首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dai J  Xie Y  Wu Q  Wang L  Yin G  Ye X  Zeng L  Xu J  Ji C  Gu S  Huang Q  Zhao RC  Mao Y 《Biochemical genetics》2003,41(5-6):165-174
Hydroxysteroid dehydrogenases (HSDs) are responsible for the biosynthesis of steroid hormones and play a crucial role in mammalian physiology and development. By large-scale sequencing analysis of a human fetal brain cDNA library, we isolated a novel human hydroxysteroid dehydrogenase-like cDNA (HSDL2). This cDNA is 3211 bp in length, encoding a 418–amino-acid polypeptide, which contains a typical motif for NAD(P)+-binding (TGxxxGxG), an SDR active site motif (S-Y-K) and a sterol carrier protein domain. HSDL2 shows high similarity with the homologues in the mouse and fruit fly. The HSDL2 gene is mapped to chromosome 9q32 and contains 11 exons. RT-PCR analysis shows that the HSDL2 gene is widely expressed in human tissues and the expression levels in liver, kidney, prostate, testis, and ovary are relatively high.  相似文献   

2.
Huang Y  Tang R  Dai J  Gu S  Zhao W  Cheng C  Xu M  Zhou Z  Ying K  Xi Y  Mao Y 《Molecular biology reports》2001,28(4):185-191
We report the cloning and characterization of a novel human hydroxysteroid dehydrogenase like gene (HSDL1) located on human chromosome 16q24.2. The HSDL1 cDNA is 3407 base pair in length, encoding a 309 amino acid polypeptide related to human 17-HSD3. Northern blot reveals that the HSDL1 is highly expressed in testis and ovary. In situ hybridization indicates that the expression of HSDL1 is predominantly increased in the prostate cancer tissue compared with the normal prostate tissue, which suggests that the gene expression is important to the arising of prostate cancer.  相似文献   

3.
Abnormal lipid metabolism including synthesis, uptake, modification, degradation and transport has been considered a hallmark of malignant tumors and contributes to the supply of substances and energy for rapid cell growth. Meanwhile, abnormal lipid metabolism is also associated with lipid peroxidation, which plays an important role in a newly discovered type of regulated cell death termed ferroptosis. Long noncoding RNAs (lncRNAs) have been proven to be associated with the occurrence and progression of cancer. Growing evidence indicates that lncRNAs are key regulators of abnormal lipid metabolism and ferroptosis in cancer. In this review, we mainly summarized the mechanism by which lncRNAs regulate aberrant lipid metabolism in cancer, illustrated that lipid metabolism can also influence the expression of lncRNAs, and discussed the mechanism by which lncRNAs affect ferroptosis. A comprehensive understanding of the interactions between lncRNAs, lipid metabolism and ferroptosis could help us to develop novel strategies for precise cancer treatment in the future.  相似文献   

4.
Dai J  Li P  Ji Ch  Feng C  Gui M  Sun Y  Zhang J  Zhu J  Dou Ch  Gu Sh 《Molekuliarnaia biologiia》2005,39(5):799-805
The short-chain dehydrogenases/reductases (SDRs) play important roles in body's metabolism. We cloned a novel mouse SDR cDNA which encodes a deduced HSD-like protein with a conserved SDR domain and a SCP2 domain. The 1.8 kb cDNA consists of 11 exons and is mapped to mouse chromosome 4B3. The corresponding gene is widely expressed in normal mouse tissues and its expression level in liver increases after inducement with cholesterol food. The predicted mouse HSDL2 protein, which has a peroxisomal target signal, is localized in the cytoplasm of NIH 3T3 cells.  相似文献   

