首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Liang Xia  Wenzhu Zhang 《Biomarkers》2013,18(7):700-711
Abstract

Background: Promoter methylation of tumour suppressor genes (TSGs) CDKN2A, CDKN2B and CDH13 has been reported in ovarian cancer. However, the clinicopathological characteristics and prognostic role of CDKN2A, CDKN2B and CDH13 promoter methylation in ovarian carcinoma remained unclear.

Methods: The pooled odds ratio (OR) or hazard ratios (HRs) with their 95% confidence intervals (95% CIs) were calculated in this meta-analysis. The Cancer Genome Atlas data were obtained to confirm the role of CDKN2A, CDKN2B and CDH13 methylation in ovarian cancer.

Results: CDKN2A, CDKN2B and CDH13 promoter methylation was higher in ovarian cancer than in normal ovarian tissues. CDH13 promoter methylation was correlated with tumour histology (serous vs. non-serous type: OR?=?0.33, p?=?0.031). CDKN2A promoter methylation was not linked to overall survival (OS), but it was correlated with a poor prognosis in progression-free survival (HR?=?1.55, p?=?0.004). TCGA data showed no correlation between CDKN2A, CDKN2B and CDH13 methylation and OS as well as disease-free survival (DFS).

Conclusions: CDKN2A, CDKN2B and CDH13 promoter methylation may correlate with the increased risk of ovarian cancer. CDKN2A promoter methylation may be an independent prognostic biomarker for predicting progression-free survival.  相似文献   

2.
Yolk-sac tumours (YSTs), a germ cell tumour subtype, occur in newborns and infants as well as in young adults of age 14-44 years. In clinics, adult patients with YSTs face a poor prognosis, as these tumours are often therapy-resistant and count for many germ cell tumour related deaths. So far, the molecular and (epi)genetic mechanisms that control development of YST are far from being understood. We deciphered the molecular and (epi)genetic mechanisms regulating YST formation by meta-analysing high-throughput data of gene and microRNA expression, DNA methylation and mutational burden. We validated our findings by qRT-PCR and immunohistochemical analyses of paediatric and adult YSTs. On a molecular level, paediatric and adult YSTs were nearly indistinguishable, but were considerably different from embryonal carcinomas, the stem cell precursor of YSTs. We identified FOXA2 as a putative key driver of YST formation, subsequently inducing AFP, GPC3, APOA1/APOB, ALB and GATA3/4/6 expression. In YSTs, WNT-, BMP- and MAPK signalling-related genes were up-regulated, while pluripotency- and (primordial) germ cell-associated genes were down-regulated. Expression of FOXA2 and related key factors seems to be regulated by DNA methylation, histone methylation / acetylation and microRNAs. Additionally, our results highlight FOXA2 as a promising new biomarker for paediatric and adult YSTs.  相似文献   

3.
It is crucial to understand the differences across papillary thyroid cancer (PTC) stages, so as to provide a basis for individualized treatments. Here, comprehensive function characterization of PTC stage-related genes was performed and a new prognostic signature was developed for advanced patients. Two gene modules were confirmed to be closely associated with PTC stages and further six hub genes were identified that yield excellent diagnostic efficiency between tumour and normal tissues. Genetic alteration analysis indicates that they are much conservative since mutations in the DNA of them rarely occur, but changes of DNA methylation on these six genes show that 12 DNA methylation sites are significantly associated with their corresponding genes' expression. Validation data set testing also suggests that these six stage-related hub genes would be probably potential biomarkers for marking four stages. Subsequently, a 21-mRNA-based prognostic risk model was constructed for PTC stage III/IV patients and it could effectively predict the survival of patients with strong prognostic ability. Functional analysis shows that differential expression genes between high- and low-risk patients would promote the progress of PTC to some extent. Moreover, tumour microenvironment (TME) of high-risk patients may be more conducive to tumour growth by ESTIMATE analysis.  相似文献   

