests that ERK MAP kinase phosphorylates the linker region (LR) of Smad3 to enhance TGF-β-induced collagen-I accumulation. However the roles of the individual Smad3LR phosphorylation sites (T179, S204, S208 and S213) in the collagen-I response to TGF-β are not clear. To address this issue, we tested the ability of Smad3 constructs expressing wild-type Smad3 or Smad3 with mutated LR phosphorylation sites to reconstitute TGF-β-stimulated COL1A2 promoter activity in Smad3-null or -knockdown cells. Blocking ERK in fibroblasts and renal mesangial cells inhibited both S204 phosphorylation and Smad3-mediated COL1A2 promoter activity. Mutations replacing serine at S204 or S208 in the linker region decreased Smad3-mediated COL1A2 promoter activity, whereas mutating T179 enhanced basal COL1A2 promoter activity and did not prevent TGF-β stimulation. Interestingly, mutation of all four Smad3LR sites (T179, S204, S208 and S213) was not inhibitory, suggesting primacy of the two inhibitory sites. These results suggest that in these mesenchymal cells, phosphorylation of the T179 and possibly S213 sites may act as a brake on the signal, whereas S204 phosphorylation by ERK in some manner releases that brake.  相似文献   

3.
Histone deacetylases (HDACs) regulate the acetylation of histones in the control of gene expression. Many non-histone proteins are also targeted for acetylation, including TGF-β signalling pathway components such as Smad2, Smad3 and Smad7. Our studies in mouse C3H10T1/2 fibroblasts suggested that a number of TGF-β-induced genes that regulate matrix turnover are selectively regulated by HDACs. Blockade of HDAC activity with trichostatin A (TSA) abrogated the induction of a disintegrin and metalloproteinase 12 (Adam12) and tissue inhibitor of metalloproteinases-1 (Timp-1) genes by TGF-β, whereas plasminogen activator inhibitor-1 (Pai-1) expression was unaffected. Analysis of the activation of cell signalling pathways demonstrated that TGF-β induced robust ERK and PI3K activation with delayed kinetics compared to the phosphorylation of Smads. The TGF-β induction of Adam12 and Timp-1 was dependent on such non-Smad signalling pathways and, importantly, HDAC inhibitors completely blocked their activation without affecting Smad signalling. Analysis of TGF-β-induced Adam12 and Timp-1 expression and ERK/PI3K signalling in the presence of semi-selective HDAC inhibitors valproic acid, MS-275 and apicidin implicated a role for class I HDACs. Furthermore, depletion of HDAC3 by RNA interference significantly down-regulated TGF-β-induced Adam12 and Timp-1 expression without modulating Pai-1 expression. Correlating with the effect of HDAC inhibitors, depletion of HDAC3 also blocked the activation of ERK and PI3K by TGF-β. Collectively, these data confirm that HDACs, and in particular HDAC3, are required for activation of the ERK and PI3K signalling pathways by TGF-β and for the subsequent gene induction dependent on these signalling pathways.  相似文献   

4.
《Cytokine》2015,74(2):219-224
TGF-β1 (transforming growth factor beta 1) is a negative regulator of lymphocytes, inhibiting proliferation and switching on the apoptotic program in normal lymphoid cells. Lymphoma cells often lose their sensitivity to proapoptotic/anti-proliferative regulators such as TGF-β1. Rapamycin can influence both mTOR (mammalian target of rapamycin) and TGF-β signaling, and through these pathways it is able to enhance TGF-β induced anti-proliferative and apoptotic responses. In the present work we investigated the effect of rapamycin and TGF-β1 combination on cell growth and on TGF-β and mTOR signalling events in lymphoma cells.Rapamycin, an inhibitor of mTORC1 (mTOR complex 1) did not elicit apoptosis in lymphoma cells; however, the combination of rapamycin with exogenous TGF-β1 induced apoptosis and restored TGF-β1 dependent apoptotic machinery in several lymphoma cell lines with reduced TGF-β sensitivity in vitro. In parallel, the phosphorylation of p70 ribosomal S6 kinase (p70S6K) and ribosomal S6 protein, targets of mTORC1, was completely eliminated. Knockdown of Smad signalling by Smad4 siRNA had no influence on apoptosis induced by the rapamycin + TGF-β1, suggesting that this effect is independent of Smad signalling. However, apoptosis induction was dependent on early protein phosphatase 2A (PP2A) activity, and in part on caspases. Rapamycin + TGF-β1 induced apoptosis was not completely eliminated by a caspase inhibitor.These results suggest that high mTOR activity contributes to TGF-β resistance and lowering mTORC1 kinase activity may provide a tool in high grade B-cell lymphoma therapy by restoring the sensitivity to normally available regulators such as TGF-β1.  相似文献   

