首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work was to evaluate capability of site-specific delivery of a transdermal patch through determination of letrozole in local tissues disposition in female mice. After transdermal administration, the letrozole levels in skin, muscle, and plasma were 10.4–49.3 μg/g, 1.64–6.89 μg/g, and 0.35–1.64 μg/mL, respectively. However, after the mice received letrozole suspension, the drug concentration of plasma and muscle were 0.20–4.80 μg/mL and 0.15–2.38 μg/g. There was even no drug determined in skin through all experiments. Compared with oral administration, the transdermal patch for site-specific delivery of letrozole could produce high drug concentrations in skin and muscle and meanwhile obtain low drug level in plasma. These findings show that letrozole transdermal patch is an appropriate delivery system for application to the breast tumor region for site-specific drug delivery to obtain a high local drug concentration and low circulating drug concentrations avoiding the risk of systemic side effects.  相似文献   

2.
Radiation‐induced dermatitis is a common and serious side effect after radiotherapy. Current clinical treatments cannot efficiently or fully prevent the occurrence of post‐irradiation dermatitis, which remains a significant clinical problem. Resolving this challenge requires gaining a better understanding of the precise pathophysiology, which in turn requires establishment of a suitable animal model that mimics the clinical condition, and can also be used to investigate the mechanism and explore effective treatment options. In this study, a single dose of 90 Gy irradiation to rats resulted in ulceration, dermal thickening, inflammation, hair follicle loss, and sebaceous glands loss, indicating successful establishment of the model. Few hair follicle cells migrated to form epidermal cells, and both the severity of skin fibrosis and hydroxyproline levels increased with time post‐irradiation. Radiation damaged the mitochondria and induced both apoptosis and autophagy of the skin cells. Therefore, irradiation of 90 Gy can be used to successfully establish a rat model of radiation‐induced dermatitis. This model will be helpful for developing new treatments and gaining a better understanding of the pathological mechanism of radiation‐induced dermatitis. Specifically, our results suggest autophagy regulation as a potentially effective therapeutic target.  相似文献   

3.
The impact and penetration of high speed particles with the human skin is of interest for targeted drug delivery by transdermal powder injection. However, it is often difficult to perform penetration experiments on dermal tissue using micron scale particles. To address this, a finite element model of the impact and penetration of a 2 μm gold particle into the human dermis was developed and calibrated using experiments found in the literature. Using dimensional analysis, the model was linked to a larger scale steel ball-gelatin system in order to extract key material parameters for both systems and perform impact studies. In this manner, an elastic modulus of 2.25 MPa was found for skin, in good agreement with reported values from the literature. Further gelatin experiments were performed with steel, polymethyl methacrylate, titanium, and tungsten carbide balls in order to determine the effects of particle size and density on penetration depth. Both the finite element model and the steel-gelatin experiments were able to predict the penetration behavior that was found by other investigators in the study of the impact of typical particles used for vaccine delivery into the human dermis. It can therefore be concluded that scaled up systems utilizing ballistic gelatins can be used to investigate the performance of transdermal powder injection technology.  相似文献   

4.
Microdermabrasion is widely used as a non-invasive cosmetic technique that has recently been adapted to selectively remove stratum corneum to increase skin permeability for transdermal drug delivery. This study measured the kinetics of skin barrier recovery after stratum corneum removal using microdermabrasion in hairless guinea pigs. The skin was abraded at two sites on each animal, one of which was allowed to recover under occlusion while the other remained non-occluded. Histological measurements showed that skin barrier properties to sulforhodamine B largely recovered within 12 h, and the stratum corneum appeared largely reformed within 24 h for both occluded and non-occluded skin. Skin electrical resistance measurements showed significant recovery of the skin barrier within 24 h. We conclude that transdermal drug delivery may occur for up to 12 h after microdermabrasion in guinea pigs; however, humans will probably have a longer recovery time due to expected slower skin healing rates.  相似文献   