4.
5.
The involvement of epigenetic alterations in the pathogenesis of melanoma is increasingly recognized. Here, we performed genome‐wide DNA methylation analysis of primary cutaneous melanoma and benign melanocytic nevus interrogating 14 495 genes using BeadChip technology. This genome‐wide view of promoter methylation in primary cutaneous melanoma revealed an array of recurrent DNA methylation alterations with potential diagnostic applications. Among 106 frequently hypermethylated genes, there were many novel methylation targets and tumor suppressor genes. Highly recurrent methylation of the HOXA9, MAPK13, CDH11, PLEKHG6, PPP1R3C, and CLDN11 genes was established. Promoter methylation of MAPK13, encoding p38δ, was present in 67% of primary and 85% of metastatic melanomas. Restoration of MAPK13 expression in melanoma cells exhibiting epigenetic silencing of this gene reduced proliferation, indicative of tumor suppressive functions. This study demonstrates that DNA methylation alterations are widespread in melanoma and suggests that epigenetic silencing of MAPK13 contributes to melanoma progression.  相似文献   

6.
Colorectal cancer (CRC) is one of the most common tumors worldwide and is associated with high mortality. Here we performed bioinformatics analysis, which we validated using immunohistochemistry in order to search for hub genes that might serve as biomarkers or therapeutic targets in CRC. Based on data from The Cancer Genome Atlas (TCGA), we identified 4832 genes differentially expressed between CRC and normal samples (1562 up-regulated and 3270 down-regulated in CRC). Gene ontology (GO) analysis showed that up-regulated genes were enriched mainly in organelle fission, cell cycle regulation, and DNA replication; down-regulated genes were enriched primarily in the regulation of ion transmembrane transport and ion homeostasis. Weighted gene co-expression network analysis (WGCNA) identified eight gene modules that were associated with clinical characteristics of CRC patients, including brown and blue modules that were associated with cancer onset. Analysis of the latter two hub modules revealed the following six hub genes: adhesion G protein-coupled receptor B3 (BAI3, also known as ADGRB3), cyclin F (CCNF), cytoskeleton-associated protein 2 like (CKAP2L), diaphanous-related formin 3 (DIAPH3), oxysterol binding protein-like 3 (OSBPL3), and RERG-like protein (RERGL). Expression levels of these hub genes were associated with prognosis, based on Kaplan–Meier survival analysis of data from the Gene Expression Profiling Interactive Analysis database. Immunohistochemistry of CRC tumor tissues confirmed that OSBPL3 is up-regulated in CRC. Our findings suggest that CCNF, DIAPH3, OSBPL3, and RERGL may be useful as therapeutic targets against CRC. BAI3 and CKAP2L may be novel biomarkers of the disease.  相似文献   

7.
《Epigenetics》2013,8(7):987-997
Aberrant DNA methylation is a feature of human cancer affecting gene expression and tumor phenotype. Here, we quantified promoter methylation of candidate genes and global methylation in 44 small intestinal-neuroendocrine tumors (SI-NETs) from 33 patients by pyrosequencing. Findings were compared with gene expression, patient outcome and known tumor copy number alterations. Promoter methylation was observed for WIF1, RASSF1A, CTNNB1, CXCL14, NKX2–3, P16, LAMA1, and CDH1. By contrast APC, CDH3, HIC1, P14, SMAD2, and SMAD4 only had low levels of methylation. WIF1 methylation was significantly increased (P = 0.001) and WIF1 expression was reduced in SI-NETs vs. normal references (P = 0.003). WIF1, NKX2–3, and CXCL14 expression was reduced in metastases vs. primary tumors (P < 0.02). Low expression of RASSF1A and P16 were associated with poor overall survival (P = 0.045 and P = 0.011, respectively). Global methylation determined by pyrosequencing of LINE1 repeats was reduced in tumors vs. normal references, and was associated with loss in chromosome 18. The tumors fell into three clusters with enrichment of WIF1 methylation and LINE1 hypomethylation in Cluster I and RASSF1A and CTNNB1 methylation and loss in 16q in Cluster II. In Cluster III, these alterations were low-abundant and NKX2-3 methylation was low. Similar analyses in the SI-NET cell lines HC45 and CNDT2 showed methylation for CDH1 and WIF1 and/or P16, CXCL14, NKX2-3, LAMA1, and CTNNB1. Treatment with the demethylating agent 5-azacytidine reduced DNA methylation and increased expression of these genes in vitro. In conclusion, promoter methylation of tumor suppressor genes is associated with suppressed gene expression and DNA copy number alterations in SI-NETs, and may be restored in vitro.  相似文献   