5.
Thioredoxin and thioredoxin binding protein 2 in the liver   总被引:1,自引:0,他引:1  
Thioredoxin (TRX) is a 12-kDa protein with redox-active dithiol in the active site -Cys-Gly-Pro-Cys- and constitutes a major thiol reducing system. TRX protects cells from stress-induced damage through antioxidative, antiapoptotic, and anti-inflammatory effect. In animal models, thioacetamide (TAA)-induced acute hepatitis and TAA-induced liver fibrosis was attenuated in TRX transgenic (TRXTG) mice. Plasma level of TRX is a good marker for hepatitis and nonalcoholic steatohepatitis (NASH) in human patients. Recently, we identified TRX binding protein 2 (TBP2) in a yeast two-hybrid screening. TBP2 regulates both the expression and reducing activity of TRX as well as cell growth. TBP2 knockout (TBP2KO) mice showed disorder in lipid metabolism. TBP2 plays a multiple role on cell growth and lipid and glucose metabolism. Thus, TRX and TBP2 play important roles in the pathophysiology of liver diseases, including NASH, indicating that ratio of TRX and TBP2 expression could be a novel marker of liver diseases like NASH.  相似文献   

6.
7.
The short-chain dehydrogenases/reductases (SDRs) play an important role in the body's metabolism. We have cloned a novel mouse SDR cDNA, which encodes a deduced HSD-like protein with a conserved SDR domain and an SCP2 domain. The 1.8 kb cDNA consists of 11 exons and is mapped to mouse chromosome 4B3. The corresponding gene is widely expressed in normal mouse tissues and its expression level in the liver increases after inducement with cholesterol food. The predicted mouse HSDL2 protein, which has a peroxisomal target signal, is localized in the cytoplasm of NIH 3T3 cells.  相似文献   

8.
Kang HW  Wang F  Wei Q  Zhao YF  Liu M  Li X  Tang H 《FEBS letters》2012,586(6):897-904
miR-20a is an important member of the miR-17-92 cluster, and its real function in cervical cancer cells is unknown. Our study demonstrated that miR-20a was upregulated in cervical cancer tissues. Overexpression of miR-20a in cervical cancer-derived cell lines, HeLa and C-33A, enhanced long-term cellular proliferation, migration and invasion, whereas inhibition of miR-20a suppressed those functions. We also confirmed that oncogenic TNKS2 is directly upregulated by miR-20a. Furthermore, suppression of TNKS2 expression could inhibit colony formation, migration and invasion of cervical cancer cells. Therefore, we concluded that miR-20a can promote migration and invasion of cervical cancer cells through the upregulation of TNKS2.  相似文献   

9.
Hepatocellular carcinoma (HCC) is a primary malignancy of the liver with a high worldwide prevalence and poor prognosis. Researches are urgently needed on its molecular pathogenesis and biological characteristics. Metabolic reprogramming for adaptation to the tumour microenvironment (TME) has been recognized as a hallmark of cancer. Dysregulation of lipid metabolism especially fatty acid (FA) metabolism, which involved in the alternations of the expression and activity of lipid‐metabolizing enzymes, is a hotspot in recent study, and it may be involved in HCC development and progression. Meanwhile, immune cells are also known as key players in the HCC microenvironment and show complicated crosstalk with cancer cells. Emerging evidence has shown that the functions of immune cells in TME are closely related to abnormal lipid metabolism. In this review, we summarize the recent findings of lipid metabolic reprogramming in TME and relate these findings to HCC progression. Our understanding of dysregulated lipid metabolism and associated signalling pathways may suggest a novel strategy to treat HCC by reprogramming cell lipid metabolism or modulating TME.  相似文献   