5.
Discovery of transdermal penetration enhancers by high-throughput screening   总被引:8,自引:0,他引:8  
Although transdermal drug delivery is more attractive than injection, it has not been applied to macromolecules because of low skin permeability. Here we describe particular mixtures of penetration enhancers that increase skin permeability to macromolecules (approximately 1-10 kDa) by up to approximately 100-fold without inducing skin irritation. The discovery of these mixtures was enabled by an experimental tool, in vitro skin impedance guided high-throughput (INSIGHT) screening, which is >100-fold more efficient than current tools. In vitro experiments demonstrated that the mixtures delivered macromolecular drugs, including heparin, leutinizing hormone releasing hormone (LHRH) and oligonucleotides, across the skin. In vivo experiments on hairless rats with leuprolide acetate confirmed the potency and safety of one such mixture, sodium laureth sulfate (SLA) and phenyl piperazine (PP). These studies show the feasibility of using penetration enhancers for systemic delivery of macromolecules from a transdermal patch.  相似文献   

6.
Transdermal delivery systems are useful in cases where preferred routes such as the oral route are not available. However, low overall extent of delivery is seen due to the permeation barrier posed by the skin. Chemical penetration enhancers and invasive methods that disturb the structural barrier function of the skin can be used to improve transdermal drug delivery. However, for suitable drugs, a fast-releasing transdermal delivery system can be produced by incorporating a heating source into a transdermal patch. In this study, a molecular dynamics simulation showed that heat increased the diffusivity of the drug molecules, resulting in faster release from gels containing ketoprofen, diclofenac sodium, and lidocaine HCl. Simulations were confirmed by in vitro drug release studies through lipophilic membranes. These correlations could expand the application of heated transdermal delivery systems for use as fast-release-dosage forms.  相似文献   

7.
Interleukin 1 beta (IL1B), a potent pro-inflammatory cytokine, is directly up-regulated by radiation and is known to regulate other inflammation-related molecules, such as the matrix metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs). However, the nature of the interaction of IL1B with MMPs and TIMPs in radiation-induced skin fibrosis is unknown. We examined the response of primary dermal keratinocytes, fibroblasts and endothelial cells to single-fraction radiation (10 Gy) and compared the results to a temporal sequence of histology from irradiated C57BL/6 and IL1R1 knockout mice. These studies showed that keratinocytes are the major IL1-producing cells in vitro and that radiation induces an immediate and chronic elevation in the expression of IL1B mRNA in the skin of C57BL/6 mice. This elevation was principally early and was less pronounced in the IL1R1 knockout strain, which also demonstrated reduced late radiation fibrosis. Radiation also increased expression of MMP mRNA in C57BL/6 mice. Finally, exogenous IL1B protein induced robust endogenous IL1B mRNA expression, along with a brisk increase in MMPs and collagen III, but only in the C57BL/6 mice. In conclusion, these data suggest that IL1B plays a critical role in radiation-induced fibrosis and that the increased MMPs fail to block the IL1-related collagen accumulation.  相似文献   

8.
Mesenchymal stem cells (MSCs) are an ideal adult stem cell with capacity for self‐renewal and differentiation with an extensive tissue distribution. The present study evaluates the therapeutic effects of bone marrow mesenchymal stem cells (BM‐MSCs) or adipose‐derived mesenchymal stem cells (AD‐MSCs) against the development of methotrexate (MTX)‐induced cardiac fibrosis versus dexamethasone (DEX). Rats were allocated into five groups; group 1, received normal saline orally; group 2, received MTX (14 mg/kg/week for 2 weeks); groups 3 and 4, treated once with 2 × 10 6 cells of MTX + BM‐MSCs and MTX + AD‐MSCs, respectively; and group 5, MTX + DEX (0.5 mg/kg, for 7 days, P.O.). MTX induced cardiac fibrosis as marked changes in oxidative biomarkers and elevation of triglyceride, cholesterol, aspartate aminotransferase, gamma‐glutamyl transferase, creatine kinase, and caspase‐3, as well as deposited collagen. These injurious effects were antagonized after treatment with MSCs. So, MSCs possessed antioxidant, antiapoptotic, as well antifibrotic effects, which will perhaps initiate them as notable prospective for the treatment of cardiac fibrosis.  相似文献   

