首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

In comparative analyses of bacterial pathogens, it has been common practice to discriminate between two types of genes: (i) those shared by pathogens and their non-pathogenic relatives (core genes), and (ii) those found exclusively in pathogens (pathogen-specific accessory genes). Rather than attempting to a priori delineate genes into sets more or less relevant to pathogenicity, we took a broad approach to the analysis of Streptococcus species by investigating the strength of natural selection in all clusters of homologous genes. The genus Streptococcus is comprised of a wide variety of both pathogenic and commensal lineages, and we relate our findings to the pre-existing knowledge of Streptococcus virulence factors.  相似文献   

2.
Studying fungal virulence is often challenging and frequently depends on many contexts, including host immune status and pathogen genetic background. However, the role of ploidy has often been overlooked when studying virulence in eukaryotic pathogens. Since fungal pathogens, including the human opportunistic pathogen Candida albicans, can display extensive ploidy variation, assessing how ploidy impacts virulence has important clinical relevance. As an opportunistic pathogen, C. albicans causes nonlethal, superficial infections in healthy individuals, but life‐threatening bloodstream infections in individuals with compromised immune function. Here, we determined how both ploidy and genetic background of C. albicans impacts virulence phenotypes in healthy and immunocompromised nematode hosts by characterizing virulence phenotypes in four near‐isogenic diploid and tetraploid pairs of strains, which included both laboratory and clinical genetic backgrounds. We found that C. albicans infections decreased host survival and negatively impacted host reproduction, and we leveraged these two measures to survey both lethal and nonlethal virulence phenotypes across the multiple C. albicans strains. In this study, we found that regardless of pathogen ploidy or genetic background, immunocompromised hosts were susceptible to fungal infection compared to healthy hosts. Furthermore, for each host context, we found a significant interaction between C. albicans genetic background and ploidy on virulence phenotypes, but no global differences between diploid and tetraploid pathogens were observed.  相似文献   

3.
4.

Background  

Salmonella enterica serovar Typhi and Typhimurium are closely related serovars as indicated by >96% DNA sequence identity between shared genes. Nevertheless, S. Typhi is a strictly human-specific pathogen causing a systemic disease, typhoid fever. In contrast, S. Typhimurium is a broad host range pathogen causing only a self-limited gastroenteritis in immunocompetent humans. We hypothesize that these differences have arisen because some genes are unique to each serovar either gained by horizontal gene transfer or by the loss of gene activity due to mutation, such as pseudogenes. S. Typhi has 5% of genes as pseudogenes, much more than S. Typhimurium which contains 1%. As a consequence, S. Typhi lacks several protein effectors implicated in invasion, proliferation and/or translocation by the type III secretion system that are fully functional proteins in S. Typhimurium. SseJ, one of these effectors, corresponds to an acyltransferase/lipase that participates in SCV biogenesis in human epithelial cell lines and is needed for full virulence of S. Typhimurium. In S. Typhi, sseJ is a pseudogene. Therefore, we suggest that sseJ inactivation in S. Typhi has an important role in the development of the systemic infection.  相似文献   

5.
The type III secretion system with its delivered type III effectors (T3Es) is one of the main virulence determinants of Ralstonia solanacearum, a worldwide devastating plant pathogenic bacterium affecting many crop species. The pan-effectome of the R. solanacearum species complex has been exhaustively identified and is composed of more than 100 different T3Es. Among the reported strains, their content ranges from 45 to 76 T3Es. This considerably large and varied effectome could be considered one of the factors contributing to the wide host range of R. solanacearum. In order to understand how R. solanacearum uses its T3Es to subvert the host cellular processes, many functional studies have been conducted over the last three decades. It has been shown that R. solanacearum effectors, as those from other plant pathogens, can suppress plant defence mechanisms, modulate the host metabolism, or avoid bacterial recognition through a wide variety of molecular mechanisms. R. solanacearum T3Es can also be perceived by the plant and trigger immune responses. To date, the molecular mechanisms employed by R. solanacearum T3Es to modulate these host processes have been described for a growing number of T3Es, although they remain unknown for the majority of them. In this microreview, we summarize and discuss the current knowledge on the characterized R. solanacearum species complex T3Es.  相似文献   

6.

