首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ionizing radiation increases cell mortality in a dose-dependent manner. Increases in DNA double strand breaks, γ-H2AX, p53 phophorylation, and protein levels of p53 and Bax also occur. We investigated the ability of ciprofloxacin (CIP), a widely prescribed antibiotic, to inhibit DNA damage induced by ionizing radiation. Human tumor TK6, NH32 (p53 ?/? of TK6) cells, and human normal peripheral blood mononuclear cells (PBMCs) were exposed to 2–8 Gy 60Co-γ-photon radiation. γ-H2AX (an indicator of DNA strand breaks), phosphorylated p53 (responsible for cell-cycle arrest), Bcl-2 (an apoptotic protein, and cell death were measured. Ionizing irradiation increased γ-H2AX amounts in TK6 cells (p53+/+) within 1 h in a radiation dose-dependent manner. CIP pretreatment and posttreatment effectively inhibited the increase in γ-H2AX. CIP pretreatment reduced Bcl-2 production but promoted p53 phosphorylation, caspase-3 activation and cell death. In NH32 cells, CIP failed to significantly inhibit the radiation-induced γ-H2AX increase, suggesting that CIP inhibition involves in p53-dependent mechanisms. In normal healthy human PBMCs, CIP failed to block the radiation-induced γ-H2AX increase but effectively increased Bcl-2 production, but blocked the phospho-p53 increase and subsequent cell death. CIP increased Gadd45α, and enhanced p21 protein 24 h postirradiation. Results suggest that CIP exerts its effect in TK6 cells by promoting p53 phosphorylation and inhibiting Bcl-2 production and in PBMCs by inhibiting p53 phosphorylation and increasing Bcl-2 production. Our data are the first to support the view that CIP may be effective to protect normal tissue cells from radiation injury, while enhancing cancer cell death in radiation therapy.  相似文献   

2.
Embryonic stem cells (ESCs) are the progenitors of all adult cells; consequently, genomic abnormalities in them may be catastrophic for the developing organism. ESCs are characterized by high proliferation activity and do not stop in checkpoints upon DNA-damage executing only G2/M delay after DNA damage. ATM and ATR kinases are key sensors of double-strand DNA breaks and activate downstream signaling pathways involving checkpoints, DNA repair, and apoptosis. We examined activation of ATM/ATR signaling in human ESCs and revealed that irradiation induced ATM, ATR, and Chk2 phosphorylation, and γH2AX foci formation and their colocalization with 53BP1 and Rad51 proteins. Interestingly, human ESCs exhibit noninduced γH2AX foci colocalized with Rad51 and marking single-strand DNA breaks. Next, we revealed the significant contribution of ATM, Chk1, and Chk2 kinases to G2/M block after irradiation and ATM-dependent activation (phosphorylation) of p53 in human ESCs. However, p53 activation and subsequent induction of p21 Waf1 gene expression after DNA damage do not result in p21Waf1 protein accumulation due to its proteasomal degradation.  相似文献   

3.
The ATM (ataxia telangiectasia mutated) kinase plays an essential role in maintaining genome integrity by coordinating cell cycle arrest, apoptosis, and DNA damage repair. Phosphorylation of ATM at serine 1981 (ATMpSer1981) by DNA damage activates ATM, which subsequently phosphorylates H2AX Ser139 (gammaH2AX), Chk2 Thr68 (Chk2pThr68), and p53 Ser15 (p53pSer15). To determine the role of the ATM pathway in prostate cancer tumorigenesis, we have analyzed 35 primary prostate cancer specimens for ATMpSer1981 (ATM activation), Chk2pThr68, gammaH2AX, and p53pSer15 by immunohistochemistry (IHC) in normal glands, prostatic intraepithelial neoplasias (PINs), and carcinomas. Increases in the intensities of ATMpSer1981, Chk2pThr68, and gammaH2AX and in the percentage of cells that are positive for ATMpSer1981, Chk2pThr68, or gammaH2AX were observed in PINs (p<0.001) compared to normal prostatic glands and carcinoma. However, this pattern of immunostaining was not seen for p53pSer15. Thus, ATM and Chk2 are specifically activated in PINs. As PINs are generally regarded as precursors of prostatic carcinoma, our results suggest that ATM and Chk2 activation at earlier stages of prostate tumorigenesis suppresses tumor progression, with attenuation of ATM activation leading to cancer progression.  相似文献   