9.
Skin fibrosis, which is characterized by fibroblast proliferation and increased extracellular matrix, has no effective treatment. An increasing number of studies have shown that microRNAs (miRNAs/miRs) participate in the mechanism of skin fibrosis, such as in limited cutaneous systemic sclerosis and pathological scarring. The objective of the present study was to determine the role of miR‐411‐3p in bleomycin (BLM)‐induced skin fibrosis and skin fibroblast transformation. Using Western blot analysis and real‐time quantitative polymerase chain reaction assess the expression levels of miR‐411‐3p, collagen (COLI) and transforming growth factor (TGF)‐β/Smad ubiquitin regulatory factor (Smurf)‐2/Smad signalling factors both in vitro and in vivo with or without BLM. To explore the regulatory relationship between miR‐411‐3p and Smurf2, we used the luciferase reporter assay. Furthermore, miR‐411‐3p overexpression was identified in vitro and in vivo via transfection with Lipofectamine 2000 reagent and injection. Finally, we tested the dermal layer of the skin using haematoxylin and eosin and Van Gieson''s staining. We found that miR‐411‐3p expression was decreased in bleomycin (BLM)‐induced skin fibrosis and fibroblasts. However, BLM accelerated transforming growth factor (TGF)‐β signalling and collagen production. Overexpression of miR‐411‐3p inhibited the expression of collagen, F‐actin and the TGF‐β/Smad signalling pathway factors in BLM‐induced skin fibrosis and fibroblasts. In addition, miR‐411‐3p inhibited the target Smad ubiquitin regulatory factor (Smurf)‐2. Furthermore, Smurf2 was silenced, which attenuated the expression of collagen via suppression of the TGF‐β/Smad signalling pathway. We demonstrated that miR‐411‐3p exerts antifibrotic effects by inhibiting the TGF‐β/Smad signalling pathway via targeting of Smurf2 in skin fibrosis.  相似文献   

10.
The purpose of this work was to develop w/o emulsions that could be safely used to promote transdermal delivery of 5-fluorouracil (5-FU). Two pseudo-ternary phase diagrams comprising oleoyl-macrogol glycerides, water, and a surfactant/co-surfactant (S/CoS) mixture of lecithin, ethanol, and either coco glucoside or decyl glucoside were investigated for their potential to develop promising 5-FU emulsions. Six systems were selected and subjected to thermodynamic stability tests; heat–cool cycles, centrifugation, and finally freeze–thaw cycles. All systems passed the challenges and were characterized for transmission electron microscopy, droplet size, rheological behavior, pH, and transdermal permeation through newly born mice skin in Franz diffusion cells. The systems had spherical droplets ranging in diameter from 1.81 to 2.97 μm, pH values ranging from 7.50 to 8.49 and possessed Newtonian flow. A significant (P < 0.05) increase in 5-FU permeability parameters as steady-state flux, permeability coefficient was achieved with formula B5 comprising water (5% w/w), S/CoS mixture of lecithin/ethanol/decyl glucoside (14.67:12.15:18.18% w/w, respectively) and oleoyl-macrogol glycerides (50% w/w). When applied to shaved rat skin, this system was well tolerated with only moderate skin irritation that was recovered within 12 h. Indeed, minor histopathologic changes were observed after 5-day treatment. Further studies should be carried out, in the future, to investigate the potentiality of this promising system to promote transdermal delivery of 5-FU through human skin.  相似文献   