Background  

The M-like protein, also known as SzP, is expressed on the surface of Streptococcus equi subsp. zooepidemicus (S. zooepidemicus). Previous studies demonstrated that SzP is similar to M protein of group A Streptococcus in the structure and characteristics of antiphagocytosis. The M protein is an adhesin that can bind to the host cells, however it is not known whether the SzP of S. zooepidemicus also functions as an adhesin. We conducted an investigation to determine SzP as an adhesin, and one SzP epitope was identified to be responsible for mediating binding to HEp-2 cells.  相似文献   

7.
Staphylococcus aureus (S. aureus) is a frequent cause of infections in both humans and animals. Probiotics are known to inhibit colonization of pathogens on host tissues. However, mechanisms for the inhibition are still elusive due to complex host–microbe and microbe–microbe interactions. Here, we show that reduced abilities of S. aureus to infect mammary glands in the presence of Weissella cibaria (W. cibaria) were correlated with its poor adherence to mammary epithelial cells. Such inhibition by W. cibaria isolates was at least partially attributed to a fibronectin‐binding protein (FbpA) on this lactic acid bacterium. Three Wcibaria isolates containing fbpA had higher inhibitory abilities than other three LAB isolates without the gene. The fbpA‐deficient mutant of Wcibaria isolate LW1, LW1ΔfbpA, lost the inhibitory activity to reduce the adhesion of Saureus to mammary epithelial cells and was less able to reduce the colonization of Saureus in mammary glands. Expression of FbpA to the surface of LW1ΔfbpA reversed its inhibitory activities. Furthermore, addition of purified FbpA inhibited Saureus biofilm formation. Our results suggest that Wcibaria FbpA hinders Saureus colonization and infection through interfering with the Saureus invasion pathway mediated by fibronectin‐binding proteins and inhibiting biofilm formation of Saureus.  相似文献   

8.
Group A Streptococcus (Streptococcus pyogenes), group B Streptococcus (Streptococcus agalactiae) and Streptococcus pneumoniae (pneumococcus) are host‐adapted bacterial pathogens among the leading infectious causes of human morbidity and mortality. These microbes and related members of the genus Streptococcus produce an array of toxins that act against human cells or tissues, resulting in impaired immune responses and subversion of host physiological processes to benefit the invading microorganism. This toxin repertoire includes haemolysins, proteases, superantigens and other agents that ultimately enhance colonization and survival within the host and promote dissemination of the pathogen.  相似文献   

9.
Secreted RNase proteins have been reported from only a few pathogens, and relatively little is known about their biological functions. Fusarium oxysporum is a soilborne fungal pathogen that causes Fusarium wilt, one of the most important diseases on tomato. During the infection of F. oxysporum, some proteins are secreted that modulate host plant immunity and promote pathogen invasion. In this study, we identify an RNase, FoRnt2, from the F. oxysporum secretome that belongs to the ribonuclease T2 family. FoRnt2 possesses an N-terminal signal peptide and can be secreted from F. oxysporum. FoRnt2 exhibited ribonuclease activity and was able to degrade the host plant total RNA in vitro dependent on the active site residues H80 and H142. Deletion of the FoRnt2 gene reduced fungal virulence but had no obvious effect on mycelial growth and conidial production. The expression of FoRnt2 in tomato significantly enhanced plant susceptibility to pathogens. These data indicate that FoRnt2 is an important contributor to the virulence of F. oxysporum, possibly through the degradation of plant RNA.  相似文献   

