首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
N6-methyladenosine (m6A) is a well-known modification of RNA. However, as a key m6A methyltransferase, METTL16 has not been thoroughly studied in gastric cancer (GC). Here, the biological role of METTL16 in GC and its underlying mechanism was studied. Immunohistochemistry was used to detect the expression of METTL16 and relationship between METTL16 level and prognosis of GC was analysed. CCK8, colony formation assay, EdU assay and xenograft mouse model were used to study the effect of METTL16. Regulatory mechanism of METTL16 in the progression of GC was studied through flow cytometry analysis, RNA degradation assay, methyltransferase inhibition assay, RT-qPCR and Western blotting. METTL16 was highly expressed in GC cells and tissues and was associated with prognosis. In vitro and in vivo experiments confirmed that METTL16 promoted proliferation of GC cells and tumour growth. Furthermore, down-regulation of METTL16 inhibited proliferation by G1/S blocking. Significantly, we identified cyclin D1 as a downstream effector of METTL16. Knock-down METTL16 decreased the overall level of m6A and the stability of cyclin D1 mRNA in GC cells. Meanwhile, inhibition of methyltransferase activity reduced the level of cyclin D1. METTL16-mediated m6A methylation promotes proliferation of GC cells through enhancing cyclin D1 expression.  相似文献   

2.
3.
In the brain, glucose is transported by GLUT1 across the blood-brain barrier and into astrocytes, and by GLUT3 into neurons. In the present study, the expression of GLUT1 and GLUT3 mRNA and protein was determined in adult neural stem cells cultured from the subventricular zone of rats. Both mRNAs and proteins were coexpressed, GLUT1 protein being 5-fold higher than GLUT3. Stress induced by hypoxia and/or hyperglycemia increased the expression of GLUT1 and GLUT3 mRNA and of GLUT3 protein. It is concluded that adult neural stem cells can transport glucose by GLUT1 and GLUT3 and can regulate their glucose transporter densities.  相似文献   

4.
The human epithelial mucin MUC1 is a heavily glycosylated transmembrane protein that is overexpressed and aberrantly glycosylated on over 90% of human breast cancers. The altered glycosylation of MUC1 reveals an immunodominant peptide along its tandem repeat (TR) that has been used as a target for tumour immunotherapy. In this study, we used the MUC1 TR peptide as a test antigen to determine whether a plant-expressed human tumour-associated antigen can be successfully expressed in a plant system and whether it will be able to break self-antigen tolerance in a MUC1-tolerant mouse model. We report the expression of MUC1 TR peptide fused to the mucosal-targeting Escherichia coli enterotoxin B subunit (LTB-MUC1) in a plant host. Utilizing a rapid viral replicon transient expression system, we obtained high yields of LTB-MUC1. Importantly, the LTB-MUC1 fusion protein displayed post-translational modifications that affected its antigenicity. Glycan analysis revealed that LTB-MUC1 was glycosylated and a MUC1-specific monoclonal antibody detected only the glycosylated forms. A thorough saccharide analysis revealed that the glycans are tri-arabinans linked to hydroxyprolines within the MUC1 tandem repeat sequence. We immunized MUC1-tolerant mice (MUC1.Tg) with transiently expressed LTB-MUC1, and observed production of anti-MUC1 serum antibodies, indicating breach of tolerance. The results indicate that a plant-derived human tumour-associated antigen is equivalent to the human antigen in the context of immune recognition.  相似文献   