5.
Pentabromopseudilin (PBrP) is a marine antibiotic isolated from the marine bacteria Pseudomonas bromoutilis and Alteromonas luteoviolaceus. PBrP exhibits antimicrobial, anti-tumour, and phytotoxic activities. In mammalian cells, PBrP is known to act as a reversible and allosteric inhibitor of myosin Va (MyoVa). In this study, we report that PBrP is a potent inhibitor of transforming growth factor-β (TGF-β) activity. PBrP inhibits TGF-β-stimulated Smad2/3 phosphorylation, plasminogen activator inhibitor-1 (PAI-1) protein production and blocks TGF-β-induced epithelial–mesenchymal transition in epithelial cells. PBrP inhibits TGF-β signalling by reducing the cell-surface expression of type II TGF-β receptor (TβRII) and promotes receptor degradation. Gene silencing approaches suggest that MyoVa plays a crucial role in PBrP-induced TβRII turnover and the subsequent reduction of TGF-β signalling. Because, TGF-β signalling is crucial in the regulation of diverse pathophysiological processes such as tissue fibrosis and cancer development, PBrP should be further explored for its therapeutic role in treating fibrotic diseases and cancer.  相似文献   

6.
It has been known that periodontal ligament-associated protein-1 (PLAP-1/Asporin) not only inhibits cartilage formation in osteoarthritis, but it also influences the healing of skull defect. However, the effect and mechanism of PLAP-1/Asporin on the mutual regulation of osteoclasts and osteoblasts in periodontitis are not clear. In this study, we utilized a PLAP-1/Asporin gene knockout (KO) mouse model to research this unknown issue. We cultured mouse bone marrow mesenchymal stem cells with Porphyromonas gingivalis lipopolysaccharide (P.g. LPS) for osteogenic induction in vitro. The molecular mechanism of PLAP-1/Asporin in the regulation of osteoblasts was detected by immunoprecipitation, immunofluorescence, and inhibitors of signaling pathways. The results showed that the KO of PLAP-1/Asporin promoted osteogenic differentiation through transforming growth factor beta 1 (TGF-β1)/Smad3 in inflammatory environments. We further found the KO of PLAP-1/Asporin inhibited osteoclast differentiation and promoted osteogenic differentiation through the TGF-β1/Smad signaling pathway in an inflammatory coculture system. The experimental periodontitis model was established by silk ligation and the alveolar bone formation in PLAP-1/Asporin KO mice was promoted through TGF-β1/Smad3 signaling pathway. The subcutaneous osteogenesis model in nude mice also confirmed that the KO of PLAP-1/Asporin promoted bone formation by the histochemical staining. In conclusion, PLAP-1/Asporin regulated the differentiation of osteoclasts and osteoblasts through TGF-β1/Smad signaling pathway. The results of this study lay a theoretical foundation for the further study of the pathological mechanism underlying alveolar bone resorption, and the prevention and treatment of periodontitis.  相似文献   

7.
TGF-β is a potent inducer of epithelial-to-mesenchymal transition (EMT), a process involved in tumour invasion. TIF1γ participates in TGF-β signalling. To understand the role of TIF1γ in TGF-β signalling and its requirement for EMT, we analysed the TGF-β1 response of human mammary epithelial cell lines. A strong EMT increase was observed in TIF1γ-silenced cells after TGF-β1 treatment, whereas Smad4 inactivation completely blocked this process. Accordingly, the functions of several TIF1γ target genes can be linked to EMT, as shown by microarray analysis. As a negative regulator of Smad4, TIF1γ could be crucial for the regulation of TGF-β signalling. Furthermore, TIF1γ binds to and represses the plasminogen activator inhibitor 1 promoter, demonstrating a direct role of TIF1γ in TGF-β-dependent gene expression. This study shows the molecular relationship between TIF1γ and Smad4 in TGF-β signalling and EMT.  相似文献   

8.
9.