4.
Oxygen beams are high linear energy transfer (LET) radiation characterized by higher relative biological effectiveness than low LET radiation. The aim of the current study was to determine the signaling differences between γ- and oxygen ion-irradiation. Activation of various signaling molecules was looked in A549 lung adenocarcinoma cells irradiated with 2Gy oxygen, 2Gy or 6Gy γ-radiation. Oxygen beam was found to be three times more cytotoxic than γ-radiation. By 4h there was efficient repair of DNA in A549 cells exposed to 2Gy or 6Gy gamma radiation but not in cells exposed to 2Gy oxygen beam as determined by γ-H2AX counting. Number of ATM foci was found to be significantly higher in cells exposed to 2Gy oxygen beam. Percentage of cells showing ATR foci were more with gamma however number of foci per cell were more in case of oxygen beam. Oxygen beam irradiated cells showed phosphorylation of Chk1, Chk2 and p53. Many apoptotic nuclei were seen by DAPI staining in cells exposed to oxygen beam. The noteworthy finding of this study is the activation of the sensor proteins, ATM and ATR by oxygen irradiation and the significant activation of Chk1, Chk2 and p53 only in the oxygen beam irradiated cells.  相似文献   

5.
TRAIL is an endogenous death receptor ligand also used therapeutically because of its selective proapoptotic activity in cancer cells. In the present study, we examined chromatin alterations induced by TRAIL and show that TRAIL induces a rapid activation of DNA damage response (DDR) pathways with histone H2AX, Chk2, ATM, and DNA-PK phosphorylations. Within 1 h of TRAIL exposure, immunofluorescence confocal microscopy revealed γ-H2AX peripheral nuclear staining (γ-H2AX ring) colocalizing with phosphorylated/activated Chk2, ATM, and DNA-PK inside heterochromatin regions. The marginal distribution of DDR proteins in early apoptotic cells is remarkably different from the focal staining seen after DNA damage. TRAIL-induced DDR was suppressed upon caspase inhibition or Bax inactivation, demonstrating that the DDR activated by TRAIL is downstream from the mitochondrial death pathway. H2AX phosphorylation was dependent on DNA-PK, while Chk2 phosphorylation was dependent on both ATM and DNA-PK. Downregulation of Chk2 decreased TRAIL-induced cell detachment; delayed the activation of caspases 2, 3, 8, and 9; and reduced TRAIL-induced cell killing. Together, our findings suggest that nuclear activation of Chk2 by TRAIL acts as a positive feedback loop involving the mitochondrion-dependent activation of caspases, independently of p53.  相似文献   

6.
High expression of Aurora kinase A (Aurora-A) has been found to confer cancer cell radio- and chemoresistance, however, the underlying mechanism is unclear. In this study, by using Aurora-A cDNA/shRNA or the specific inhibitor VX680, we show that Aurora-A upregulates cell proliferation, cell cycle progression, and anchorage-independent growth to enhance cell resistance to cisplatin and X-ray irradiation through dysregulation of DNA damage repair networks. Mechanistic studies showed that Aurora-A promoted the expression of ATM/Chk2, but suppressed the expression of BRCA1/2, ATR/Chk1, p53, pp53 (Ser15), H2AX, γH2AX (Ser319), and RAD51. Aurora-A inhibited the focus formation of γH2AX in response to ionizing irradiation. Treatment of cells overexpressing Aurora-A and ATM/Chk2 with the ATM specific inhibitor KU-55933 increased the cell sensitivity to cisplatin and irradiation through increasing the phosphorylation of p53 at Ser15 and inhibiting the expression of Chk2, γH2AX (Ser319), and RAD51. Further study revealed that BRCA1/2 counteracted the function of Aurora-A to suppress the expression of ATM/Chk2, but to activate the expression of ATR/Chk1, pp53, γH2AX, and RAD51, leading to the enhanced cell sensitivity to irradiation and cisplatin, which was also supported by the results from animal assays. Thus, our data provide strong evidences that Aurora-A and BRCA1/2 inversely control the sensitivity of cancer cells to radio- and chemotherapy through the ATM/Chk2-mediated DNA repair networks, indicating that the DNA repair molecules including ATM/Chk2 may be considered for the targeted therapy against cancers with overexpression of Aurora-A.  相似文献   

