首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
稻绿核菌(稻曲病菌)分离方法的比较研究   总被引:1,自引:1,他引:1  
作者对不同情况下稻曲病菌的分离方法进行了比较研究。结果表明成熟早期稻曲球上的绝大多数新鲜的厚垣孢子具有萌发能力,及时进行分离培养是病原菌成功分离的关键。随保存时间的延长,厚垣孢子萌发能力急剧下降;消毒处理可杀死大部分的厚垣孢子。菌核可长期保存并保持极高的萌发生长能力,是稻曲病菌分离最为理想的材料。稻曲球中部的致密菌丝组织分离难度较大,只能作为稻曲病菌分离的一种补救方法。  相似文献   

2.
Villosiclava virens (Vv) is an ascomycete fungal pathogen that causes false smut disease in rice. Recent reports have revealed some interesting aspects of the enigmatic pathogen to address the question of why it specifically infects rice flowers and converts a grain into a false smut ball. Comparative and functional genomics have suggested specific adaptation of Vv in the colonization of rice flowers. Anatomical studies have disclosed that Vv specifically infects rice stamen filaments before heading and intercepts seed formation. In addition, Vv can occupy the whole inner space of a spikelet embracing all floral organs and activate the rice grain‐filling network, presumably for nutrient acquisition to support the development of the false smut ball. This profile provides a general overview of the rice false smut pathogen, and summarizes advances in the Vv life cycle, genomics and genetics, and the molecular Vv–rice interaction. Current understandings of the Vv–rice pathosystem indicate that it is a unique and interesting system which can enrich the study of plant–pathogen interactions. Taxonomy: Ustilaginoidea virens is the anamorph form of the pathogen (Kingdom Fungi; Phylum Ascomycota; Class Ascomycetes; Subclass Incertae sedis; Order Incertae sedis; Family Incertae sedis; Genus Ustilaginoidea). The teleomorph form is Villosiclava virens (Kingdom Fungi; Phylum Ascomycota; Class Ascomycetes; Subclass Sordariomycetes; Order Hypocreales; Family Clavicipitaceae; Genus Villosiclava). Disease symptoms: The only visible symptom is the replacement of rice grains by ball‐shaped fungal mycelia, namely false smut balls. When maturing, the false smut ball is covered with powdery chlamydospores, and the colour changes to yellowish, yellowish orange, green, olive green and, finally, to greenish black. Sclerotia are often formed on the false smut balls in autumn. Identification and detection: Vv conidia are round to elliptical, measuring 3–5 μm in diameter. Chlamydospores are ornamented with prominent irregularly curved spines, which are 200–500 nm in length. The sclerotia are black, horseshoe‐shaped and irregular oblong or flat, ranging from 2 to 20 mm. Nested polymerase chain reaction (PCR) and quantitative PCR have been developed to specifically detect Vv presence in rice tissues and other biotic and abiotic samples in fields. Host range: Rice is the primary host for Vv. Natural infection by Vv has been found on several paddy field weeds, including Digitaria marginata, Panicum trypheron, Echinochloa crusgalli and Imperata cylindrica. However, the occurrence of infection in these potential alternative hosts is very rare. Life cycle: Vv infects rice spikelets at the late rice booting stage, and produces false smut balls covered with dark‐green chlamydospores. Occasionally, sclerotia form on the surface of false smut balls in late autumn when the temperature fluctuates greatly between day and night. Both chlamydospores and sclerotia may serve as primary infection sources. Rainfall at the rice booting stage is a major environmental factor resulting in epidemics of rice false smut disease. Disease control: The use of fungicides is the major approach for the control of Vv. Several fungicides, such as cuproxat SC, copper oxychloride, tebuconazole, propiconazole, difenoconazole and validamycin, are often applied. However, the employment of resistant rice cultivars and genes has been limited, because of the poor understanding of rice resistance to Vv. Useful websites: Villosiclava virens genome sequence: http://www.ncbi.nlm.nih.gov/Traces/wgs/?val=JHTR01#contigs  相似文献   