Background

TGF-β1 is an important angiogenic factor involved in the different aspects of angiogenesis and vessel maintenance. TGF-β signalling is mediated by the TβRII/ALK5 receptor complex activating the Smad2/Smad3 pathway. In endothelial cells TGF-β utilizes a second type I receptor, ALK1, activating the Smad1/Smad5 pathway. Consequently, a perturbance of ALK1, ALK5 or TβRII activity leads to vascular defects. Mutations in ALK1 cause the vascular disorder hereditary hemorrhagic telangiectasia (HHT).

Methods

The identification of ALK1 and not ALK5 regulated genes in endothelial cells, might help to better understand the development of HHT. Therefore, the human microvascular endothelial cell line HMEC-1 was infected with a recombinant constitutively active ALK1 adenovirus, and gene expression was studied by using gene arrays and quantitative real-time PCR analysis.

Results

After 24 hours, 34 genes were identified to be up-regulated by ALK1 signalling. Analysing ALK1 regulated gene expression after 4 hours revealed 13 genes to be up- and 2 to be down-regulated. Several of these genes, including IL-8, ET-1, ID1, HPTPη and TEAD4 are reported to be involved in angiogenesis. Evaluation of ALK1 regulated gene expression in different human endothelial cell types was not in complete agreement. Further on, disparity between constitutively active ALK1 and TGF-β1 induced gene expression in HMEC-1 cells and primary HUVECs was observed.

Conclusion

Gene array analysis identified 49 genes to be regulated by ALK1 signalling and at least 14 genes are reported to be involved in angiogenesis. There was substantial agreement between the gene array and quantitative real-time PCR data. The angiogenesis related genes might be potential HHT modifier genes. In addition, the results suggest endothelial cell type specific ALK1 and TGF-β signalling.  相似文献   

10.
《Cellular signalling》2014,26(5):951-958
BackgroundBoth Wnt signaling and TGF-β signaling have been implicated in the regulation of the phenotype of many cell types including chondrocytes, the only cell type present in the articular cartilage. A changed chondrocyte phenotype, resulting in chondrocyte hypertrophy, is one of the main hallmarks of osteoarthritis. TGF-β signaling via activin-like kinase (ALK)5, resulting in Smad 2/3 phosphorylation, inhibits chondrocyte hypertrophy. In contrast, TGF-β signaling via ALK1, leading to Smad 1/5/8 phosphorylation, has been shown to induce chondrocyte hypertrophy. In this study, we investigated the capability of Wnt3a and WISP1, a protein downstream in canonical Wnt signaling, to skew TGF-β signaling in chondrocytes from the protective Smad 2/3 towards the Smad 1/5/8 pathway.ResultsStimulation with Wnt3a, either alone or in combination with its downstream protein WISP1, decreased TGF-β-induced C-terminal phosphorylation of Smad 2/3. In addition, both Wnt3a and WISP1 increased Smad 1/5/8 phosphorylation at the C-terminal domain in both murine and human chondrocytes. DKK-1, a selective inhibitor of canonical Wnt signaling, abolished these effects. TGF-β signaling via Smad 2/3, measured by the functional CAGA12-Luc reporter construct activity, was decreased by stimulation with Wnt3a in accordance with the decrease in Smad 2/3 phosphorylation found on Western blot. Furthermore, in vivo overexpression of the canonical Wnt8a decreased Smad 2/3 phosphorylation and increased Smad 1/5/8 phosphorylation.ConclusionsOur data show that canonical Wnt signaling is able to skew TGF-β signaling towards dominant signaling via the ALK1/Smad 1/5/8 pathway, which reportedly leads to chondrocyte hypertrophy. In this way canonical Wnts and WISP1, which we found to be increased during experimental osteoarthritis, may contribute to osteoarthritis pathology.  相似文献   