8.
目的 耐辐射奇球菌是一种对紫外线、电离、干燥和化学试剂具有较强抗性的极端微生物。然而,该菌在紫外辐照后恢复早期的分子响应还不完全清楚。本文的目的是揭示耐辐射奇球菌在这一阶段的转录组响应。方法 本研究采用RNA-seq技术,测定了正常和紫外辐照培养条件下耐辐射奇球菌的转录组。为确定关键的差异表达基因及其调控关系,进行了功能富集分析。选取部分关键差异表达基因,进行实时定量PCR实验验证。利用以往研究中的转录组数据,寻找紫外辐照、电离辐射和干燥胁迫条件下公共的差异表达基因。构建了蛋白质-蛋白质相互作用网络;对蛋白质互作网络中的枢纽基因和主要模块进行了鉴定;对这些枢纽基因和模块进行了功能富集分析。结果 紫外辐照后的恢复早期,上调基因数量是下调基因数量的2倍以上,且多数与应激反应和DNA修复有关。恢复早期的修复途径主要有单链退火(SSA)途径(涉及基因:ddr A-D)、非同源端连接(NHEJ)途径(涉及基因:lig B、ppr A)和核苷酸切除修复(NER)途径(涉及基因:uvr A-C),前两种途径为同源重组(HR)做准备,而NER途径去除紫外线照射带来的嘧啶二聚体。通过比较紫外辐照、电离辐...  相似文献   

9.

Background

Patient-derived tumour xenografts are an attractive model for preclinical testing of anti-cancer drugs. Insights into tumour biology and biomarkers predictive of responses to chemotherapeutic drugs can also be gained from investigating xenograft models. As a first step towards examining the equivalence of epigenetic profiles between xenografts and primary tumours in paediatric leukaemia, we performed genome-scale DNA methylation and gene expression profiling on a panel of 10 paediatric B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) tumours that were stratified by prednisolone response.

Results

We found high correlations in DNA methylation and gene expression profiles between matching primary and xenograft tumour samples with Pearson’s correlation coefficients ranging between 0.85 and 0.98. In order to demonstrate the potential utility of epigenetic analyses in BCP-ALL xenografts, we identified DNA methylation biomarkers that correlated with prednisolone responsiveness of the original tumour samples. Differential methylation of CAPS2, ARHGAP21, ARX and HOXB6 were confirmed by locus specific analysis. We identified 20 genes showing an inverse relationship between DNA methylation and gene expression in association with prednisolone response. Pathway analysis of these genes implicated apoptosis, cell signalling and cell structure networks in prednisolone responsiveness.