11.
Feasibility of developing a transdermal drug delivery of fluoxetine has been investigated. Permeation studies of fluoxetine across human cadaver skin were carried out using Franz diffusion cells. The receptor phase consisted of pH 7.4 phosphate buffer maintained at 37°C. Permeation enhancement of fluoxetine, either in the salt or base form, was achieved using various enhancers like azone, SR-38, and ethanol. Various O/W microemulsion systems of fluoxetine were developed to study their effect on the skin permeation of fluoxetine. The results indicated that ethanol at 65% vol/vol was able to increase the permeation of fluoxetine the most, while microemulsion systems showed decrease in the permeation of fluoxetine. The permeation of fluoxetine obtained using a 65% vol/vol ethanolic solution was found to be sufficient to deliver the required dose (20–80 mg) from a patch of feasible size. The results seem promising for developing a transdermal drug delivery system of fluoxetine. Published: September 30, 2005  相似文献   

12.

Background  

Post kala azar dermal leishmaniasis (PKDL) is a disease that appears after treatment of visceral leishmaniasis (VL). The highest incidence of PKDL in the world is in Sudan. Many patients heal spontaneously within 6 months but those who don't are difficult to treat, often requiring months of daily injections. These patients harbour parasite in their skin and are believed to be a source of infection and possibly epidemics. Present treatment modalities of PKDL are inadequate and impractical due to cost, duration of treatment required and side effects. New approach for treatment of PKDL is required. A joint meeting of the UNICEF/UNDP/World Bank/WHO Special Programme for research and training in Tropical Disease (TDR) and the Infectious Disease Research Institute (IDRI) Seattle, USA was held to review the progress of therapeutic vaccines and plan the development of treatment modalities for PKDL.  相似文献   

13.
14.
Ultraviolet A (UVA) radiation is a major contributor to the pathogenesis of skin photoaging, and the aim of this study was to investigate the effect of Acacetin on skin photoaging in UVA‐irradiated mice and human dermal fibroblasts (HDF). Healthy dorsal depilated rats were irradiated with UVA 30 J/cm2 daily, every other day, for 1 month. Acacetin (40, 80 mg kg/day) was coated to the bare skin of the rats'' backs 1 h before UVA irradiation. HDF were treated different concentrations of Acacetin (5, 10, 20 μg/ml) and then irradiated with UVA (20 J/cm2). Acacetin was found to be effective in ameliorating UVA‐induced oxidative stress and cell death. Acacetin also prevented the UVA‐induced decrease of SIRT3, reduced the activation of mitogen‐activated protein kinases (MAPKs, p‐38 and p‐JNK) and blocked the down‐regulated activation of oxidative stress in matrix metalloproteinases (MMPs). In addition, Acacetin increased the expressions of collagen‐promoting proteins (TGF‐β and Smad3). Finally, the SIRT3 inhibitor 3‐TYP blocked all protective effects of Acacetin, indicating that the protective effect of Acacetin against UVA photoaging is SIRT3‐dependent. Acacetin effectively mitigated photoaging by targeting the promotion of SIRT3, inhibiting the UVA‐induced increases in MMPs and pro‐inflammatory factors, and promoting TGF‐β and Smad3.  相似文献   

15.
To study the role of different DNA repair genes in the resistance of Deinococcus radiodurans to mono- and polychromatic UV radiation, wild-type strain and knockout mutants in RecA, PprA, and IrrE of D. radiodurans were irradiated with UV-C (254 nm), UV-(A + B) (280–400 nm) and UV-A (315–400 nm) radiation, and survival was monitored. The strain deficient in recA was highly sensitive to UV-C radiation compared to the wild-type, but showed no loss of resistance against irradiation with UV-(A + B) and UV-A, while pprA and irrE-deficient strains exhibited elevated sensitivity to UV-A and UV-(A + B) radiation. These results suggest that the repair of DNA double-strand breaks is essential after treatment with highly energetic UV-C radiation, whereas protection from oxidative stress may play a greater role in resistance to environmentally relevant UV radiation.  相似文献   