11.
《Phytomedicine》2015,22(10):885-893
BackgroundPure apocynin, which can be traditionally isolated and purified from several plant species such as Picrorhiza kurroa Royle ex Benth (Scrophulariaceae), acts as an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity inhibiting its production of reactive oxygen species (ROS). Transforming growth factor type beta 1 (TGF-β1) is a growth factor that produces inhibition of myogenesis, diminution of regeneration and induction of atrophy in skeletal muscle. The typical signalling that is activated by TGF-β involves the Smad pathway.PurposeTo evaluate the effect of TGF-β and the effect of apocynin on TGF-β1 expression in skeletal muscle cells.Study designControlled laboratory study. In vitro assays were performed with C2C12 cells incubated with TGF-β1 in presence or absence of apocynin (NOX inhibitor), SB525334 (TGF-β-receptor I inhibitor), or chelerythrine (PKC inhibitor).MethodsTGF-β1 and atrogin-1 expression was evaluated by RT-qPCR and/or ELISA; Smad3 phosphorylation by western blot; Smad4 nuclear translocation by indirect immunofluorescence; and ROS levels by DCF probe fluorescent measurements.ResultsWe show that myoblasts respond to TGF-β1 by increasing its own gene expression in a time- and dose-dependent fashion which was abolished by SB525334 and siRNA for Smad2/3. TGF-β1 also induced ROS. Remarkably, apocynin inhibited the TGF-β1 induced ROS as well as the autoinduction of TGF-β1 gene expression. We also show that TGF-β-induced ROS production and TGF-β1 expression require PKC activity as indicated by the inhibition using chelerythrine.ConclusionThese results strongly suggest that TGF-β induces its own expression through a TGF-β-receptor/Smad-dependent mechanism and apocynin is able to inhibit this process, suggesting that requires NOX-induced ROS in skeletal muscle cells.  相似文献   

12.
《Reproductive biology》2022,22(4):100705
Type I collagen is the most abundant extracellular matrix (ECM) protein in the mammalian ovary, and comprises two COL1A1 subunits and one COL1A2 subunit. Matrix metalloproteinase 1 (MMP1) is a typical collagenase of type I collagen, that can be detected in ovarian follicles and early corpus luteum. Previous studies demonstrated that MMP1-mediated degradation of type I collagen plays a functional role in regulating corpus luteum formation, and transforming growth factor β1 (TGF-β1) inhibits luteinization and progesterone production in granulosa cells (GCs). Whether TGF-β1 regulates the expression of MMP1, COL1A1, or the deposition of type I collagen during corpus luteum formation remains to be elucidated. This study aimed to investigate the molecular mechanisms through which TGF-β1 regulates MMP1 expression and type I collagen deposition in GCs. Our results show that TGF-β1 upregulates COL1A1 expressions and downregulates MMP1 expression. Inhibition approaches, including pharmacological inhibitors such as p38 inhibitor (SB203580), ERK1/2 inhibitor (U0126), AKT inhibitor (LY294002), and GSK-3β inhibitor (LiCl), as well as knockdown using siRNA specific to these genes, were used. Our results suggest that TGF-β1 decreases MMP1 production via an ALK5-mediated AKT/GSK-3β-dependent signaling pathway, and a decrease in MMP1 levels and an increase in COL1A1 levels synergistically promote type I collagen deposition in GCs. Collectively, these findings provide novel insights into the underlying molecular mechanisms by which TGF-β1 upregulates type I collagen deposition in GCs.  相似文献   

13.
The collagen type Ι alpha Ι (COL1A1) gene encodes the extracellular matrix component, collagen, and resides in candidate MYP5 for high myopia on the chromosome 17q22–q23.3. This locus has recently been implicated in playing an important role in the pathogenesis of experimental myopia. We investigated the association of disruptions of COL1A1 gene with high myopia by analyzing the frequency of ten SNPs in a Japanese population of 330 subjects with high myopia of −9.25 D or less and 330 randomized controls without high myopia. Two SNPs (rs2075555 and rs2269336) were significantly associated with high myopia (P < 0.05, Pc < 0.1). Two different haplotype blocks in COL1A1 were observed by the pair-wise linkage disequilibrium between the SNPs. The frequency of GGC/GGC diplotype constructed by the three SNPs (rs2075555, rs2269336, rs1107946) was significantly high (OR = 1.6) and associated with high myopia (P = 0.028, Pc< 0.084). Together our results provide the first evidence for COL1A1 as a gene associated with high myopia.  相似文献   