Conclusions

The findings of this study confirm the stability of epigenetic and gene expression profiles of paediatric BCP-ALL propagated in mouse xenograft models. Further, our preliminary investigation of prednisolone sensitivity highlights the utility of mouse xenograft models for preclinical development of novel drug regimens with parallel investigation of underlying gene expression and epigenetic responses associated with novel drug responses.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-416) contains supplementary material, which is available to authorized users.  相似文献   

10.
11.
12.
Multiplex methylation-sensitive PCR was employed in studying the methylation of CpG islands in the RB1, p16/CDKN2A, p15/CDKN2B, p14/ARF, CDH1, HIC1, and N33 5 regions in non-small cell lung cancer (51 tumors). Methylation was observed for the two suppressor genes involved in controlling the cell cycle through the Cdk–Rb–E2F signaling pathway, RB1 (10/51, 19%) and p16 (20/51, 39%). The highest methylation frequencies were established for CDH1 (72%) and HIC1 (82%). The CpG islands of p14 and p15 proved to be nonmethylated. At least one gene was methylated in 90% (46/51) tumors and no gene, in 10% (5/51) tumors. In addition, the genes were tested for methylation in peripheral blood lymphocytes of healthy subjects. Methylation frequency significantly differed between tumors and normal cells in the case of RB1, p16, CDH1, HIC1, and N33. Gene methylation frequency was tested for association with histological type of the tumor and stage of tumor progression. Methylation index of a panel of tumor suppressor genes was established for groups of tumors varying in clinical and morphological parameters.  相似文献   

13.

Introduction

Inappropriate DNA methylation is frequently associated with human tumour development, and in specific cases, is associated with clinical outcomes. Previous reports of DNA methylation in low/intermediate grade non-muscle invasive bladder cancer (NMIBC) have suggested that specific patterns of DNA methylation may have a role as diagnostic or prognostic biomarkers. In view of the aggressive and clinically unpredictable nature of high-grade (HG) NMIBC, and the current shortage of the preferred treatment option (Bacillus:Calmette-Guerin), novel methylation analyses may similarly reveal biomarkers of disease outcome that could risk-stratify patients and guide clinical management at initial diagnosis.

Methods

Promoter-associated CpG island methylation was determined in primary tumour tissue of 36 initial presentation high-grade NMIBCs, 12 low/intermediate-grade NMIBCs and 3 normal bladder controls. The genes HOXA9, ISL1, NKX6-2, SPAG6, ZIC1 and ZNF154 were selected for investigation on the basis of previous reports and/or prognostic utility in low/intermediate-grade NMIBC. Methylation was determined by Pyrosequencing of sodium-bisulphite converted DNA, and then correlated with gene expression using RT-qPCR. Methylation was additionally correlated with tumour behaviour, including tumour recurrence and progression to muscle invasive bladder cancer or metastases.

Results

The ISL1 genes’ promoter-associated island was more frequently methylated in recurrent and progressive high-grade tumours than their non-recurrent counterparts (60.0% vs. 18.2%, p = 0.008). ISL1 and HOXA9 showed significantly higher mean methylation in recurrent and progressive tumours compared to non-recurrent tumours (43.3% vs. 20.9%, p = 0.016 and 34.5% vs 17.6%, p = 0.017, respectively). Concurrent ISL1/HOXA9 methylation in HG-NMIBC reliably predicted tumour recurrence and progression within one year (Positive Predictive Value 91.7%), and was associated with disease-specific mortality (DSM).

Conclusions

In this study we report methylation differences and similarities between clinical sub-types of high-grade NMIBC. We report the potential ability of methylation biomarkers, at initial diagnosis, to predict tumour recurrence and progression within one year of diagnosis. We found that specific biomarkers reliably predict disease outcome and therefore may help guide patient treatment despite the unpredictable clinical course and heterogeneity of high-grade NMIBC. Further investigation is required, including validation in a larger patient cohort, to confirm the clinical utility of methylation biomarkers in high-grade NMIBC.  相似文献   