7.
We recently showed that histone H2AX phosphorylated on serine 139 (γ-H2AX), a hallmark of DNA damage response (DDR), also forms early during apoptosis induced by death receptor activation. Here, we extend and discuss our findings on apoptotic γ-H2AX, which differs from the well-established DDR with nuclear foci. During apoptosis induced by death receptors agonists (TRAIL and FasL) and staurosporine, γ-H2AX is initiated in the nuclear periphery immediately inside the nuclear envelope while total H2AX remains distributed throughout the nucleus. This process is readily detectable by immunofluorescence microscopy and we refer to it as the “γ-H2AX ring”. It is conserved both in cancer and normal cells. The γ-H2AX ring contains the activated checkpoints kinases, ATM, Chk2 and DNA-PK; the latter being the main effector for the apoptotic γ-H2AX phosphorylation. Notably, we show here that the γ-H2AX ring coincides with phosphorylated H2B on serine 14 (PS14-H2B), another histone modification associated with apoptosis. The coordinated phosphorylations of H2AX and H2B suggest a previously unrecognized histone phosphorylation signature for apoptosis consisting of γ-H2AX together with PS14-H2B and possibly PY142-H2AX. This signature (“phospho-histone 2 code”) together with the γ-H2AX ring provides a new feature to monitor and study apoptosis.  相似文献   

8.
The DNA topoisomerase I (topo1) inhibitor topotecan (TPT) and topo2 inhibitor mitoxantrone (MXT) damage DNA inducing formation of DNA double-strand breaks (DSBs). We have recently examined the kinetics of ATM and Chk2 activation as well as histone H2AX phosphorylation, the reporters of DNA damage, in individual human lung adenocarcinoma A549 cells treated with these drugs. Using a phospho-specific Ab to tumor suppressor protein p53 phosphorylated on Ser15 (p53-Ser15P) combined with an Ab that detects p53 regardless of the phosphorylation status and multiparameter cytometry we correlated the TPT- and MXT- induced p53-Ser15P with ATM and Chk2 activation as well as with H2AX phosphorylation in relation to the cell cycle phase. In untreated interphase cells, p53-Ser15P had "patchy" localization throughout the nucleoplasm while mitotic cells showed strong p53-Ser15P cytoplasmic immunofluorescence (IF). The intense phosphorylation of p53-Ser15, combined with activation of ATM and Chk2 (involving centrioles) as well as phosphorylation of H2AX seen in the untreated mitotic cells, suggest mobilization of the DNA damage detection/repair machinery in controlling cytokinesis. In the nuclei of cells treated with TPT or MXT, the expression of p53-Ser15P appeared as closely packed foci of intense IF. Following TPT treatment, the induction of p53-Ser15P was most pronounced in S-phase cells while no significant cell cycle phase differences were seen in cells treated with MXT. The maximal increase in p53-Ser15P expression, rising up to 2.5-fold above the level of its constitutive expression, was observed in cells treated with TPT or MXT for 4 - 6 h. This maximum expression of p53-Ser15P coincided in time with the peak of Chk2 activation but not with ATM activation and H2AX phosphorylation, both of which crested 1-2 h after the treatment with TPT or MXT. The respective kinetics of p53-Ser15 phosphorylation versus ATM and Chk2 activation suggest that in response to DNA damage by TPT or MXT, Chk2 rather than ATM mediates p53 phosphorylation.  相似文献   