16.
Skin fibrosis, which is characterized by fibroblast proliferation and increased extracellular matrix, has no effective treatment. An increasing number of studies have shown that microRNAs (miRNAs/miRs) participate in the mechanism of skin fibrosis, such as in limited cutaneous systemic sclerosis and pathological scarring. The objective of the present study was to determine the role of miR-411-3p in bleomycin (BLM)-induced skin fibrosis and skin fibroblast transformation. Using Western blot analysis and real-time quantitative polymerase chain reaction assess the expression levels of miR-411-3p, collagen (COLI) and transforming growth factor (TGF)-β/Smad ubiquitin regulatory factor (Smurf)-2/Smad signalling factors both in vitro and in vivo with or without BLM. To explore the regulatory relationship between miR-411-3p and Smurf2, we used the luciferase reporter assay. Furthermore, miR-411-3p overexpression was identified in vitro and in vivo via transfection with Lipofectamine 2000 reagent and injection. Finally, we tested the dermal layer of the skin using haematoxylin and eosin and Van Gieson's staining. We found that miR-411-3p expression was decreased in bleomycin (BLM)-induced skin fibrosis and fibroblasts. However, BLM accelerated transforming growth factor (TGF)-β signalling and collagen production. Overexpression of miR-411-3p inhibited the expression of collagen, F-actin and the TGF-β/Smad signalling pathway factors in BLM-induced skin fibrosis and fibroblasts. In addition, miR-411-3p inhibited the target Smad ubiquitin regulatory factor (Smurf)-2. Furthermore, Smurf2 was silenced, which attenuated the expression of collagen via suppression of the TGF-β/Smad signalling pathway. We demonstrated that miR-411-3p exerts antifibrotic effects by inhibiting the TGF-β/Smad signalling pathway via targeting of Smurf2 in skin fibrosis.  相似文献   

17.
The tight skin 2 (Tsk2) mouse model of systemic sclerosis (SSc) has many features of the human disease including tight skin, fibrosis, extracellular matrix abnormalities, and reported antinuclear antibodies (ANA). Here we report that Tsk2/+ mice develop excess dermal fibrosis with age, as skin is not significantly fibrotic until 10 weeks, a full eight weeks after the development of the physical tight skin phenotype. Concomitantly with the tight skin phenotype at two weeks of age, Tsk2/+ mice demonstrate increased levels of total transforming growth factor beta 1 (TGF-β1) and excessive accumulation of dermal elastic fibers. The increase in elastic fibers is not responsible for tight skin, however, because Tsk2/+ mice genetically engineered to lack skin elastic fibers nevertheless have tight skin and fibrosis. Finally, about two months after the first measurable increases of total collagen, a portion of Tsk2/+ mice produce ANAs, but at a similar level to wild-type littermates. The timeline of disease development in the Tsk2/+ mouse shows that fibrosis is progressive, with elastic fiber alterations and TGF-β1 over-production occurring at least two months before bona fide fibrosis, that is not dependent on ANA production.  相似文献   

18.
《Cytotherapy》2014,16(1):17-32
Background and aimsWe recently demonstrated that injection of conditioned medium (CM) generated from cells of the mesenchymal region of human amniotic membrane (AMTCs) reduces bleomycin-induced lung fibrosis in mice, suggesting a crucial role of paracrine factor(s) secreted by AMTCs in these beneficial effects. We further investigated this hypothesis, the mechanisms involved, the effects on some lung functional parameters and whether AMTC-secreted effector(s) are specific to these cells and not produced by other cell types, extending the time of analysis up to 28 days after treatment.MethodsBleomycin-challenged mice were either treated with AMTC-CM or CM generated from human skin fibroblasts, human peripheral blood mononuclear cells or Jurkat cells, or were left untreated. Mouse lungs were analyzed for content of pro-inflammatory and pro-fibrotic molecules, presence of lymphocytes and macrophages and for fibrosis level (through histological semi-quantitative evaluation and quantitative measurement of collagen content). Arterial blood gas analysis was also performed.ResultsUp to 28 days after delivery, AMTC-CM-treated mice developed reduced lung fibrosis with respect to mice treated with other CM types. AMTC-CM-treated mice had comparatively better preservation of blood gas parameters and showed lower lung content of interleukin-6, tumor necrosis factor-α, macrophage inflammatory protein-1α, monocyte chemoattractant protein-1 and transforming growth factor-β associated with reduced lung macrophage levels.ConclusionsAMTC-CM prevents lung fibrosis in bleomycin-challenged mice, improving survival and preserving lung functional parameters such as blood gas exchanges. The specificity of AMTC-CM action was indicated by the absence of fibrosis reduction when other CM types were used. Finally, we provide some insights into the possible mechanisms underlying AMTC-CM-mediated control of fibrosis.  相似文献   

