首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic kidney disease (CKD) has a high prevalence worldwide. Renal fibrosis is the common pathological feature in various types of CKD. However, the underlying mechanisms are not determined. Here, we adopted different CKD mouse models and cultured human proximal tubular cell line (HKC-8) to examine the expression of C-X-C motif chemokine receptor 4 (CXCR4) and β-catenin signalling, as well as their relationship in renal fibrosis. In CKD mice and humans with a variety of nephropathies, CXCR4 was dramatically up-regulated in tubules, with a concomitant activation of β-catenin. CXCR4 expression level was positively correlated with the expression of β-catenin target MMP-7. AMD3100, a CXCR4 receptor blocker, and gene knockdown of CXCR4 significantly inhibited the activation of JAK/STAT and β-catenin signalling, protected against tubular injury and renal fibrosis. CXCR4-induced renal fibrosis was inhibited by treatment with ICG-001, an inhibitor of β-catenin signalling. In HKC-8 cells, overexpression of CXCR4 induced activation of β-catenin and deteriorated cell injury. These effects were inhibited by ICG-001. Stromal cell–derived factor (SDF)-1α, the ligand of CXCR4, stimulated the activation of JAK2/STAT3 and JAK3/STAT6 signalling in HKC-8 cells. Overexpression of STAT3 or STAT6 decreased the abundance of GSK3β mRNA. Silencing of STAT3 or STAT6 significantly blocked SDF-1α-induced activation of β-catenin and fibrotic lesions. These results uncover a novel mechanistic linkage between CXCR4 and β-catenin activation in renal fibrosis in association with JAK/STAT/GSK3β pathway. Our studies also suggest that targeted inhibition of CXCR4 may provide better therapeutic effects on renal fibrosis by inhibiting multiple downstream signalling cascades.  相似文献   

2.
Renal fibrosis is the common pathological feature in a variety of chronic kidney diseases. Aging is highly associated with the progression of renal fibrosis. Among several determinants, mitochondrial dysfunction plays an important role in aging. However, the underlying mechanisms of mitochondrial dysfunction in age‐related renal fibrosis are not elucidated. Herein, we found that Wnt/β‐catenin signaling and renin–angiotensin system (RAS) activity were upregulated in aging kidneys. Concomitantly, mitochondrial mass and functions were impaired with aging. Ectopic expression of Klotho, an antagonist of endogenous Wnt/β‐catenin activity, abolished renal fibrosis in d ‐galactose (d ‐gal)‐induced accelerated aging mouse model and significantly protected renal mitochondrial functions by preserving mass and diminishing the production of reactive oxygen species. In an established aging mouse model, dickkopf 1, a more specific Wnt inhibitor, and the mitochondria‐targeted antioxidant mitoquinone restored mitochondrial mass and attenuated tubular senescence and renal fibrosis. In a human proximal tubular cell line (HKC‐8), ectopic expression of Wnt1 decreased biogenesis and induced dysfunction of mitochondria, and triggered cellular senescence. Moreover, d ‐gal triggered the transduction of Wnt/β‐catenin signaling, which further activated angiotensin type 1 receptor (AT1), and then decreased the mitochondrial mass and increased cellular senescence in HKC‐8 cells and primary cultured renal tubular cells. These effects were inhibited by AT1 blocker of losartan. These results suggest inhibition of Wnt/β‐catenin signaling and the RAS could slow the onset of age‐related mitochondrial dysfunction and renal fibrosis. Taken together, our results indicate that Wnt/β‐catenin/RAS signaling mediates age‐related renal fibrosis and is associated with mitochondrial dysfunction.  相似文献   