10.
Mohite A  Chillar A  So SP  Cervantes V  Ruan KH 《Biochemistry》2011,50(10):1691-1699
Prostacyclin (PGI(2)) is a key vascular protector, metabolized from endogenous arachidonic acid (AA). Its actions are mediated through the PGI(2) receptor (IP) and nuclear receptor, peroxisome proliferator-activated receptor γ (PPARγ). Here, we found that PGI(2) is involved in regulating cellular microRNA (miRNA) expression through its receptors in a mouse adipose tissue-derived primary culture cell line expressing a novel hybrid enzyme gene (COX-1-10aa-PGIS), cyclooxygenase-1 (COX-1) and PGI(2) synthase (PGIS) linked with a 10-amino acid linker. The triple catalytic functions of the hybrid enzyme in these cells successfully redirected the endogenous AA metabolism toward a stable and dominant production of PGI(2). The miRNA microarray analysis of the cell line with upregulated PGI(2) revealed a significant upregulation (711, 148b, and 744) and downregulation of miRNAs of interest, which were reversed by antagonists of the IP and PPARγ receptors. Furthermore, we also found that the insulin-mediated lipid deposition was inhibited in the PGI(2)-upregulated adipocytes. The study also initiated a discussion that suggested that the endogenous PGI(2) inhibition of lipid deposition in adipocytes could involve miRNA-mediated inhibition of expression of the targeted genes. This indicated that PGI(2)-miRNA regulation could exist in broad pathophysiological processes involving PGI(2) (i.e., apoptosis, vascular inflammation, cancer, embryo implantation, and obesity).  相似文献   

11.
Tyrosine kinase with immunoglobulin and epidermal growth factor homology domains 2 (TIE2), the receptor for angiopoietins, has been found highly expressed in cervical cancer and associated with poor prognosis. However, the potential role of tumoral TIE2 in cervical cancer angiogenesis and the underlying mechanisms remain unexplored. Here, based on multicolor immunofluorescence of 64 cervical cancer tissues, we found that TIE2 level in cervical cancer cells was positively related to shorter survival and higher microvessel density in tumor. In vitro and in vivo experiments verified that TIE2-high cervical cancer cells could promote tumor angiogenesis. TIE2-high tumor cells induced an amplified expression of TIE2 and vascular endothelial growth factor receptor 2(VEGFR2) in HUVECs to promote angiogenesis via TIE2 -AKT/MAPK signals, which could be reversed or partially reversed by TIE2, AKT or MAPK inhibitors and activated by angiopoietin-1 and angiopoietin-2. In conclusion, TIE2-high cervical cancer cells promote tumor angiogenesis by upregulating TIE2 and VEGFR2 in endothelial cells via TIE2-AKT/MAPK axis inside tumor cells.  相似文献   

12.
The p21-activated kinase 3 (PAK3) and the serum and glucocorticoid-induced kinase 2 (SGK2) have been previously proposed as essential kinases for human papillomavirus positive (HPV+) cervical cancer cell survival. This was established using a shRNA knockdown approach. To validate PAK3 and SGK2 as potential targets for HPV+ cervical cancer therapy, the relationship between shRNA-induced phenotypes in HPV+ cervical cancer cells and PAK3 or SGK2 knockdown was carefully examined. We observed that the phenotypes of HPV+ cervical cancer cells induced by various PAK3 and SGK2 shRNAs could not be rescued by complement expression of respective cDNA constructs. A knockdown-deficient PAK3 shRNA with a single mismatch was sufficient to inhibit HeLa cell growth to a similar extent as wild-type PAK3 shRNA. The HPV+ cervical cancer cells were also susceptible to several non-human target shRNAs. The discrepancy between PAK3 and SGK2 shRNA-induced apoptosis and gene expression knockdown, as well as cell death stimulation, suggested that these shRNAs killed HeLa cells through different pathways that may not be target-specific. These data demonstrated that HPV+ cervical cancer cell death was not associated with RNAi-induced PAK3 and SGK2 knockdown but likely through off-target effects.  相似文献   