14.
15.
Fibrosis is a pathological situation in which excessive amounts of extracellular matrix (ECM) are deposited in the tissue. Myofibroblasts play a crucial role in the development and progress of fibrosis as they actively synthesize ECM components such as collagen I, fibronectin and connective tissue growth factor (CTGF) and cause organ fibrosis. Transforming growth factor beta 1 (TGF-β1) plays a major role in tissue fibrosis. Activin receptor-like kinase 1 (ALK1) is a type I receptor of TGF-β1 with an important role in angiogenesis whose function in cellular biology and TGF-β signaling is well known in endothelial cells, but its role in fibroblast biology and its contribution to fibrosis is poorly studied. We have recently demonstrated that ALK1 regulates ECM protein expression in a mouse model of obstructive nephropathy. Our aim was to evaluate the role of ALK1 in several processes involved in fibrosis such as ECM protein expression, proliferation and migration in ALK1+/+ and ALK1+/− mouse embryonic fibroblasts (MEFs) after TGF-β1 stimulations and inhibitors. ALK1 heterozygous MEFs show increased expression of ECM proteins (collagen I, fibronectin and CTGF/CCN2), cell proliferation and migration due to an alteration of TGF-β/Smad signaling. ALK1 heterozygous disruption shows an increase of Smad2 and Smad3 phosphorylation that explains the increases in CTGF/CCN2, fibronectin and collagen I, proliferation and cell motility observed in these cells. Therefore, we suggest that ALK1 plays an important role in the regulation of ECM protein expression, proliferation and migration.  相似文献   

16.
Intrauterine growth restriction is associated with impaired lung function in adulthood. It is unknown whether such impairment of lung function is linked to the transforming growth factor (TGF)-β system in the lung. Therefore, we investigated the effects of IUGR on lung function, expression of extracellular matrix (ECM) components and TGF-β signaling in rats. IUGR was induced in rats by isocaloric protein restriction during gestation. Lung function was assessed with direct plethysmography at postnatal day (P) 70. Pulmonary activity of the TGF-β system was determined at P1 and P70. TGF-β signaling was blocked in vitro using adenovirus-delivered Smad7. At P70, respiratory airway compliance was significantly impaired after IUGR. These changes were accompanied by decreased expression of TGF-β1 at P1 and P70 and a consistently dampened phosphorylation of Smad2 and Smad3. Furthermore, the mRNA expression levels of inhibitors of TGF-β signaling (Smad7 and Smurf2) were reduced, and the expression of TGF-β-regulated ECM components (e.g. collagen I) was decreased in the lungs of IUGR animals at P1; whereas elastin and tenascin N expression was significantly upregulated. In vitro inhibition of TGF-β signaling in NIH/3T3, MLE 12 and endothelial cells by adenovirus-delivered Smad7 demonstrated a direct effect on the expression of ECM components. Taken together, these data demonstrate a significant impact of IUGR on lung development and function and suggest that attenuated TGF-β signaling may contribute to the pathological processes of IUGR-associated lung disease.  相似文献   

17.
Pancreatic fibrosis is the hallmark of chronic pancreatitis, currently an incurable disease. Pancreatitis fibrosis is caused by deposition of extracellular matrix (ECM) and the underlying pathological mechanism remains unclear. In addition to its broad biological activities, TGF-β is a potent pro-fibrotic factor and many in vitro studies using cell systems have implicated a functional role of TGF-β in the pathogenesis of pancreatic fibrosis. We analyzed the in vivo role of TGF-β pathway in pancreatic fibrosis in this study. Smad7, an intracellular inhibitory protein that antagonizes TGF-β signaling, was specifically expressed in the pancreas using a transgenic mouse model. Chronic pancreatitis was induced in the mouse with repeated administration of cerulein. Smad7 expression in the pancreas was able to significantly inhibit cerulein-induced pancreatic fibrosis. Consistently, the protein levels of collagen I and fibronectin were decreased in the Smad7 transgenic mice. In addition, α-smooth muscle actin, a marker of activated pancreas stellate cells, was reduced in the transgenic mice. Taken together, these data indicate that inhibition of TGF-β signaling by Smad7 is able to protect cerulein-induced pancreatic fibrosis in vivo.  相似文献   