3.
Fibrosis is a common pathological phenomenon in progressive kidney disease leading to eventual loss of kidney function. Previous studies demonstrated that CDC20 plays a role in cancers by regulating epithelial-mesenchymal transition (EMT) and the infiltration of fibroblasts, suggesting the potential of CDC20 in regulating fibrotic response. However, the role of CDC20 in renal fibrosis is yet unclear. Herein, we reported that renal CDC20 was remarkably upregulated in renal tubular epithelial cells and fibroblasts in chronic kidney disease (CKD) patients, which was in line with a positive correlation with the severity of kidney fibrosis. In mice with unilateral urinary obstruction, CDC20 was also strikingly enhanced, and treatment with Apcin, an inhibitor of CDC20, ameliorated kidney fibrosis. Consistently, the pharmacological inhibition of CDC20 in mouse proximal tubular epithelial cells and rat fibroblasts attenuated TGF-β1-induced fibrotic responses, while overexpression of CDC20 aggravated such responses. Additional studies revealed that CDC20 induces nuclear translocation of β-catenin, which in turn initiates and promotes the pathological process of fibrosis in CKD. Thus, enhanced CDC20 in renal tubular cells and fibroblasts promotes renal fibrosis by activating β-catenin, and CDC20 inhibition may serve as a promising strategy for the prevention and treatment of renal fibrosis.  相似文献   

4.
Upregulated gene 11 (URG11), recently identified as a new HBx-upregulated gene that may activate β-catenin and Wnt signaling, was found to be upregulated in a human tubule cell line under low oxygen. Here, we investigated the potential role of URG11 in hypoxia-induced renal tubular epithelial-to-mesenchymal (EMT). Overexpression of URG11 in a human proximal tubule cell line (HK2) promoted a mesenchymal phenotype accompanied by reduced expression of the epithelial marker E-cadherin and increased expression of the mesenchymal markers vimentin and α-SMA, while URG11 knockdown by siRNA effectively reversed hypoxia-induced EMT. URG11 promoted the expression of β-catenin and increased its nuclear accumulation under normoxic conditions through transactivation of the β-catenin promoter. This in turn upregulated β-catenin/T-cell factor (TCF) and its downstream effector genes, vimentin, and α-SMA. In vivo, strong expression of URG11 was observed in the tubular epithelia of 5/6-nephrectomized rats, and a Western blot analysis demonstrated a close correlation between HIF-1α and URG11 protein levels. Altogether, our results indicate that URG11 mediates hypoxia-induced EMT through the suppression of E-cadherin and the activation of the β-catenin/TCF pathway.  相似文献   

5.
The intestinal barrier dysfunction is crucial for the development of liver fibrosis but can be disturbed by intestinal chronic inflammation characterized with cyclooxygenase-2 (COX-2) expression. This study focused on the unknown mechanism by which COX-2 regulates intestinal epithelial homeostasis in liver fibrosis. The animal models of liver fibrosis induced with TAA were established in rats and in intestinal epithelial–specific COX-2 knockout mice. The impacts of COX-2 on intestinal epithelial homeostasis via suppressing β-catenin signalling pathway were verified pharmacologically and genetically in vivo. A similar assumption was tested in Ls174T cells with goblet cell phenotype in vitro. Firstly, disruption of intestinal epithelial homeostasis in cirrhotic rats was ameliorated by celecoxib, a selective COX-2 inhibitor. Then, β-catenin signalling pathway in cirrhotic rats was associated with the activation of COX-2. Furthermore, intestinal epithelial–specific COX-2 knockout could suppress β-catenin signalling pathway and restore the disruption of ileal epithelial homeostasis in cirrhotic mice. Moreover, the effect of COX-2/PGE2 was dependent on the β-catenin signalling pathway in Ls174T cells. Therefore, inhibition of COX-2 may enhance intestinal epithelial homeostasis via suppression of the β-catenin signalling pathway in liver fibrosis.  相似文献   