9.
《Free radical research》2013,47(6):728-734
Abstract

p53 plays a major role in apoptosis through activation of pro-apoptotic gene Bax. It also regulates apurinic/apyrimidinic endonuclease (APE) expression in the base excision repair pathway against oxidative DNA damages. This study investigated whether p53-dependent apoptosis is correlated with APE using an experimental rat model of hydronephrosis. Hydronephrosis was induced by partial ligation of the right ureter. Animals were sacrificed on scheduled time after unilateral ureteral obstruction and the expression of 8-OHdG, γ-H2AX, apoptotic proteins and APE was determined. The accumulated p53 activated Bax and caspase-3 7 days after hydronephrosis induction and the resulting high levels of p53-dependent apoptotic proteins and γ-H2AX tended to decrease APE. The intensities of 8-OHdG and caspase-3 immunolocalization significantly increased in obstructed kidneys than in sham-operated kidneys, although APE immunoreactivity increased after hydronephrosis induction. These results suggest that oxidative DNA damages in obstructed kidneys may trigger p53-dependent apoptosis through repression of APE.  相似文献   

10.
Evasion of DNA damage-induced cell death, via mutation of the p53 tumor suppressor or overexpression of prosurvival Bcl-2 family proteins, is a key step toward malignant transformation and therapeutic resistance. We report that depletion or acute inhibition of checkpoint kinase 1 (Chk1) is sufficient to restore gamma-radiation-induced apoptosis in p53 mutant zebrafish embryos. Surprisingly, caspase-3 is not activated prior to DNA fragmentation, in contrast to classical intrinsic or extrinsic apoptosis. Rather, an alternative apoptotic program is engaged that cell autonomously requires atm (ataxia telangiectasia mutated), atr (ATM and Rad3-related) and caspase-2, and is not affected by p53 loss or overexpression of bcl-2/xl. Similarly, Chk1 inhibitor-treated human tumor cells hyperactivate ATM, ATR, and caspase-2 after gamma-radiation and trigger a caspase-2-dependent apoptotic program that bypasses p53 deficiency and excess Bcl-2. The evolutionarily conserved "Chk1-suppressed" pathway defines a novel apoptotic process, whose responsiveness to Chk1 inhibitors and insensitivity to p53 and BCL2 alterations have important implications for cancer therapy.  相似文献   

11.
12.
Neuronal death in the central nervous system contributes to the development of age-related neurodegeneration. The ATR/Chk1 pathway appears to function neuroprotectively to prevent DNA damage induced by cytotoxic agents. Here, we examine the function of Chk1 on cell viability of cortical neurons in the absence of additional DNA damaging stimuli. The Chk1-specific inhibitor, UCN-01, and the ATR inhibitor, Caffeine, cause neuronal apoptosis in differentiated neurons in the absence of additional treatment, whereas inhibition of ATM or Chk2, does not. UCN-01 treatment increased the detection of γ-H2AX phosphorylation, DNA strand breaks, and an activated p53-dependent DNA damage response (DDR), suggesting that Chk1 normally helps to maintain genomic stability. UCN-01 treatment also enhanced the apoptosis seen in neurons treated with DNA damaging agents, such as camptothecin (CPT). Our results indicate that Chk1 is essential for neuronal survival, and perturbation of this pathway increases a cell’s sensitivity to naturally accumulating DNA damage.  相似文献   

13.
Renal ischemia–reperfusion leads to acute kidney injury (AKI) that is characterized pathologically by tubular damage and cell death, followed by tubular repair, atrophy and interstitial fibrosis. Recent work suggested the possible presence of DNA damage response (DDR) in AKI. However, the evidence is sketchy and the role and regulation of DDR in ischemic AKI remain elusive. In this study, we demonstrated the induction of phosphorylation of ATM, H2AX, Chk2 and p53 during renal ischemia–reperfusion in mice, suggesting DDR in kidney tissues. DDR was also induced in vitro during the recovery or “reperfusion” of renal proximal tubular cells (RPTCs) after ATP depletion. DDR in RPTCs was abrogated by supplying glucose to maintain ATP via glycolysis, indicating that the DDR depends on ATP depletion. The DDR was also suppressed by the general caspase inhibitor z-VAD and the overexpression of Bcl-2, supporting a role of apoptosis-associated DNA damage in the DDR. N-acetylcysteine (NAC), an antioxidant, suppressed the phosphorylation of ATM and p53 and, to a less extent, Chk2, but NAC increased the phosphorylation and nuclear foci formation of H2AX. Interestingly, NAC increased apoptosis, which may account for the observed H2AX activation. Ku55933, an ATM inhibitor, blocked ATM phosphorylation and ameliorated the phosphorylation of Chk2 and p53, but it increased H2AX phosphorylation and nuclear foci formation. Ku55933 also increased apoptosis in RPTCs following ATP depletion. The results suggest that DDR occurs during renal ischemia–reperfusion in vivo and ATP-depletion injury in vitro. The DDR is partially induced by apoptosis and oxidative stress-related DNA damage. ATM, as a sensor in the DDR, may play a cytoprotective role against tubular cell injury and death.  相似文献   

