首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tongue squamous cell carcinoma (TSCC) is the most common type of oral cancer and is an aggressive head and neck malignancy. Increasing studies have demonstrated that long noncoding RNAs (lncRNAs) play important roles in diverse biological cell processes, such as cell development, fate decisions, cell differentiation, cell migration, and invasion. In our study, we showed that long noncoding RNA colorectal neoplasia differentially expressed (CRNDE) expression was upregulated in TSCC cell lines and tissues. Overexpression of CRNDE increased the TSCC cell proliferation, cell cycle, and cell invasion. Moreover, ectopic expression of CRNDE inhibited the miR-384 expression in the SCC1 cell and increased the Kirsten Ras (KRAS), cell division cycle 42, and insulin receptor substrate 1 expression, which were the direct target genes of miR-384. We demonstrated that the miR-384 expression was downregulated in the TSCC samples compared with the paired adjacent nontumor samples. The expression of CRNDE was negatively correlated with the expression of miR-384 in the TSCC samples. Overexpression of miR-384 suppressed TSCC cell proliferation, cell cycle, and invasion. Furthermore, we demonstrated that CRNDE promoted TSCC cell proliferation and invasion through inhibiting miR-384 expression. These results suggested that CRNDE acts as an oncogene in the development of TSCC, which partially occurs through inhibiting miR-384 expression.  相似文献   

2.
Tongue squamous cell carcinoma (TSCC) is the most frequent style of oral squamous cell carcinoma. However, the molecular mechanisms and function of LINC00961 in the TSCC progression remain unknown. In this study, we proved that LINC00961 expression was downregulated in TSCC cells (Tca8113, SCC1, SCC-4, and SCC-15) compared with normal tissue. In addition, we showed that LINC00961 expression was downregulated in TSCC samples compared with matched normal tissues. Moreover, ectopic expression of LINC00961 decreased TSCC cell growth and invasion and suppressed epithelial-mesenchymal transition in TSCC cell. Furthermore, we indicated that overexpression of LINC00961 decreased β-catenin expression. Knockdown of LINC00961 promoted cell proliferation and invasion partly via promoting the Wnt/β-catenin signaling pathway. These results suggested that LINC00961 was downregulated in TSCC tissues and acted as a tumor suppressor gene in the development of TSCC.  相似文献   

3.
Deregulations of microRNA have been frequently observed in tongue squamous cell carcinoma (TSCC), but their roles in tumorigenesis are not entirely clear. Here, we reported the up-regulation of miR-24 in TSCC. MiR-24 up-regulation reduced the expression of RNA-binding protein dead end 1 (DND1). Knockdown of miR-24 led to enhanced expression of DND1. The direct targeting of miR-24 to the DND1 mRNA was predicted bioinformatically and confirmed by luciferase reporter gene assays. Furthermore, the miR-24-mediated change in DND1 expression suppressed the expression of cyclin-dependent kinase inhibitor 1B (CDKN1B), and also led to enhanced proliferation and reduced apoptosis in TSCC cells.  相似文献   

4.
Recent studies have observed that lncRNAs (long non-coding RNAs) are involved in the progression of various tumours including tongue squamous cell carcinoma (TSCC). Recently, a new lnRNA, GACAT1, has been firstly identified in gastric cancer. However, its potential role in TSCC remains unknown. In this reference, we observed that GACAT1 was overexpressed in TSCC samples and cell lines. Of 25 TSCC specimens, GACAT1 expression was overexpressed in 18 patients (18/25, 72%) compared to non-tumour specimens. Ectopic expression of GACAT1 induced cell growth and migration and promoted epithelial to mesenchymal transition in TSCC. In addition, ectopic expression of GACAT1 decreased miR-149 expression in SCC1 cell. We observed that miR-149 expression was down-regulated in TSCC cell lines. Moreover, we observed that GACAT1 expression was negatively correlated with miR-149 expression. GACAT1 overexpression induced TSCC cell growth and migration via regulating miR-149 expression. These data provided that GACAT1 played an oncogenic role in the progression of TSCC partly through modulating miR-149 expression.  相似文献   