6.
Wnt/β-catenin signalling plays a key role in the homeostasis of the intestinal epithelium. Whereas its role in the maintenance of the stem cell compartment has been clearly demonstrated, its role in the Paneth cell fate remains unclear. We performed genetic studies to elucidate the functions of the Wnt/β-catenin pathway in Paneth cell differentiation. We analysed mice with inducible gain-of-function mutations in the Wnt/β-catenin pathway and mice with a hypomorphic β-catenin allele that have not been previously described. We demonstrated that acute activation of Wnt/β-catenin signalling induces de novo specification of Paneth cells in both the small intestine and colon and that colon cancers resulting from Apc mutations expressed many genes involved in Paneth cell differentiation. This suggests a key role for the Wnt/β-catenin pathway in Paneth cell differentiation. We also showed that a slight decrease in β-catenin gene dosage induced a major defect in Paneth cell differentiation, but only a modest effect on crypt morphogenesis. Overall, our findings show that a high level of β-catenin activation is required to determine Paneth cell fate and that fine tuning of β-catenin signalling is critical for correct Paneth cell lineage.  相似文献   

7.
To determine whether Bmi-1 deficiency could lead to renal tubulointerstitial injury by mitochondrial dysfunction and increased oxidative stress in the kidney, 3-week-old Bmi-1-/- mice were treated with the antioxidant N-acetylcysteine (NAC, 1 mg mL−1) in their drinking water, or pyrro-quinoline quinone (PQQ, 4 mg kg−1 diet) in their diet for 2 weeks, and their renal phenotypes were compared with vehicle-treated Bmi1-/- and wild-type mice. Bmi-1 was knocked down in human renal proximal tubular epithelial (HK2) cells which were treated with 1 mm NAC for 72 or 96 h, and their phenotypes were compared with control cells. Five-week-old vehicle-treated Bmi-1-/- mice displayed renal interstitial fibrosis, tubular atrophy, and severe renal function impairment with decreased renal cell proliferation, increased renal cell apoptosis and senescence, and inflammatory cell infiltration. Impaired mitochondrial structure, decreased mitochondrial numbers, and increased oxidative stress occurred in Bmi-1-/- mice; subsequently, this caused DNA damage, the activation of TGF-β1/Smad signaling, and the imbalance between extracellular matrix synthesis and degradation. Oxidative stress-induced epithelial-to-mesenchymal transition of renal tubular epithelial cells was enhanced in Bmi-1 knocked down HK2 cells. All phenotypic alterations caused by Bmi-1 deficiency were ameliorated by antioxidant treatment. These findings indicate that Bmi-1 plays a critical role in protection from renal tubulointerstitial injury by maintaining redox balance and will be a novel therapeutic target for preventing renal tubulointerstitial injury.  相似文献   

8.
9.
Chronic kidney disease pathogenesis involves both tubular and vascular injuries. Despite abundant investigations to identify the risk factors, the involvement of chronic endothelial dysfunction in developing nephropathies is insufficiently explored. Previously, soluble thrombomodulin (sTM), a cofactor in the activation of protein C, has been shown to protect endothelial function in models of acute kidney injury. In this study, the role for sTM in treating chronic kidney disease was explored by employing a mouse model of chronic vascular activation using endothelial-specific TNF-α-expressing (tie2-TNF) mice. Analysis of kidneys from these mice after 3 mo showed no apparent phenotype, whereas 6-mo-old mice demonstrated infiltration of CD45-positive leukocytes accompanied by upregulated gene expression of inflammatory chemokines, markers of kidney injury, and albuminuria. Intervention with murine sTM with biweekly subcutaneous injections during this window of disease development between months 3 and 6 prevented the development of kidney pathology. To better understand the mechanisms of these findings, we determined whether sTM could also prevent chronic endothelial cell activation in vitro. Indeed, treatment with sTM normalized increased chemokines, adhesion molecule expression, and reduced transmigration of monocytes in continuously activated TNF-expressing endothelial cells. Our results suggest that vascular inflammation associated with vulnerable endothelium can contribute to loss in renal function as suggested by the tie2-TNF mice, a unique model for studying the role of vascular activation and inflammation in chronic kidney disease. Furthermore, the ability to restore the endothelial balance by exogenous administration of sTM via downregulation of specific adhesion molecules and chemokines suggests a potential for therapeutic intervention in kidney disease associated with chronic inflammation.  相似文献   