13.
Recent evidence has suggested that AMPK activators may be applied as therapeutic drugs in suppressing cancer cell growth. However, the molecular mechanism of their suppressive function in cancer cells is still unclear. Here we show that AMPK activators impair cervical cancer cell growth through the reduction of DVL3, a positive regulator in Wnt/β-catenin signaling and an oncogenic player in cervical cancer tumorigenesis. By western blot and immunohistochemical analyses, we demonstrated that DVL3 was frequently upregulated and significantly associated with elevated β-catenin (P = 0.009) and CyclinD1 (P = 0.009) expressions in cervical cancer. Enforced expression of DVL3 elevated β-catenin and augmented cervical cancer cell growth, verifying that DVL3-mediated Wnt/β-catenin activation is involved in cervical cancer oncogenesis. On the other aspect, we noted that the cervical cancer cell growth was remarkably suppressed by AMPK activators and such cell growth inhibition was in concomitant with the reduction of DVL3 protein level in dose- and time-dependent manners. Besides, impaired mTOR signaling activity also reduced DVL3 expression. In contrast, co-treatment with Compound C (AMPK inhibitor) could significantly abrogate metformin induced DVL3 reduction. In addition, co-treatment with AM114 or MG132 (proteosomal inhibitors) could partially restore DVL3 expression under the treatment of metformin. Further in vivo ubiquitination assay revealed that metformin could reduce DVL3 by ubiquitin/proteasomal degradation. To our knowledge, this is the first report showing the probable molecular mechanisms of that the AMPK activators suppress cervical cancer cell growth by impairing DVL3 protein synthesis via AMPK/mTOR signaling and/or partially promoting the proteasomal degradation of DVL3.  相似文献   

14.
In the course of screening to find a plant material decreasing the activity of triacylglycerol and cholesterol, we identified Tripterygium regelii (TR). The methanol extract of TR leaves (TR-LM) was shown to reduce the intracellular lipid contents consisting of triacylglycerol (TG) and cholesterol in HepG2 cells. TR-LM also downregulated the mRNA and protein expression of the lipogenic genes such as SREBP-1 and its target enzymes. Consequently, TR-LM reduced the TG biosynthesis in HepG2 cells. In addition, TR-LM decreased SREBP2 and its target enzyme HMG-CoA reductase, which is involved in cholesterol synthesis. In this study, we evaluated that TR-LM attenuated cellular lipid contents through the suppression of de novo TG and cholesterol biosynthesis in HepG2 cells. All these taken together, TR-LM could be beneficial in regulating lipid metabolism and useful preventing the hyperlipidemia and its complications, in that liver is a crucial tissue for the secretion of serum lipids.  相似文献   

15.
Diacylglycerol kinase ζ (DGKZ) is a diacylglycerol kinase that metabolizes diacylglycerol to yield phosphatidic acid, and its function in breast cancer progression remains unclear. In this study, via screening of a CRISPR-Cas9 knockout library containing lipid metabolic genes, DGKZ was identified as a potential prometastatic gene. We first confirmed that high DGKZ expression correlated with tumor progression and poor prognosis in patients. Next, knockout of DGKZ in triple-negative breast cancer cell lines were found to significantly inhibit metastatic behaviors in vitro and in vivo, whereas its overexpression increased the metastatic potential of cell lines. Mechanistic studies based on RNA sequencing and bioinformatic analysis indicated that DGKZ might regulate cell metastasis by promoting epithelial–mesenchymal transition via the transforming growth factor β (TGFβ) signaling pathway. Furthermore, we found that overexpression of DGKZ activated the TGFβ/TGFβR2/Smad3 signaling pathway by inhibiting the degradation of TGFβR2 through suppression of caveolin/lipid raft-dependent endocytosis. Moreover, the caveolin/lipid raft-dependent endocytosis of TGFβR2 was regulated by the metabolite phosphatidic acid, which might alter TGFβR2 partitioning in lipid rafts and nonlipid rafts by affecting the fluidity of the plasma membrane. These findings suggested that DGKZ is a novel promoter of metastasis and that it could be a potential prognostic indicator in patients with triple-negative breast cancer.Subject terms: Breast cancer, Cell migration  相似文献   

16.
Cervical cancer is a common gynecologic cancer and a frequent cause of death. In this study, we investigated the role of MELK (maternal embryonic leucine zipper kinase) in cervical cancer. We found that HPV 18 E6/E7 promoted MELK expression by activating E2F1. MELK knockdown blocked cancer cells growth. Furthermore, we used MELK-8A to inhibit the kinase activity of MELK and caused the G2/M phase arrest of cancer cells. Under the treatment of inhibitors, Hela cells formed multipolar spindles and eventually underwent apoptosis. We also found that MELK is involved in protein translation and folding during cell division through the MELK interactome and the temporal proteomic analysis under inhibition with MELK-8A. Altogether, these results suggest that MELK may play a vital role in cancer cell proliferation and indicate a potential therapeutic target for cervical cancer.  相似文献   