19.
Systemic Sclerosis (SSc) is a rare fibrotic autoimmune disorder for which no curative treatments currently exist. Metabolic remodelling has recently been implicated in other autoimmune diseases; however, its potential role in SSc has received little attention. Here, we aimed to determine whether changes to glycolysis and glutaminolysis are important features of skin fibrosis. TGF‐β1, the quintessential pro‐fibrotic stimulus, was used to activate fibrotic pathways in NHDFs in vitro. Dermal fibroblasts derived from lesions of SSc patients were also used for in vitro experiments. Parameters of glycolytic function were assessed using by measuring extracellular acidification in response to glycolytic activators/inhibitors, whilst markers of fibrosis were measured by Western blotting following the use of the glycolysis inhibitors 2‐dg and 3PO and the glutaminolysis inhibitor G968. Succinate was also measured after TGF‐β1 stimulation. Itaconate was added to SSc fibroblasts and collagen examined. TGF‐β1 up‐regulates glycolysis in dermal fibroblasts, and inhibition of glycolysis attenuates its pro‐fibrotic effects. Furthermore, inhibition of glutamine metabolism also reverses TGF‐β1‐induced fibrosis, whilst glutaminase expression is up‐regulated in dermal fibroblasts derived from SSc patient skin lesions, suggesting that enhanced glutamine metabolism is another aspect of the pro‐fibrotic metabolic phenotype in skin fibrosis. TGF‐β1 was also able to enhance succinate production, with increased succinate shown to be associated with increased collagen expression. Incubation of SSc cells with itaconate, an important metabolite, reduced collagen expression. TGF‐β1 activation of glycolysis is a key feature of the fibrotic phenotype induced by TGF‐B1 in skin cells, whilst increased glutaminolysis is also evident in SSc fibroblasts.  相似文献   

20.
Spotted wing drosophila (SWD) has emerged as a major invasive insect pest of small berry fruits in the Americas and Europe since the late 2000s. Thus, phytosanitary treatment of commodities for export is imperative to prevent the movement of viable SWD to newer areas. In the present study, all developmental stages of SWD were irradiated with different doses of gamma and electron beam radiation to assess developmental inhibition to identify potential quarantine doses of the radiations. Ionizing radiation induced developmental inhibition of all stages of SWD. The effective doses for 99% inhibition (ED99) of hatching, pupariation, and adult emergence from irradiated eggs for gamma radiation were 882, 395 and 39 Gy, respectively, compared with 2849, 687, and 41 Gy, respectively, for electron beam radiation. The ED99 for inhibition of pupariation and adult emergence in irradiated larvae were 703 and 47 Gy, respectively, for gamma radiation, and 619 and 33 Gy, respectively, for electron beam radiation. Pupal irradiation did not completely inhibit adult emergence, even at 300 Gy. However, irradiation with ≥100 Gy of puparia induced adult sterility, with no egg production at all. The ED99 for inhibition of F1 egg hatchability from adults irradiated with gamma radiation and electron beam radiation was estimated to be 424 and 125 Gy, respectively. The results of the present study suggest that gamma radiation and electron beam radiation are alternatives for phytosanitary treatment. Irradiation with 100 Gy could be suggested as a potential dose for egg, larval, and pupal quarantine treatment of SWD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号