10.
Hosts provide the main environmental traits parasites have to deal with, resulting in covariation between both associates at both micro- and macro-evolutionary scales; phylogenetic analyses of highly host-specific parasites have shown that parasite and host phylogeny might be highly congruent, and adaptation of a host species to new environments may lead to concordant changes of their parasites. Procamallanus (Spirocamallanus) neocaballeroi is a highly host-specific parasitic nematode of the Neotropical freshwater fish genus Astyanax in Mexico. One of the host species of the nematode is the emblematic Mexican tetra, A. mexicanus, which exhibits two contrasting phenotypes, a cave-dwelling morph (with troglomorphic features), and the surface-dwelling morph; other congeneric species inhabit rivers and lakes, and some of them occur in sympatry, displaying trophic specializations. Here, we explored the hypothesis that contrasting environments (surface rivers vs cave rivers), and host morphological divergence (sympatric ecomorphs in a lacustrine environment) might result in the divergence of their parasites, even though the hosts maintain a cohesive genetic structure as the same species. To test the hypothesis, several populations of Astyanax spp. were sampled to search for P. (S.) neocaballeroi. The nematode was found in 10 of the 52 sampled sites; two localities corresponded to cave populations. The phylogenetic analysis based on COI sequences yielded three major lineages for P. (S.) neocaballeroi. We found no concordance between the three lineages and the habitat where they occur in Astyanax mexicanus, even considering those living in drastic environmental conditions (caves), or between these lineages and lacustrine ecomorphs of Astyanax aeneus and A. caballeroi occurring in sympatry. Instead, genetic lineages of the nematode exhibit a clearer pattern of host species association and geographical distribution; our results showed that P. (S.) neocaballeroi is experiencing an incipient divergence although the morphological study of lineages shows no conspicuous differences.  相似文献   

11.

Background  

All human pathogenic Yersinia species share a virulence-associated type III secretion system that translocates Yersinia effector proteins into host cells to counteract infection-induced signaling responses and prevent phagocytosis. Dictyostelium discoideum has been recently used to study the effects of bacterial virulence factors produced by internalized pathogens. In this study we explored the potential of Dictyostelium as model organism for analyzing the effects of ectopically expressed Yersinia outer proteins (Yops).  相似文献   

12.
13.
Although nontyphoidal Salmonella (NTS; including Salmonella Typhimurium) mainly cause gastroenteritis, typhoidal serovars (Salmonella Typhi and Salmonella Paratyphi A) cause typhoid fever, the treatment of which is threatened by increasing drug resistance. Our understanding of S. Typhi infection in human remains poorly understood, likely due to the host restriction of typhoidal strains and the subsequent popularity of the S. Typhimurium mouse typhoid model. However, translating findings with S. Typhimurium across to S. Typhi has some limitations. Notably, S. Typhi has specific virulence factors, including typhoid toxin and Vi antigen, involved in symptom development and immune evasion, respectively. In addition to unique virulence factors, both typhoidal and NTS rely on two pathogenicity‐island encoded type III secretion systems (T3SS), the SPI‐1 and SPI‐2 T3SS, for invasion and intracellular replication. Marked differences have been observed in terms of T3SS regulation in response to bile, oxygen, and fever‐like temperatures. Moreover, approximately half of effectors found in S. Typhimurium are either absent or pseudogenes in S. Typhi, with most of the remaining exhibiting sequence variation. Typhoidal‐specific T3SS effectors have also been described. This review discusses what is known about the pathogenesis of typhoidal Salmonella with emphasis on unique behaviours and key differences when compared with S. Typhimurium.  相似文献   