17.
Lipid droplet formation, which is driven by triglyceride synthesis, requires several droplet-associated proteins. We identified ARAP2 (an ADP-ribosylation factor 6 GTPase-activating protein) in the lipid droplet proteome of NIH-3T3 cells and showed that knockdown of ARAP2 resulted in decreased lipid droplet formation and triglyceride synthesis. We also showed that ARAP2 knockdown did not affect fatty acid uptake but reduced basal glucose uptake, total levels of the glucose transporter GLUT1, and GLUT1 levels in the plasma membrane and the lipid micro-domain fraction (a specialized plasma membrane domain enriched in sphingolipids). Microarray analysis showed that ARAP2 knockdown altered expression of genes involved in sphingolipid metabolism. Because sphingolipids are known to play a key role in cell signaling, we performed lipidomics to further investigate the relationship between ARAP2 and sphingolipids and potentially identify a link with glucose uptake. We found that ARAP2 knockdown increased glucosylceramide and lactosylceramide levels without affecting ceramide levels, and thus speculated that the rate-limiting enzyme in glycosphingolipid synthesis, namely glucosylceramide synthase (GCS), could be modified by ARAP2. In agreement with our hypothesis, we showed that the activity of GCS was increased by ARAP2 knockdown and reduced by ARAP2 overexpression. Furthermore, pharmacological inhibition of GCS resulted in increases in basal glucose uptake, total GLUT1 levels, triglyceride biosynthesis from glucose, and lipid droplet formation, indicating that the effects of GCS inhibition are the opposite to those resulting from ARAP2 knockdown. Taken together, our data suggest that ARAP2 promotes lipid droplet formation by modifying sphingolipid metabolism through GCS.  相似文献   

18.
19.
《Cellular signalling》2014,26(11):2397-2405
The metabolic activity in cancer cells primarily rely on aerobic glycolysis. Besides glycolysis, some tumor cells also exhibit excessive addition to glutamine, which constitutes an advantage for tumor growth. M2-type pyruvate kinase (PKM2) plays a pivotal role in sustaining aerobic glycolysis, pentose phosphate pathway and serine synthesis pathway. However, the participation of PKM2 in glutaminolysis is little to be known. Here we demonstrated that PKM2 depletion could provoke glutamine metabolism by enhancing the β-catenin signaling pathway and consequently promoting its downstream c-Myc-mediated glutamine metabolism in colon cancer cells. Treatment with 2-deoxy-d-glucose (2-DG), a glycolytic inhibitor, got consistent results with the above. In addition, the dimeric form of PKM2, which lacks the pyruvate kinase activities, plays a critical role in regulating β-catenin. Moreover, we found that overexpression of PKM2 negatively regulated β-catenin through miR-200a. These insights supply evidence that glutaminolysis plays a compensatory role for cell survival upon glucose metabolism impaired.  相似文献   

20.
It has been found that deep-sea water was associated with lower serum lipid in animal model studies. Herein, we investigated whether DSW exerted a hypolipidemic activity and further elucidated how DSW modulated lipid metabolism in HepG2 cells. Preliminary animal studies showed that DSW exhibited potency to decrease serum total cholesterol, triglycerides, and LDL cholesterol, and increase HDL cholesterol, and the hepatic lipid contents were also significantly lower in the DSW group. When DSW was added to HepG2 cells, it decreased the lipid contents of hepatocyte through the activation of AMP-activated protein kinase, thus inhibiting the synthesis of cholesterol and fatty acid. Besides, LDL receptor was upregulated by activation of sterol regulatory element-binding protein-2. In addition, the levels of apolipoprotein AI and cholesterol 7-alpha-hydroxylase were also raised. Our investigation provided mechanisms by which DSW modulated lipid metabolism and indicated that DSW was worthy of further investigation and could be developed as functional drinking water in the prevention and treatment of hypolipidemic and other lifestyle-related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号