5.
Glucose levels and type 2 diabetes (T2D) are both associated with tumorigenesis and epithelial‐mesenchymal transitions (EMTs). EMTs facilitate bladder cancer (BC) metastasis development, but the mechanism by which high‐glucose levels promote these EMTs in BC remains unclear. Therefore, we sought to elucidate the mechanism underlying EMT promotion due to increased glucose levels. T24 and UMUC‐3 cells were cultured in media containing different glucose concentrations. YAP1, TAZ, GLUT1 and EMT‐associated marker expression was analysed via Western blotting and qPCR. BC cell proliferation and invasion were assessed using MTT and Transwell assays, respectively. A xenograft nude mouse model of diabetes was used to evaluate tumour growth and metastasis in vivo. T2D was positively associated with pathologic grade (P = .016) and TNM stage (P < .001) in BC. High glucose triggered BC cell proliferation and invasion in both in vitro and in vivo conditions. High‐glucose levels also promoted EMTs in BC cells and increased YAP1 and TAZ expression. YAP1 or TAZ knockdown altered EMT marker expression and decreased GLUT1 expression. Overall, our results suggest that high‐glucose levels promote EMTs in BC cells via YAP1 and TAZ regulation. These effector molecules may be promising therapeutic targets for BC cases comorbid with T2D.  相似文献   

6.
7.
Glucose dysregulation is strongly correlated with cancer development, and cancer is prevalent in patients with Type 2 diabetes (T2D). We aimed to elucidate the mechanism underlying autophagy in response to glucose dysregulation in human bladder cancer (BC). 220 BC patients were included in this retrospective study. The expression of YAP1, TAZ and AMPK, EMT-associated markers, and autophagy marker proteins was analysed by immunohistochemistry, western blotting, and quantitative real-time PCR (qPCR). Further, T24 and UMUC-3 BC cells were cultured in media with different glucose concentrations, and the expression of YAP1, TAZ, AMPK and EMT-associated markers, and autophagy marker proteins was analysed by western blotting and qPCR. Autophagy was observed by immunofluorescence and electron microscopy. BC cell viability was tested using MTT assays. A xenograft nude mouse model of diabetes was used to evaluate tumour growth, metastasis and survival. A poorer pathologic grade and tumour-node-metastasis stage were observed in patients with BC with comorbid T2D than in others with BC. YAP1 and TAZ were upregulated in BC samples from patients with T2D. Mechanistically, high glucose (HG) promoted BC progression both in vitro and in vivo and inhibited autophagy. Specifically, various autophagy marker proteins and AMPK were negatively regulated under HG conditions and correlated with YAP1 and TAZ expression. These results demonstrate that HG inhibits autophagy and promotes cancer development in BC. YAP1/TAZ/AMPK signalling plays a crucial role in regulating glucose dysregulation during autophagy. Targeting these effectors exhibits therapeutic significance and can serve as prognostic markers in BC patients with T2D.  相似文献   

8.
9.
This study was performed to investigate the role of galectin-1 (Gal-1) in epithelial ovarian cancer (EOC) progression and chemoresistance. Tissue samples from patients with EOC were used to examine the correlation between Gal-1 expression and clinical stage of EOC. The role of Gal-1 in EOC progression and chemoresistance was evaluated in vitro by siRNA-mediated knockdown of Gal-1 or lentivirus-mediated overexpression of Gal-1 in EOC cell lines. To elucidate the molecular mechanisms underlying Gal-1-mediated tumor progression and chemoresistance, the expression and activities of some signaling molecules associated with Gal-1 were analyzed. We found overexpression of Gal-1 in advanced stages of EOC. Knockdown of endogenous Gal-1 in EOC cells resulted in the reduction in cell growth, migration, and invasion in vitro, which may be caused by Gal-1''s interaction with H-Ras and activation of the Raf/extracellular signal-regulated kinase (ERK) pathway. Additionally, matrix metalloproteinase-9 (MMP-9) and c-Jun were downregulated in Gal-1-knockdown cells. Notably, Gal-1 overexpression could significantly decrease the sensitivities of EOC cells to cisplatin, which might be ascribed to Gal-1-induced activation of the H-Ras/Raf/ERK pathway and upregulation of p21 and Bcl-2. Taken together, the results suggest that Gal-1 contributes to both tumorigenesis and cisplatin resistance in EOC. Thus, Gal-1 is a potential therapeutic target for EOC.  相似文献   