5.
Osteosarcoma (OS) is the most common primary malignant bone tumor. Recently, increasing evidence has shown that the long noncoding RNA (lncRNA) DLX6-AS1 (distal-less homeobox 6 antisense 1) plays significant roles in various types of cancers. However, the functions and underlying mechanisms of DLX6-AS1 have not been explored in OS yet. In this study, we assessed the expression of DLX6-AS1 in OS tissues and cell lines and explored the underlying molecular mechanisms. DLX6-AS1 was found to be significantly upregulated in OS tissues and OS cell lines. High expression of DLX6-AS1 was significantly correlated with advanced TNM stage, high tumor grade, and distant metastasis of patients with OS. Knockdown of DLX6-AS1 suppressed OS cell proliferation, invasion, and migration, and induced cell apoptosis. Knockdown of DLX6-AS1 also suppressed in vivo tumor growth. Bioinformatics and luciferase assay analysis showed that DLX6-AS1 functioned as a competing endogenous RNA (ceRNA) to negatively regulate miR-641 expression. Furthermore, miR-641 was found to target the 3′ untranslated region of homeobox protein Hox-A9 (HOXA9) and suppressed the expression of HOXA9. Mechanistic studies showed that DLX6-AS1 regulated OS cell proliferation, invasion, and migration via regulating HOXA9 by acting as a ceRNA for miR-641. Our results suggested that DLX6-AS1 functions as a ceRNA by targeting miR-641/HOXA9 signal pathway to suppress OS cell proliferation and metastasis. Our study may provide novel insights into understanding pathogenesis and development of OS.  相似文献   

6.
7.
8.
9.
目的:探讨micro RNA-21(mi R-21)对人舌鳞癌细胞增殖和凋亡的影响。方法:选取8例舌鳞癌组织和4例癌旁组织为研究材料,采用实时荧光定量聚合酶链式反应(q RT-PCR)法对舌鳞癌及癌旁组织中的mi R-21相对表达量进行检测,利用人工合成的mi R-21mimic对人舌鳞癌Tca8113细胞进行瞬时转染,采用q RT-PCR法对Tca8113细胞中mi R-21相对表达量进行检测,采用四唑盐比色法(MTT)法对Tca8113细胞增殖情况进行检测,采用流式细胞术对Tca8113细胞周期与凋亡情况进行检测。结果:舌鳞癌组织中mi R-21的相对表达量(3.502±0.674),高于癌旁组织(0.998±0.192),差异有统计学意义(P0.05)。mi R-21mimic导致了Tca8113细胞中的mi R-21相对表达量上调(6.864±1.324),明显高于对照scramble组[(0.997±0.187),P0.05],对Tca8113细胞的增殖发挥了促进作用(P0.05)。经mi R-21mimic转染之后,Tca8113细胞进入S期的细胞出现了明显的增加[(27.4±5.1)%vs(48.6±8.7)%,P0.05],处于G1期的细胞出现了显著的减少[(56.3±9.6)%vs(36.2±7.2)%,P0.05],细胞凋亡数量出现了显著减少[(9.4±2.3)%vs(18.6±3.9)%,P0.05]。结论:mi R-21在舌鳞癌组织中高表达,过表达mi R-21有效促进了Tca8113细胞的增殖,抑制细胞的凋亡,mi R-21在舌鳞癌诊断和治疗可能具有一定的新型靶点价值。  相似文献   

10.
MicroRNAs (miRNAs, miR) are of critical importance in growth and metastasis of cancer cells; however, the underlying functions of miRNAs in osteosarcoma (OS) remain largely unknown. This study was aimed to elucidate the role of miR-221 in regulating the biological behavior of OS cells. The proliferation ability was examined by cell counting kit-8 (CCK-8) and cell cycle assay. The abilities of cell migration, invasion, and apoptosis were monitored by transwell assay and flow cytometry, respectively. The effect of miR-221 on cyclin-dependent kinase inhibitor 1B (CDKN1B) expression was evaluated by luciferase assays, real-time polymerase chain reaction, and Western blot analysis. We found that miR-221 was elevated in OS cell lines compared with the normal osteoblastic cell line. Transfection of the miR-221 inhibitor into MG63 and U-2OS cell lines obviously suppressed cell proliferation, migration, and invasion, which is accompanied with cell cycle arrest in G0/G1 phase. Furthermore, luciferase reporter assays indicated that CDKN1B is directly targeted by miR-221 in OS cells. Knockdown of CDKN1B inhibited the effects of miR-221 inhibitor, along with decreased Bax and caspase-3 and increased cyclin E, cyclin D1, Bcl-2, Snail, and Twist1 expression. The results suggested that miR-221 might act as a potentially useful target for treatment of OS.  相似文献   