18.
19.
IntroductionPancreatic ductal adenocarcinoma (PDAC) is characterized by abundant stroma and cancer-associated fibroblasts (CAFs) provide a favorable tumor microenvironment. Smad4 is known as tumor suppressor in several types of cancers including PDAC, and loss of Smad4 triggers accelerated cell invasiveness and metastatic potential. The thrombospondin-1 (TSP-1) can act as a major activator of latent transforming growth factor-β (TGF-β) in vivo. However, the roles of TSP-1 and the mediator of Smad4 loss and TGF-β signal activation during PDAC progression have not yet been addressed. The aim is to elucidate the biological role of TSP-1 in PDAC progression.Methods and resultsHigh substrate stiffness stimulated TSP-1 expression in CAFs, and TSP-1 knockdown inhibited cell proliferation with suppressed profibrogenic and activated stroma-related gene expressions in CAFs. Paracrine TSP-1 treatment for PDAC cells promoted cell proliferation and epithelial mesenchymal transition (EMT) with activated TGF-β signals such as phosphorylated Akt and Smad2/3 expressions. Surprisingly, knockdown of DPC4 (Smad4 gene) induced TSP-1 overexpression with TGF-β signal activation in PDAC cells. Interestingly, TSP-1 overexpression also induced downregulation of Smad4 expression and enhanced cell proliferation in vitro and in vivo. Treatment with LSKL peptide, which antagonizes TSP-1-mediated latent TGF-β activation, attenuated cell proliferation, migration and chemoresistance with enhanced apoptosis in PDAC cells.ConclusionsTSP-1 derived from CAFs stimulates loss of Smad4 expression in cancer cells and accelerates malignant behavior by TGF-β signal activation in PDAC. TSP-1 could be a novel therapeutic target, not only for CAFs in stiff stroma, but also for cancer cells in the PDAC microenvironment.  相似文献   

20.
目的应用病理学实验技术,初步描述SARS-CoV N蛋白与TGF-β信号通路中Smad3蛋白之间相互作用的情况,及其对TGF-β信号通路下游转录产物生成的影响。方法对比观察SARS-CoV感染的恒河猴肺组织及正常猴肺组织的形态学特征,应用免疫组织化学染色法,观察猴肺组织中转化生长因子-β(transforming growth factor-β,TGF-β)及1型纤维蛋白溶酶原活化抑制剂(plasminogen activator inhibitor-1,PAI-1)的肺组织表达;SARS-CoVNucleocapsid蛋白与Smad3双染观察二者在肺组织中的共定位情况;应用Masson染色法比较感染与正常猴肺组织中胶原含量的差异,结合分子生物学检测肺组织中TGF-β、PAI-1及Ⅰ型胶原α2链(α2 chain of typeⅠcollagen,COLlA2)的表达,探讨N蛋白影响TGF-β信号通路的影响。结果PCR结果显示TGF-β、PAI-1及COL1A2在SARS-CoV感染的猴肺组织中的表达量较正常猴肺有明显增高,免疫组织化学染色结果提示,在病毒感染的猴肺组织内TGF-β、PAI-1染色呈现强阳性,同时SARS-CoV Nucleocapsid蛋白与Smad3双染结果显示,二者在感染的猴肺组织中存在明显的共定位现象。Masson染色结果提示,病毒感染的猴肺组织胶原含量较正常猴肺组织显著增加。结论我们的研究结果为说明SARS-CoV Nucleocapsid蛋白参与调节TGF-β信号通路,促进肺组织纤维化提供了有力的形态学实验证明,为进一步理解SARS-CoV感染引起肺组织纤维化的机制提供了的较为明确体内实验数据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号