10.
11.
MiR-1204 has been recently identified as an oncogenic miRNA in breast cancer. Our study aims to investigate the role of miR-1204 in ovarian squamous cell carcinoma. Expression of miR-1204 and glucose transporter 1 in ovarian biopsies and plasma of both OC patients and healthy controls was detected by qRT-PCR. Correlations between patients’ clinicopathological data were analyzed by Chi-square test. MiR-1204 overexpression OC cell lines were established. Expression of GLUT-1 protein was detected by western blot. Glucose uptake was measured by glucose uptake assay. Cell proliferation was detected by CCK-8 assay. We found that miR-1204 expression was significantly correlated with tumor size. Expression levels of miR-1204 and GLUT-1 were significantly high in OC patients. Expression levels of miR-1204 were positively correlated with expression levels of GLUT-1 in OC patients. MiR-1204 overexpression significantly promoted GLUT-1 expression, glucose uptake and cell proliferation. MiR-1204 may promote ovarian squamous cell carcinoma growth by increasing glucose uptake.  相似文献   

12.
《Cell host & microbe》2022,30(4):530-544.e6
  1. Download : Download high-res image (159KB)
  2. Download : Download full-size image
  相似文献   

13.
Proliferation and metastasis are significantly malignant characteristics of human lung cancer, but the underlying molecular mechanisms are poorly understood. Chromobox 4 (CBX4), a member of the Polycomb group (PcG) family of epigenetic regulatory factors, enhances cellular proliferation and promotes cancer cell migration. However, the effect of CBX4 in the progression of lung cancer is not fully understood. We found that CBX4 is highly expressed in lung tumours compared with adjacent normal tissues. Overexpression of CBX4 significantly promotes cell proliferation and migration in human lung cancer cell lines. The knockdown of CBX4 obviously suppresses the cell growth and migration of human lung cancer cells in vitro. Also, the proliferation and metastasis in vivo are blocked by CBX4 knockdown. Furthermore, CBX4 knockdown effectively arrests cell cycle at the G0/G1 phase through suppressing the expression of CDK2 and Cyclin E and decreases the formation of filopodia through suppressing MMP2, MMP9 and CXCR4. Additionally, CBX4 promotes proliferation and metastasis via regulating the expression of BMI‐1 which is a significant regulator of proliferation and migration in lung cancer cells. Taken together, these data suggest that CBX4 is not only a novel prognostic marker but also may be a potential therapeutic target in lung cancer.  相似文献   

14.
One hallmark of renal cell carcinoma (RCC) is metabolic reprogramming, which involves elevation of glycolysis and upregulation of lipid metabolism. However, the mechanism of metabolic reprogramming is incompletely understood. Monocarboxylate transporter 1 (MCT1) promotes transport for lactate and pyruvate, which are crucial for cell metabolism. The aim of present study was to investigate the function of MCT1 on RCC development and its mechanism on metabolic reprogramming. The results showed that MCT1 messenger RNA and protein levels significantly increased in cancer tissues of ccRCC compared to normal tissue. MCT1 was further found to mainly located in the cell membrane of RCC. The knockdown of MCT1 by RNAi significantly inhibited proliferation and migration of 786-O and ACHN cells. MCT1 also induced the expressions of proliferation marker Ki-67 and invasion marker SNAI1. Moreover, we also showed that acetate treatment could upregulate the expression of MCT1, but not other MCT isoforms. On the other hand, MCT1 was involved in acetate transport and intracellular histone acetylation. In summary, this study revealed that MCT1 is abnormally high in ccRCC and promotes cancer development. The regulatory effect of MCT1 on cell proliferation and invasion maybe mediated by acetate transport.  相似文献   