10.
Zinc (Zn), as an essential trace element, has been approved to serve many roles in diabetic studies. Also Zn deficiency will aggravate renal damage in diabetes through suppression of nuclear factor-erythroid 2-related factor 2 (Nrf2) expression and function. The purpose of this study was to illustrate the role of Zn in renal apoptosis in diabetes and whether Nrf2 participated in the process. Type 2 diabetes mice model was induced by a single dose of streptozotocin (STZ) injection after high-fat diet (HFD) feeding for 3 months, then the mice were given diets supplemented with different concentrations of Zn (control, 30 ppm; low-concentration, 0.85 ppm). After 12-week treatment, morphology and associated protein expressions were examined. The results showed that low Zn diet significantly aggravated the level of renal apoptosis during diabetes, performed as the upregulation of caspase-3 expression. In addition, either low Zn diet or diabetes or both dramatically decreased the expression of Nrf2 and P-AKT in kidney. Moreover, the expression of β-catenin in kidney was increased markedly in diabetic groups. Mechanistic study applying human renal tubular epithelial cells (HK11) confirmed the role of Nrf2, as silencing Nrf2 expression abolished Zn supplementation protection against high sugar + high fat + low Zn-induced apoptosis and downregulation of β-catenin expression. All these results suggest that Nrf2 plays a key role in Zn protection against Type 2 diabetes induced renal apoptosis, which might be through Wnt/β-catenin signaling pathway.  相似文献   

11.
This study aimed to investigate the specific role of Wnt/β-catenin signaling in compression-induced apoptosis, autophagy, and senescence in rat nucleus pulposus (NP) cells. Initially, the cells underwent various periods of exposure to 1.0 MPa compression. Wnt/β-catenin signaling associated molecules were assessed in detail, and then 0, 24 and 48 hours exposure periods were selected. The cells were then divided into control, Wnt/β-catenin inhibitor (IWP-2), Wnt/β-catenin activator (LiCl), and β-catenin overexpression groups. After 0, 24, and 48 hours of compression, apoptosis, autophagy, and senescence were evaluated by Western blot analysis and real-time polymerase chain reaction and were visually observed by Hoechst33258, monodansylcadaverine, and SA-β-gal stainings, respectively. Additionally, the regulatory effect of Wnt/β-catenin signaling on cell morphology, viability, cell cycle, death ratio, and ultrastructure was detected to thoroughly evaluate the survival capacity of NP cells. The results established that compression elicited a time-dependent activation of Wnt/β-catenin signaling. The IWP-2 treatment decreased cell survival rate, which corresponded to downregulation of autophagy as well as increases in apoptosis and senescence. LiCl treatment enabled more efficient of cell survival accompanied by increased autophagy and downregulated apoptosis and senescence; however, in contrast to LiCl, overexpression of β-catenin aggravated compression-induced NP cells death. In conclusion, moderate activation of Wnt/β-catenin signaling enables more efficient of NP cells survival via downregulation of apoptosis, senescence, and upregulation of autophagy, and overactivation of Wnt/β-catenin signaling achieved the opposite effect. Treatment strategies that aim to regulate Wnt/β-catenin signaling might be a novel target for improving compression-induced NP cells death and potential treatment of intervertebral disc degeneration.  相似文献   