14.
Endothelial dysfunction caused by endothelial cells senescence and chronic inflammation is tightly linked to the development of cardiovascular diseases. NLRP3 (NOD-like receptor family pyrin domain-containing3) inflammasome plays a central role in inflammatory response that is associated with diverse inflammatory diseases. This study explores the effects and possible mechanisms of NLRP3 inflammasome in endothelial cells senescence. Results show an increment of pro-inflammatory cytokine interleukin (IL) −1β secretion and caspase-1 activation during the senescence of endothelial cells induced by bleomycin. Moreover, secreted IL-1β promoted endothelial cells senescence through up-regulation of p53/p21 protein expression. NLRP3 inflammasome was found to mediate IL-1β secretion through the production of ROS (reactive oxygen species) during the senescence of endothelial cells. Furthermore, the association of TXNIP (thioredoxin-interacting protein) with NLRP3 induced by ROS promoted NLRP3 inflammasome activation in senescent endothelial cells. In addition, the expressions of NLRP3 inflammasome related genes, ASC (apoptosis associated speck-like protein containing a CARD), TXNIP, cleaved caspase-1 and IL-1β, were also increased in vitro and in vivo studies. These findings indicate that endothelial senescence could be mediated through ROS and NLRP3 inflammasome signaling pathways, suggesting a potential target for the prevention of endothelial senescence-related cardiovascular diseases.  相似文献   

15.
Mouse embryonic stem cells (mESC) are characterized by high proliferation activity. mESC are highly sensitive to genotoxic stresses and do not undergo G1/S checkpoint upon DNA-damage. mESC are supposed to develop sensitive mechanisms to maintain genomic integrity provided by either DNA damage repair or elimination of defected cells by apoptosis. The issue of how mESC recognize the damages and execute DNA repair remains to be studied. We analyzed the kinetics of DNA repair foci marked by antibodies to phosphorylated ATM kinase and histone H2AX (γH2AX). We showed that mESC display non-induced DNA single-strand breaks (SSBs), as revealed by comet-assay, and a noticeable background of γH2AX staining. Exposure of mESC to γ-irradiation induced the accumulation of phosphorylated ATM-kinase in the nucleus as well as the formation of additional γH2AX foci, which disappeared thereafter. To decrease the background of γH2AX staining in control non-irradiated cells, we pre-synchronized mESC at the G2/M by low concentration of nocodazol for a short time (6 h). The cells were then irradiated and stained for γH2AX. Irradiation induced the formation of γH2AX foci both in G2-phase and mitotic cells, which evidenced for the active state of DNA-damage signaling at these stages of the cell cycle in mESC. Due to the G1/S checkpoint is compromised in mESCs, we checked, whether wild-type p53, a target for ATM kinase, was phosphorylated in response to γ-irradiation. The p53 was barely phosphorylated in response to irradiation, which correlated with a very low expression of p53-target p21/Waf1 gene. Thus, in spite of the dysfunction of the p53/Waf1 pathway and the lack of cell cycle checkpoints, the mESC are capable of activating ATM and inducing γH2AX foci formation, which are necessary for the activation of DNA damage response.  相似文献   