11.
Osteosarcoma (OS) is the commonest primary malignant tumour originating from bone. Previous studies demonstrated that long non-coding RNAs (lncRNAs) could participate in both oncogenic and tumor suppressing pathways in various cancer, including OS. The HOXA cluster antisense RNA2 (HOXA-AS2) plays an important role in carcinogenesis, however, the underlying role of HOXA-AS2 in OS progression remains unknown. The aim of the present study was to evaluate the expression and function of HOXA-AS2 in OS. The qRT-PCR analysis was to investigate the expression pattern of HOXA-AS2 in OS tissues. Then, the effects of HOXA-AS2 on cell proliferation, cell cycle, apoptosis, migration, and invasion were assessed in OS in vitro. Furthermore, bioinformatics online programs predicted and luciferase reporter assay were used to validate the association of HOXA-AS2 and miR-520c-3p in OS cells. We observed that HOXA-AS2 was up-regulated in OS tissues. In vitro experiments revealed that HOXA-AS2 knockdown significantly inhibited OS cells proliferation by promoting apoptosis and causing G1 arrest, whereas HOXA-AS2 overexpression promoted cell proliferation. Further functional assays indicated that HOXA-AS2 significantly promoted OS cell migration and invasion by promoting epithelial-mesenchymal transition (EMT). Bioinformatics online programs predicted that HOXA-AS2 sponge miR-520c-3p at 3?-UTR with complementary binding sites, which was validated using luciferase reporter assay. HOXA-AS2 could negatively regulate the expression of miR-520c-3p in OS cells. In conclusion, our study suggests that HOXA-AS2 acts as a functional oncogene in OS.  相似文献   

12.
Growing studies illustrated that lncRNAs exert critical roles in development and occurrence of tumours including TSCC. In this research, we indicated that LINC01783 was up-regulated in TSCC cells (SCC1, Cal27, UM1 and SCC4) when compared to NHOK cell. RT-qPCR analysis indicated that LINC01783 was overexpressed in 22 TSCC cases (73.3%, 22/30) compared with no-tumour specimens. LINC01783 level was up-regulated in TSCC specimens when compared to no-tumour specimens. Ectopic expression of LINC01783 promoted TSCC cell cycle and growth and EMT progression in both TSCC cell SCC1 and Cal27. Overexpression of LINC01783 sponged miR-199b-5p in TSCC cell and elevated expression of LINC01783 inhibited miR-199b-5p expression. Moreover, we illustrated that miR-199b-5p was down-regulated in TSCC cells and specimen and LINC01783 level was up-regulated in TSCC specimens when compared to no-tumour specimens. Elevated expression of LINC01783 promoted TSCC cell growth, cycle and EMT progression by sponging miR-199b-5p. These data suggested that LINC01783 functioned as one oncogene and might be one treatment target for TSCC.  相似文献   

13.
Growing lncRNAs have been noted to involve in the initiation and development of several tumours including tongue squamous cell carcinomas (TSCCs). However, the biological role and mechanism of lncRNA RPSAP52 were not well-explained. We indicated that RPSAP52 was higher in TSCC samples compared with that in control samples. The higher expression of RPSAP52 was positively correlated with higher T stage and TNM stage. Ectopic expression of RPSAP52 induced TSCC cell growth and cycle and induced cytokine secretion including IFN-γ, IL-1β and IL-6, IL-8, IL-10 and TGF-β. We found that the overexpression of RPSAP52 suppressed miR-423-5p expression in SCC-4 cell. miR-423-5p was lower in TSCC samples compared with that in control samples, and miR-423-5p level was negatively correlated with higher T stage and TNM stage. Pearson's correlation indicated that miR-423-5p was negatively associated with that of RPSAP52 in TSCC tissues. Furthermore, MYBL2 was one direct gene of miR-423-5p and elevated expression of miR-423-5p suppressed MYBL2 expression and ectopic expression of RPSAP52 increased MYBL2 expression in SCC-4 cell. Finally, we illustrated that RPSAP52 overexpression promoted TSCC cell growth and cycle and induced cytokine secretion including IFN-γ, IL-1β and IL-6, IL-8, IL-10 and TGF-β via modulating MYBL2. These data provided new insight into RPSAP52, which may be one potential treatment target for TSCC.  相似文献   