12.
13.
14.
MicroRNAs (miRNAs) play important roles in epithelial-to-mesenchymal transition (EMT). Moreover, hyperglycaemia induces damage to renal tubular epithelial cells, which may lead to EMT in diabetic nephropathy. However, the effects of miRNAs on EMT in diabetic nephropathy are poorly understood. In the present study, we found that the level of microRNA-23b (miR-23b) was significantly decreased in high glucose (HG)-induced human kidney proximal tubular epithelial cells (HK2) and in kidney tissues of db/db mice. Overexpression of miR-23b attenuated HG-induced EMT, whereas knockdown of miR-23b induced normal glucose (NG)-mediated EMT in HK2 cells. Mechanistically, miR-23b suppressed EMT in diabetic nephropathy by targeting high mobility group A2 (HMGA2), thereby repressing PI3K-AKT signalling pathway activation. Additionally, HMGA2 knockdown or inhibition of the PI3K-AKT signalling pathway with LY294002 mimicked the effects of miR-23b overexpression on HG-mediated EMT, whereas HMGA2 overexpression or activation of the PI3K-AKT signalling pathway with BpV prevented the effects of miR-23b on HG-mediated EMT. We also confirmed that overexpression of miR-23b alleviated EMT, decreased the expression levels of EMT-related genes, ameliorated renal morphology, glycogen accumulation, fibrotic responses and improved renal functions in db/db mice. Taken together, we showed for the first time that miR-23b acts as a suppressor of EMT in diabetic nephropathy through repressing PI3K-AKT signalling pathway activation by targeting HMGA2, which maybe a potential therapeutic target for diabetes-induced renal dysfunction.  相似文献   

15.
Senescence of vascular endothelial cells is the major risk of vascular dysfunction and disease among elderly people. Parishin, which is a phenolic glucoside derived from Gastrodia elata, significantly prolonged yeast lifespan. However, the action of parishin in vascular ageing remains poorly understood. Here, we treated human coronary artery endothelial cells (HCAEC) and naturally aged mice by parishin. Parishin alleviated HCAEC senescence and general age-related features in vascular tissue in naturally aged mice. Network pharmacology approach was applied to determine the compound-target networks of parishin. Our analysis indicated that parishin had a strong binding affinity for Klotho. Expression of Klotho, a protein of age-related declines, was upregulated by parishin in serum and vascular tissue in naturally aged mice. Furthermore, FoxO1, on Klotho/FoxO1 signalling pathway, was increased in the parishin-intervened group, accompanied by the downregulated phosphorylated FoxO1. Taken together, parishin can increase Klotho expression to alleviate vascular endothelial cell senescence and vascular ageing.  相似文献   

16.
17.
Fractalkine (CX3CL1, FKN), a CX3C gene sequence inflammatory chemokine, has been found to have pro-inflammatory and pro-adhesion effects. Macrophages are immune cells with a critical role in regulating the inflammatory response. The imbalance of M1/M2 macrophage polarization can lead to aggravated inflammation. This study attempts to investigate the mechanisms through which FKN regulates macrophage activation and the acute kidney injury (AKI) involved in inflammatory response induced by lipopolysaccharide (LPS) by using FKN knockout (FKN-KO) mice and cultured macrophages. It was found that FKN and Wnt/β-catenin signalling have a positive interaction in macrophages. FKN overexpression inhibited LPS-induced macrophage apoptosis. However, it enhanced their cell viability and transformed them into the M2 type. The effects of FKN overexpression were accelerated by activation of Wnt/β-catenin signalling. In the in vivo experiments, FKN deficiency suppressed macrophage activation and reduced AKI induced by LPS. Inhibition of Wnt/β-catenin signalling and FKN deficiency further mitigated the pathologic process of AKI. In summary, we provide a novel mechanism underlying activation of macrophages in LPS-induced AKI. Although LPS-induced murine AKI was unable to completely recapitulate human AKI, the positive interactions between FKN and Wnt/β-catenin signalling pathway may be a therapeutic target in the treatment of kidney injury.  相似文献   