3.
4.
本文对不同培养条件下稻曲病菌菌落及稻曲球的微结构进行了扫描电镜比较研究。在PS培养液里进行液体培养时,稻曲病菌很少产生分生孢子和厚垣孢子,只有培养后期漂浮在培养液表面的菌落可以产生大量的厚垣孢子。病原菌在进行PSA固体培养时,大部分菌株在培养后期产生大量的成堆分布的厚垣孢子,少部分菌株在菌落上产生散生的厚垣孢子。说明暴露于空气有助于稻曲病菌产生厚垣孢子。在煮熟的带壳谷粒上稻曲病菌的生长明显比在去壳上的要慢得多。微结构分析表明,稻曲球表面是一层密集的厚垣孢子,菌丝与稻粒的胚乳层界限分明,大部分稻曲球中部有大块的发育良好的胚乳,并充满密集的淀粉粒。说明稻曲病菌可能在开花灌浆后开始侵染,而且至少后期是腐生的。  相似文献   

5.
稻曲球及稻曲病菌菌落微结构的SEM观察   总被引:6,自引:0,他引:6  
本文对不同培养条件下稻曲病菌菌落及稻曲球的微结构进行了扫描电镜比较研究。在PS培养液里进行液体培养时,稻曲病菌很少产生分生孢子和厚垣孢子,只有培养后期漂浮在培养液表面的菌落可以产生大量的厚垣孢子。病原菌在进行PSA固体培养时,大部分菌株在培养后期产生大量的成堆分布的厚垣孢子,少部分菌株在菌落上产生散生的厚垣孢子。说明暴露于空气有助于稻曲病菌产生厚垣孢子。在煮熟的带壳谷粒上稻曲病菌的生长明显比在去壳上的要慢得多。微结构分析表明,稻曲球表面是一层密集的厚垣孢子,菌丝与稻粒的胚乳层界限分明,大部分稻曲球中部有大块的发育良好的胚乳,并充满密集的淀粉粒。说明稻曲病菌可能在开花灌浆后开始侵染,而且至少后期是腐生的。  相似文献   

6.
Y.-L. Zhou    Y.-J. Pan    X.-W. Xie    L.-H. Zhu    J.-L. Xu    S. Wang    Z.-K. Li 《Journal of Phytopathology》2008,156(9):559-564
Rice false smut caused by Ustilaginoidea virens is an important constraint affecting rice yield and quality in Asia. In China, rice false smut is especially severe in the japonica rice-growing areas in the North China. Nothing is known neither about the diversity of the pathogen in this region nor about the characteristic of its local population. In this study, 110 U. virens isolates sampled from Liaoning and Beijing of North China were analysed using amplified fragment length polymorphism (AFLP) markers to primarily understand the genetic diversity of this pathogen and its population characteristics. At the genetic distance of 0.32, all isolates were divided into two groups. Group A consists of two subgroups differentiated at the genetic distance of 0.55, subgroup 1 included all isolates from Liaoning with an average genetic similarity over 0.82 and subgroup 2 included 27 isolates from Beijing with similarity of 0.74. Group B consists of 28 isolates from Beijing having a diversity of 0.054. The isolates from the Liaoning province, where rice false smut has generated different take-all epidemic for 20 years, showed a genetic diversity of 0.305, which was approximately equally distributed within and among populations. Whereas genetic diversity was 0.458 among isolates from Beijing, an extremely high level of genetic differentiation among 55 isolates was observed in this disease hotspot. Our results suggested that the populations among different locations where sexual stage of the pathogen was rare to be found within ecological region were similar, and the variation of this pathogen has mainly arisen via asexual mechanisms. The migration through human activities in breeding perhaps provides a means of transporting the pathogen from one region to another.  相似文献   

7.
8.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号