14.
15.
Ovarian cancer (OC) is the most lethal gynaecological malignancy, characterized by high recurrence and mortality. However, the mechanisms of its pathogenesis remain largely unknown, hindering the investigation of the functional roles. This study sought to identify key hub genes that may serve as biomarkers correlated with prognosis. Here, we conduct an integrated analysis using the weighted gene co-expression network analysis (WGCNA) to explore the clinically significant gene sets and identify candidate hub genes associated with OC clinical phenotypes. The gene expression profiles were obtained from the MERAV database. Validations of candidate hub genes were performed with RNASeqV2 data and the corresponding clinical information available from The Cancer Genome Atlas (TCGA) database. In addition, we examined the candidate genes in ovarian cancer cells. Totally, 19 modules were identified and 26 hub genes were extracted from the most significant module (R2 = .53) in clinical stages. Through the validation of TCGA data, we found that five hub genes (COL1A1, DCN, LUM, POSTN and THBS2) predicted poor prognosis. Receiver operating characteristic (ROC) curves demonstrated that these five genes exhibited diagnostic efficiency for early-stage and advanced-stage cancer. The protein expression of these five genes in tumour tissues was significantly higher than that in normal tissues. Besides, the expression of COL1A1 was associated with the TAX resistance of tumours and could be affected by the autophagy level in OC cell line. In conclusion, our findings identified five genes could serve as biomarkers related to the prognosis of OC and may be helpful for revealing pathogenic mechanism and developing further research.  相似文献   

16.
《Epigenetics》2013,8(9):1220-1227
Silencing of tumor suppressor genes (TSGs) by DNA promoter hypermethylation is an early event in carcinogenesis and a potential target for personalized cancer treatment. In head and neck cancer, little is known about the role of promoter hypermethylation in survival. Using methylation specific multiplex ligation-dependent probe amplification (MS-MLPA) we investigated the role of promoter hypermethylation of 24 well-described genes (some of which are classic TSGs), which are frequently methylated in different cancer types, in 166 HPV-negative early oral squamous cell carcinomas (OSCC), and 51 HPV-negative early oropharyngeal squamous cell carcinomas (OPSCC) in relation to clinicopathological features and survival. Early OSCC showed frequent promoter hypermethylation in RARB (31% of cases), CHFR (20%), CDH13 (13%), DAPK1 (12%), and APC (10%). More hypermethylation (≥ 2 genes) independently correlated with improved disease specific survival (hazard ratio 0.17, P = 0.014) in early OSCC and could therefore be used as prognostic biomarker. Early OPSCCs showed more hypermethylation of CDH13 (58%), TP73 (14%), and total hypermethylated genes. Hypermethylation of two or more genes has a significantly different effect on survival in OPSCC compared with OSCC, with a trend toward worse instead of better survival. This could have a biological explanation, which deserves further investigation and could possibly lead to more stratified treatment in the future.  相似文献   

17.
Breast cancer accounts for nearly half of all cancer-related deaths in women worldwide. However, the molecular mechanisms that lead to tumour development and progression remain poorly understood and there is a need to identify candidate genes associated with primary and metastatic breast cancer progression and prognosis. In this study, candidate genes associated with prognosis of primary and metastatic breast cancer were explored through a novel bioinformatics approach. Primary and metastatic breast cancer tissues and adjacent normal breast tissues were evaluated to identify biomarkers characteristic of primary and metastatic breast cancer. The Cancer Genome Atlas-breast invasive carcinoma (TCGA-BRCA) dataset (ID: HS-01619) was downloaded using the mRNASeq platform. Genevestigator 8.3.2 was used to analyse TCGA-BRCA gene expression profiles between the sample groups and identify the differentially-expressed genes (DEGs) in each group. For each group, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were used to determine the function of DEGs. Networks of protein–protein interactions were constructed to identify the top hub genes with the highest degree of interaction. Additionally, the top hub genes were validated based on overall survival and immunohistochemistry using The Human Protein Atlas. Of the top 20 hub genes identified, four (KRT14, KIT, RAD51, and TTK) were considered as prognostic risk factors based on overall survival. KRT14 and KIT expression levels were upregulated while those of RAD51 and TTK were downregulated in patients with breast cancer. The four proposed candidate hub genes might aid in further understanding the molecular changes that distinguish primary breast tumours from metastatic tumours as well as help in developing novel therapeutics. Furthermore, they may serve as effective prognostic risk markers based on the strong correlation between their expression and patient overall survival.  相似文献   