14.
Plant pathogens deliver virulence effectors into plant cells to modulate plant immunity and facilitate infection. Although species-specific virulence effector screening approaches have been developed for several pathogens, these assays do not apply to pathogens that cannot be cultured and/or transformed outside of their hosts. Here, we established a rapid and parallel screening assay, called the virus-induced virulence effector (VIVE) assay, to identify putative effectors in various plant pathogens, including unculturable pathogens, using a virus-based expression vector. The VIVE assay uses the potato virus X (PVX) vector to transiently express candidate effector genes of various bacterial and fungal pathogens into Nicotiana benthamiana leaves. Using the VIVE assay, we successfully identified Avh148 as a potential virulence effector of Phytophthora sojae. Plants infected with PVX carrying Avh148 showed strong viral symptoms and high-level Avh148 and viral RNA accumulation. Analysis of P. sojae Avh148 deletion mutants and soybean hairy roots overexpressing Avh148 revealed that Avh148 is required for full pathogen virulence. In addition, the VIVE assay was optimized in N. benthamiana plants at different developmental stages across a range of Agrobacterium cell densities. Overall, we identified six novel virulence effectors from seven pathogens, thus demonstrating the broad effectiveness of the VIVE assay in plant pathology research.  相似文献   

15.

SUMMARY

Enteric pathogens such as Salmonella enterica cause significant morbidity and mortality. S. enterica serovars are a diverse group of pathogens that have evolved to survive in a wide range of environments and across multiple hosts. S. enterica serovars such as S. Typhi, S. Dublin, and S. Gallinarum have a restricted host range, in which they are typically associated with one or a few host species, while S. Enteritidis and S. Typhimurium have broad host ranges. This review examines how S. enterica has evolved through adaptation to different host environments, especially as related to the chicken host, and continues to be an important human pathogen. Several factors impact host range, and these include the acquisition of genes via horizontal gene transfer with plasmids, transposons, and phages, which can potentially expand host range, and the loss of genes or their function, which would reduce the range of hosts that the organism can infect. S. Gallinarum, with a limited host range, has a large number of pseudogenes in its genome compared to broader-host-range serovars. S. enterica serovars such as S. Kentucky and S. Heidelberg also often have plasmids that may help them colonize poultry more efficiently. The ability to colonize different hosts also involves interactions with the host''s immune system and commensal organisms that are present. Thus, the factors that impact the ability of Salmonella to colonize a particular host species, such as chickens, are complex and multifactorial, involving the host, the pathogen, and extrinsic pressures. It is the interplay of these factors which leads to the differences in host ranges that we observe today.  相似文献   

16.
Pathogenic streptococcal species are responsible for some of the most lethal and prevalent animal and human infections. Previous reports have identified a candidate pathogenicity island (PAI) in two highly virulent clinical isolates of Streptococcus suis type 2, a causative agent of high‐mortality streptococcal toxic shock syndrome. This PAI contains a type‐IVC secretion system C subgroup (type‐IVC secretion system) that is involved in the secretion of unknown pathogenic effectors that are responsible for streptococcal toxic shock syndrome caused by highly virulent strains of S. suis. Both virulence protein B4 and virulence protein D4 were demonstrated to be key components of this type‐IVC secretion system. In this study, we identify a new PAI family across 3 streptococcal species; Streptococcus genomic island contains type‐IV secretion system, which contains a genomic island type‐IVC secretion system and a novel PPIase molecule, SP1. SP1 is shown to interact with a component of innate immunity, peptidoglycan recognition protein (PGLYRP‐1) and to perturb the PGLYRP‐1‐mediated bacteriostatic effect by interacting with protein PGLYRP‐1. Our study elucidates a novel mechanism by which bacteria escape by components of the innate immune system by secretion of the SP1 protein in pathogenic Streptococci, which then interacts with PGLYRP‐1 from the host. Our results provide potential targets for the development of new antimicrobial drugs against bacteria with resistance to innate host immunity.  相似文献   