18.
Yu Y  Wu J  Wang Y  Zhao T  Ma B  Liu Y  Fang W  Zhu WG  Zhang H 《EMBO reports》2012,13(8):750-758
Kindlin 2, as a focal adhesion protein, controls integrin activation. However, the association of Kindlin 2 with cancer-related signalling pathways is unknown. Here we identified a new direct interaction between Kindlin 2 and the active β-catenin. Importantly, Kindlin 2 forms a tripartite complex with β-catenin and TCF4. Mechanistically, Kindlin 2 selectively strengthens the occupancy of β-catenin on the Wnt target gene Axin2 and enhances Axin2 gene expression. Functionally, the β-catenin-Axin2-Snail cascade is required for Kindlin 2-induced tumour cell invasion. Our data indicate that Kindlin 2 is a new regulator of Wnt signalling, providing a mechanistic insight into the role of Kindlin 2 in cancer progression.  相似文献   

19.
Tubulointerstitial fibrosis is a common pathway of chronic kidney disease (CKD) and is closely related to the progression of CKD. LMCD1, acting as an intermediary, has been reported to play a role in cardiac fibrosis. However, its role in renal fibrosis is yet to be deciphered. Based on the GEO database, we found the expression of LMCD1 is increased in kidney tissues of CKD patients and in human proximal tubular epithelial (HK-2) cells treated with transforming growth factor-β1 (TGF-β1), suggesting that LMCD1 may be involved in tubulointerstitial fibrosis. Herein, we investigated the role of LMCD1 in mice with unilateral ureteral obstruction (UUO) and in TGF-β1-stimulated HK-2 cells. In the UUO model, the expression of LMCD1 was upregulated. UUO-induced renal histopathological changes were mitigated by knockdown of LMCD1. LMCD1 silence alleviated renal interstitial fibrosis in UUO mice by decreasing the expression of TGF-β1, fibronectin, collagen I, and collagen III. LMCD1 deficiency suppressed cell apoptosis in kidney to prevent UUO-triggered renal injury. Furthermore, LMCD1 deficiency blocked the activation of ERK signaling in UUO mice. In vitro, LMCD1 was upregulated in HK-2 cells after TGF-β1 stimulation. LMCD1 silence abrogated TGF-β1-mediated upregulation of fibrotic genes. Treatment of HK-2 cells with ERK-specific inhibitor SCH772984 and agonist TPA validated LMCD1 exerted its function via activating ERK signaling. Together, our findings suggest that inhibition of LMCD1 protects against renal interstitial fibrosis by impeding ERK activation.  相似文献   

20.
Epithelial-to-mesenchymal transition (EMT) contributes to renal fibrosis in chronic kidney disease. Endoplasmic reticulum (ER) stress, a feature of many forms of kidney disease, results from the accumulation of misfolded proteins in the ER and leads to the unfolded protein response (UPR). We hypothesized that ER stress mediates EMT in human renal proximal tubules. ER stress is induced by a variety of stressors differing in their mechanism of action, including tunicamycin, thapsigargin, and the calcineurin inhibitor cyclosporine A. These ER stressors increased the UPR markers GRP78, GRP94, and phospho-eIF2α in human proximal tubular cells. Thapsigargin and cyclosporine A also increased cytosolic Ca(2+) concentration and T cell death-associated gene 51 (TDAG51) expression, whereas tunicamycin did not. Thapsigargin was also shown to increase levels of active transforming growth factor (TGF)-β1 in the media of cultured human proximal tubular cells. Thapsigargin induced cytoskeletal rearrangement, β-catenin nuclear translocation, and α-smooth muscle actin and vinculin expression in proximal tubular cells, indicating an EMT response. Subconfluent primary human proximal tubular cells were induced to undergo EMT by TGF-β1 treatment. In contrast, tunicamycin treatment did not produce an EMT response. Plasmid-mediated overexpression of TDAG51 resulted in cell shape change and β-catenin nuclear translocation. These results allowed us to develop a two-hit model of ER stress-induced EMT, where Ca(2+) dysregulation-mediated TDAG51 upregulation primes the cell for mesenchymal transformation via Wnt signaling and then TGF-β1 activation leads to a complete EMT response. Thus the release of Ca(2+) from ER stores mediates EMT in human proximal tubular epithelium via the induction of TDAG51.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号