18.
Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2). A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site) per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC) of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97–1.00, p-value = 0.003). Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated.  相似文献   

19.
《Epigenetics》2013,8(11):1258-1267
Tumors are capable of shedding DNA into the blood stream. This shed DNA may be recovered from serum or plasma. The objective of this study was to evaluate whether pyrosequencing promoter DNA in a panel of 12 breast cancer-related genes (APC, BRCA1, CCND2, CDH1, ESR1, GSTP1, HIN1, P16, RARβ, RASSF1, SFRP1 and TWIST) to measure the degree of methylation would lead to a useful serum-based marker of breast cancer. Serum was obtained from women who were about to undergo a breast biopsy or mastectomy at three hospitals from 1977 to 1987 in Grand Rapids, MI USA. We compared the methylation status of 12 genes in serum DNA obtained from three groups of postmenopausal women (mean age at blood collection: 63.0 y; SD 9.9; range 35–91): breast cancer cases with lymph node-positive disease (n = 241); breast cancer cases with lymph node-negative disease (n = 63); and benign breast disease control subjects (n = 234). Overall, median levels of promoter methylation were low, typically below 5%, for all genes in all study groups. For all genes, median levels of methylation were higher (by 3.3 to 47.6%) in lymph node-positive breast cancer cases than in the controls. Comparing mean methylation level between lymph-node positive cases and controls, the most statistically significant findings, after adjustment of the false-positive rate (q-value), were for TWIST (p = 0.04), SFRP1 (p = 0.16), ESR1 (p = 0.17), P16 (p = 0.19) and APC (p = 0.19). For two of these four genes (TWIST, P16), the median methylation level was also highest in lymph-node positive cases, intermediate in lymph node-negative cases and lowest in the controls. The percent of study subjects with mean methylation scores ≥ 5% was higher among lymph node-positive cases than controls for ten genes, and significantly higher for HIN1 and TWIST (22.0 vs. 12.2%, p = 0.04 and 37.9 vs. 24.5%, p = 0.004, respectively). Despite relatively consistent variation in methylation patterns among groups, these modest differences did not provide sufficient ability to distinguish between cases and controls in a clinical setting.  相似文献   

20.
Zhang  Fan  Lu  Chenfei  Qi  Shuai  Dai  Silan 《Journal of Plant Growth Regulation》2022,41(3):1316-1330

DNA methylation is an important epigenetic modification, that is involved in the regulation of gene expression and cell differentiation, and plays an important regulatory role in flower development in higher plants. There are two types of florets on the capitulum in the genus Chrysanthemum, the flower symmetry factor CYCLOIDEA (CYC) 2-like genes may be important candidate genes for determining the identity of the two types of florets. In this study, the diploid plant Chrysanthemum lavandulifolium was used as the research material, and qRT-PCR and bisulfite sequencing polymerase chain reaction (BSP) were used to identify the expression and DNA methylation pattern of CYC2-like genes in the two types of florets. Gene expression analysis showed that the six ClCYC2-like genes were significantly different in the two types of florets, and the expression levels of ClCYC2c, ClCYC2d, ClCYC2e and ClCYC2f in the ray florets were significantly higher than those in the disc florets. For the DNA methylation analysis of the three genes ClCYC2c, ClCYC2d, and ClCYC2e, it was found that the DNA methylation levels of these three genes were negative correlated with their expression levels, and the ways in which the three genes were regulated by the DNA methylation were different. It is speculated that the different DNA methylation of ClCYC2-like genes in the two types of florets may affect the differentiation and development of the two types of florets. This study provides new clues about epigenetics for the analysis of capitulum formation in Asteraceae.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号