17.
Brazilian peppertree, Schinus terebinthifolia Raddi (Anacardiaceae), is one of the worst upland exotic weeds in Florida, USA. Foreign exploration for natural enemies led to the discovery of a pit‐galling psyllid, Calophya latiforceps Burckhardt (Hemiptera: Calophyidae), in the state of Bahia, Brazil, in 2010. Crawlers of C. latiforceps stimulate the formation of galls on the leaves of S. terebinthifolia resulting in leaf discoloration and in some cases leaf abscission. To determine whether C. latiforceps is a safe candidate for biological control of Sterebinthifolia, host specificity and the presence of selected plant pathogens were examined. Adult oviposition, gall formation, and adult survival of C. latiforceps were examined on 89 plant species under no‐choice and choice conditions. We found that C. latiforceps laid eggs on plants in seven families; however, crawlers stimulated gall formation and completed development to adult only on S. terebinthifolia. All crawlers on non‐target plants died, likely due to starvation caused either by the absence of a feeding stimulus or by a hypersensitive plant response. Under no‐choice conditions, 10% of adults lived for 19 days on the target weed, but adult survival was reduced to <3 days on non‐target plants. Choice testing revealed that females preferred to oviposit on S. terebinthifolia compared to non‐target plants. Molecular methods and indicator host inoculations did not detect the presence of ‘Candidatus Liberibacter solanacearum’, ‘Ca. L. asiaticus’, ‘Ca. L. americanus’, ‘Ca. L. africanus’, or plant viruses in adult C. latiforceps. We conclude that releasing C. latiforceps in the USA will have extremely low risk to non‐target plants, and provides another tool for the management of S. terebinthifolia.  相似文献   

18.
Numerous delphacid planthopper species are major pests of economically important and widely cultivated crops (i.e. rice, corn, and sugarcane). These insects have the potential to become serious crop pests in areas where they have either naturally migrated or been newly introduced. The white-bellied planthopper, Stenocranus pacificus Kirkaldy, 1907, originally known from tropical South Pacific islands, appeared in tropical and subtropical Asia in the early years of the 21st century. Since then, Spacificus has become a serious pest of corn in some Southeast Asian countries, although it also feeds on rice, sugarcane, sorghum, and other grasses. Here, we report the presence of Spacificus in mainland Japan, representing the first record of this species in temperate Asia. Seven male and 17 female adult individuals collected in Kumamoto Prefecture in 2019 and 2020 were identified as Spacificus based on their morphological characteristics and mitochondrial COI sequences. In addition, molecular phylogenetic analysis showed that Spacificus formed a distinct clade from other Stenocranus species, indicating uncertainty in its generic assignment. Although crop damage by Spacificus has not yet been reported from temperate regions, given its wide range of plant hosts and the potential for future range expansions, damaged crops in Asia, including in temperate regions, should be monitored for the presence of this species.  相似文献   

19.
Some Serratia entomophila isolates have been successfully exploited in biopesticides due to their ability to cause amber disease in larvae of the Aotearoa (New Zealand) endemic pasture pest, Costelytra giveni. Anti-feeding prophage and ABC toxin complex virulence determinants are encoded by a 153-kb single-copy conjugative plasmid (pADAP; a mber d isease-a ssociated p lasmid). Despite growing understanding of the S. entomophila pADAP model plasmid, little is known about the wider plasmid family. Here, we sequence and analyse mega-plasmids from 50 Serratia isolates that induce variable disease phenotypes in the C. giveni insect host. Mega-plasmids are highly conserved within S. entomophila, but show considerable divergence in Serratia proteamaculans with other variants in S. liquefaciens and S. marcescens, likely reflecting niche adaption. In this study to reconstruct ancestral relationships for a complex mega-plasmid system, strong co-evolution between Serratia species and their plasmids were found. We identify 12 distinct mega-plasmid genotypes, all sharing a conserved gene backbone, but encoding highly variable accessory regions including virulence factors, secondary metabolite biosynthesis, Nitrogen fixation genes and toxin-antitoxin systems. We show that the variable pathogenicity of Serratia isolates is largely caused by presence/absence of virulence clusters on the mega-plasmids, but notably, is augmented by external chromosomally encoded factors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号