14.
15.
16.
Circular RNAs (circRNAs) have recently shown capabilities as gene regulators in mammals. Some of them interact with microRNAs (miRNAs) and function as sponges to affect related miRNAs' activities. In this study, the molecular function of circRNA_0009910 and its potential downstream miRNA targets were explored. The expression levels of hsa_circ_0009910 were found to be overexpressed in osteosarcoma (OS) cells. Knockdown of circ_0009910 induced cell proliferation inhibition, cell cycle arrest, and apoptosis in OS cells. The target miRNA was predicted to be miR-449a, whose expression was downregulated in OS cells. Inhibition of miR-449a abolished the effect of circ_0009910 knockdown on cell growth and apoptosis. The expression of miR-449a were found to be negatively correlated with that of circ_0009910 in OS tissues. Direct interaction of circ_0009910 and miR-449a was confirmed through dual-luciferase assays. Moreover, IL6R was predicted as a potential target of miR-449a. Overexpression of miR-449a decreased the mRNA and protein levels of IL6R. Restoration of IL6R impaired the miR-449a induced inhibition of cell proliferation, cell cycle arrest, and apoptosis. The mRNA expression of IL6R was inversely correlated with miR-449a in OS tissues. In addition, JAK1/STAT3 signaling pathway was regulated by circ_0009910/miR-449a/IL6R axis. Taken together, we suggested that circ_0009910 acted as a sponge of miR-449a and upregulated miR-449a functional target IL6R, thereby contributed to carcinogenesis of OS.  相似文献   

17.
We aim to uncover the methylation of microRNA-7 (miR-7) promoter in osteosarcoma (OS) and the inner mechanism of miR-7 on the progression of OS cells. Expression and methylation state of miR-7 in OS tissues and cells were detected. With the aim to unearth the ability of miR-7 in OS, the proliferation, cell cycle progression, apoptosis, invasion, migration of OS cells, and the tumor growth in nude mice were determined. Meanwhile, IGF1R expression was detected and the association between miR-7 and IGF1R was confirmed. The proliferating cell nuclear antigen (PCNA) expression was tested by immunohistochemical staining, and the lung metastasis was observed by H&E staining. miR-7 expression was decreased and methylation state of miR-7 was increased in OS tissues and cells. Upregulated miR-7 inhibited proliferation, cell cycle progression, invasion,and migration, while inducing apoptosis of OS cells and the tumor growth as well as PCNA expression in nude mice. Expression of IGF1R was downregulated in OS cells with overexpression of miR-7. Experiments verified the binding site between miR-7 and IGF1R. Our study demonstrates that abnormal methylation of miR-7 contributes to decreased miR-7 in OS. In addition, miR-7 represses the initiation and progression of OS cells through the inhibition of IGF1R.  相似文献   

18.
19.
Previous studies indicate that TGFBR3 (transforming growth factor type III receptor, also known as betaglycan), a novel suppressor of progression in certain cancers, is down-regulated in tongue squamous cell carcinoma (TSCC). However, the role of this factor as an upstream regulator in TSCC cells remains to be elucidated. The present study was designed to elucidate whether TGFBR3 gene expression is regulated by two microRNA molecules, miR-19a and miR-424. The study also aimed to determine if these microRNAs promote migration of CAL-27 human oral squamous cells. Immunohistochemistry (IHC) and western blot analyses demonstrated that TGFBR3 protein levels were dramatically down-regulated in clinical TSCC specimens. Conversely, bioinformatics analyses and qRT-PCR results confirmed that both miR-19a and miR-424 were markedly up-regulated in clinical TSCC specimens. In this study, we observed that transfection of a TGFBR3-containing plasmid dramatically inhibited epithelial-to-mesenchymal transition (EMT) and migration in CAL-27 cells. Co-immunoprecipitation analyses also revealed that TGFBR3 forms a complex with the β-arrestin 2 scaffolding protein and IκBα. Furthermore, overexpression of TGFBR3 decreased p-p65 expression and increased IκBα expression; these effects were subsequently abolished following knockdown of β-arrestin 2. Moreover, over-expression of miR-19a and miR-424 promoted migration and EMT in CAL-27 cells. We also observed that the promotion of EMT by miR-19a and miR-424 was mediated by the inhibition of TGFBR3. Our study provides evidence that miR-19a and miR-424 play important roles in the development of TSCC. These results expand our understanding of TGFBR3 gene expression and regulatory mechanisms pertaining to miRNAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号