15.
Long intergenic noncoding RNAs (lincRNAs) play a vital role in the occurrence and progression of cancer. The mechanism of lincRNAs in colorectal cancer (CRC) has not been fully elucidated. In this context, an integrated comparative long noncoding RNA (lncRNA) microarray technology was used to determine the expression profile of lncRNAs in CRC. The roles of LINC00908 are unclear. We found that LINC00908 was significantly upregulated in CRC. Inhibition of LINC00908 resulted in reduced cell proliferation and G1 cell cycle arrest, which was mediated by cyclin D1, cyclin‐dependent kinase 4, and phosphorylated retinoblastoma. Moreover, inhibition of LINC00908‐induced apoptosis through the intrinsic apoptosis signaling pathway, as shown by the activation of caspase‐9 and caspase‐3. Mechanistically, miR‐143‐3p directly bound to LINC00908. miR‐143‐3p expression was negatively correlated with LINC00908 expression in CRC tissue. Functional experiments revealed opposing roles for miR‐143‐3p and LINC00908, suggesting that LINC00908 negatively regulates miR‐143‐3p. Mechanistically, miR‐143‐3p directly targets LINC00908. The KLF5 inhibitor ML264 affected proliferation and apoptosis, indicating that LINC00908 may act as a competing endogenous RNA to facilitate the expression of the miR‐143‐3p target gene KLF5. Thus, LINC00908 has an important proliferative and antiapoptotic role in CRC by regulating the cell cycle and intrinsic apoptosis. LINC00908 could be a potential biomarker and a new therapeutic target for CRC.  相似文献   

16.
17.
18.
The G-protein-coupled estrogen receptor 1 (GPER) has recently been reported to mediate the non-genomic action of estrogen in different types of cells and tissues. G-1 (1-[4-(6-bromobenzo[1,3] dioxol-5yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]-ethanone) was developed as a potent and selective agonist for GPER. G-1 has been shown to induce the expression of genes and activate pathways that facilitate cancer cell proliferation by activating GPER. Here we demonstrate that G-1 has an anticancer potential with a mechanism similar to vinca alkaloids, the commonly used chemotherapy drugs. We found that G-1 blocks tubulin polymerization and thereby interrupts microtubule assembly in ovarian cancer cells leading to the arrest of cell cycle in the prophase of mitosis and the suppression of ovarian cancer cell proliferation. G-1 treatment also induces apoptosis of ovarian cancer cells. The ability of G-1 to target microtubules to suppress ovarian cancer cell proliferation makes it a promising candidate drug for treatment of ovarian cancer.  相似文献   

19.
20.
Emerging studies have revealed the critical role of long non-coding RNAs (lncRNAs) in epithelial ovarian cancer (EOC) development and progression. Till now, the roles and potential mechanisms regarding FEZF1 antisense RNA 1 (FEZF1-AS1) within ovarian cancer (OC) remain unclear. The objective of this study was to uncover the biological function and the underlying mechanism of LncRNA FEZF1-AS1 in OC progression. FEZF1-AS1 expression levels were studied in cell lines and tissues of human ovarian cancer. In vitro studies were performed to evaluate the impact of FEZF1-AS1 knock-down on the proliferation, invasion, migration and apoptosis of OC cells. Interactions of FEZF1-AS1 and its target genes were identified by luciferase reporter assays. Our data showed overexpression of FEZF1-AS1 in OC cell lines and tissues. Cell migration, proliferation, invasion, wound healing and colony formation were suppressed by silencing of FEZF1-AS1. In contrast, cell apoptosis was promoted by FEZF1-AS1 knock-down in vitro. Furthermore, online bioinformatics analysis and tools suggested that FEZF1-AS1 directly bound to miR-130a-5p and suppressed its expression. Moreover, the inhibitory effects of miR-130a-5p on the OC cell growth were reversed by FEZF1-AS1 overexpression, which was associated with the increase in SOX4 expression. In conclusion, our results revealed that FEZF1-AS1 promoted the metastasis and proliferation of OC cells by targeting miR-130a-5p and its downstream SOX4 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号