16.
PNAS-4, a novel pro-apoptotic gene, was activated during the early response to DNA damage. Our previous study has shown that PNAS-4 induces S phase arrest and apoptosis when overexpressed in A549 lung cancer cells. However, the underlying action mechanism remains far from clear. In this work, we found that PNAS-4 expression in lung tumor tissues is significantly lower than that in adjacent lung tissues; its expression is significantly increased in A549 cells after exposure to cisplatin, methyl methane sulfonate, and mitomycin; and its overexpression induces S phase arrest and apoptosis in A549 (p53 WT), NCI-H460 (p53 WT), H526 (p53 mutation), and Calu-1 (p53−/−) lung cancer cells, leading to proliferation inhibition irrespective of their p53 status. The S phase arrest is associated with up-regulation of p21Waf1/Cip1 and inhibition of the Cdc25A-CDK2-cyclin E/A pathway. Up-regulation of p21Waf1/Cip1 is p53-independent and correlates with activation of ERK. We further showed that the intra-S phase checkpoint, which occurs via DNA-dependent protein kinase-mediated activation of Chk1 and Chk2, is involved in the S phase arrest and apoptosis. Gene silencing of Chk1/2 rescues, whereas that of ATM or ATR does not affect, S phase arrest and apoptosis. Furthermore, human PNAS-4 induces DNA breaks in comet assays and γ-H2AX staining. Intriguingly, caspase-dependent cleavage of Chk1 has an additional role in enhancing apoptosis. Taken together, our findings suggest a novel mechanism by which elevated PNAS-4 first causes DNA-dependent protein kinase-mediated Chk1/2 activation and then results in inhibition of the Cdc25A-CDK2-cyclin E/A pathway, ultimately causing S phase arrest and apoptosis in lung cancer cells.  相似文献   

17.
A series of new 4β-sulphonamido and 4β-[(4'-sulphonamido)benzamide] conjugates of podophyllotoxin (11a-j and 15a-g) were synthesized and evaluated for anticancer activity against six human cancer cell lines and found to be more potent than etoposide. Some of the compounds 11b, 11d and 11e that showed significant antiproliferative activity in Colo-205 cells, were superior to etoposide. The flow cytometric analysis indicates that these compounds (11b, 11d and 11e) showed G2/M cell cycle arrest and among them 11e is the most effective. It is observed that this compound (11e) caused both single-strand DNA breaks as observed by comet assay as well as double-strand DNA breaks as indicated by γ-H2AX. Further 11e showed inhibition of topo-IIα as observed from Western blot analysis and related studies. Compounds caused activation of ATM as well as Chk1 protein indicating that the compound caused effective DNA damage. Moreover activation of caspase-3, p21, p16, NF-kB and down regulation of Bcl-2 protein suggests that this compound (11e) has apoptotic cell death inducing ability, apart from acting as a topo-IIα inhibitor.  相似文献   

18.
DNA damage tumor suppressor genes and genomic instability   总被引:9,自引:0,他引:9  
Disruption of the mechanisms that regulate cell-cycle checkpoints, DNA repair, and apoptosis results in genomic instability and the development of cancer in multicellular organisms. The protein kinases ATM and ATR, as well as their downstream substrates Chk1 and Chk2, are central players in checkpoint activation in response to DNA damage. Histone H2AX, ATRIP, as well as the BRCT-motif-containing molecules 53BP1, MDC1, and BRCA1 function as molecular adapters or mediators in the recruitment of ATM or ATR and their targets to sites of DNA damage. The increased chromosomal instability and tumor susceptibility apparent in mutant mice deficient in both p53 and either histone H2AX or proteins that contribute to the nonhomologous end-joining mechanism of DNA repair indicate that DNA damage checkpoints play a pivotal role in tumor suppression.  相似文献   

19.
20.
Histone H2AX undergoes phosphorylation on Ser 139 (γ-H2AX) rapidly in response to DNA double-strand breaks induced by exogenous stimuli, such as ionizing radiation. However, the endogenous phosphorylation pattern and modifier of H2AX remain unclear. Here we show that H2AX is regulated physically at the level of phosphorylation at Ser139 during a hair cycle in the mouse skin. In anagen hair follicles, γ-H2AX-positive cells were observed in the outer root sheath (ORS) and hair bulb in a cycling inferior region but not in a permanent superficial region. In telogen hair follicles, γ-H2AX-positive cells were only detected around the germ cell cap. In contrast, following X-irradiation, γ-H2AX was observed in various cell types including the ORS cells in the permanent superficial region. Furthermore, γ-H2AX-positive cells were detected in the skin of mice lacking either ATM or DNA-PK, suggesting that these kinases are not essential for phosphorylation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号