首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cabbage whitefly [Aleyrodes proletella L. (Hemiptera: Aleyrodidae)] is becoming a serious pest in Brassica oleracea L. (Brassicaceae) crops. However, almost nothing is known about the interaction of this insect with its host plants. Previous studies have shown differences in the natural occurrence of adults, eggs, and nymphs on the closely related B. oleracea cultivars Christmas Drumhead and Riviera grown in the field. In this study, we aimed to identify the nature of these differences and to gain insight into the resistance mechanisms against A. proletella. We used no‐choice experiments on field‐ and greenhouse‐grown plants to show that the differences between the two cultivars are mainly based on antibiosis (traits that reduce herbivore performance) and not on antixenosis (traits that deter herbivory). This was further supported by laboratory choice experiments that indicated little or no discrimination between the two cultivars based on plant volatiles. We showed that resistance is dependent on plant age, that is, resistance increased during plant development, and is mainly independent of environmental factors. Analysis of probing behaviour revealed that the resistance trait affects A. proletella at the phloem level and that morphological differences between the two cultivars are most likely not involved. We suggest that compounds present in the phloem reduce sap ingestion by the whitefly and that this explains the observed resistance.  相似文献   

2.
The outdoor establishment of non-native biocontrol agents released for inundative control of glasshouse pests is determined primarily by two factors: ecophysiological compatibility with local climate, particularly winter cold tolerance, and ability to locate and utilise wild prey. Observations on the number and diversity of acceptable wild prey as part of an assessment of establishment potential therefore overlap with more focused studies to determine host range. This study investigated two aspects of the interactions between biocontrol agents and non-target prey that are rarely considered in tests for establishment or host range: the role of different host plant–prey associations in modifying the development and reproduction of biocontrol agents, and the longer term sustainability of such relationships beyond the single generation observed in most laboratory studies. Using the glasshouse whitefly (Trialeurodes vaporariorum) predator Macrolophus caliginosus Wagner (Hemiptera: Miridae) as a case study, the mirid was able to sustain viable populations over three generations on the related cabbage whitefly Aleyrodes proletella (Linnaeus) (Hemiptera: Aleyrodidae) and the aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae), including when these prey were feeding on different host plants (Chinese cabbage, cabbage and Brussels sprout). However, the rate of development, fecundity and mortality of the predator varied between the different prey and host plant combinations, and in all cases differed than when feeding on its glasshouse prey T. vaporariorum reared on tobacco (Nicotiana tabacum). The results are discussed in the light of the current debate on methods for conducting host range testing as part of an environmental risk assessment. Handling Editor: Dirk Babendreier  相似文献   

3.
The silverleaf whitefly, Bemisia tabaci biotype B (Gennadius) (Hemiptera: Aleyrodidae), is a key pest of tomato (Solanum lycopersicum L.) and other vegetable crops worldwide. To combat this pest, a non-crop banker plant system was evaluated that employs a parasitoid, Encarsia sophia (Girault & Dodd) (Hymenoptera: Aphelinidae) with whitefly, Trialeurodes variabilis (Quaintance) (Hemiptera: Aleyrodidae), as an alternative host for rearing and dispersal of the parasitoid to the target pest. (a) Multi-choice and no-choice greenhouse experiments were conducted to determine host specificity of T. variabilis to papaya (Carica papaya L.) and three vegetable crops including tomato, green bean (Phaseolus vulgaris L.), and cabbage (Brassica oleracea L.). The result showed that papaya was an excellent non-crop banker plant for supporting the non-pest alternative host, T. variabilis, whose adults had a strong specificity to papaya plants for feeding and oviposition in both multi-choice and no-choice tests. (b) The dispersal ability of E. sophia was investigated from papaya banker plants to tomato and green bean plants infested with B. tabaci, as well as to papaya control plants infested with T. variabilis; and (c) the percent parasitism by E. sophia on T. variabilis reared on papaya plants and on B. tabaci infested on tomato plants was also evaluated. These data proved that E. sophia was able to disperse at least 14.5 m away from papaya plants to target tomato, bean or papaya control plants within 48–96 h. Furthermore, E. sophia was a strong parasitoid of both T. variabilis and B. tabaci. There was no significant difference in percent parasitism by E. sophia on T. variabilis (36.2–47.4%) infested on papaya plants or B. tabaci (29–45.9%) on tomato plants. Thus, a novel banker plant system for the potential management of B. tabaci was established using papaya as a non-crop banker plant to support a non-pest alternative host, T. variabilis for maintaining the parasitoid to control B. tabaci. The established banker plant system should provide growers with a new option for long-term control of B. tabaci in greenhouse vegetable production. Ongoing studies on the papaya banker plant system are being performed in commercial greenhouses.  相似文献   

4.
[目的] 欧洲甘蓝粉虱B型和L型是近年来新入侵我国的粉虱类害虫。探究当前欧洲甘蓝粉虱2种表型对不同杀虫剂的敏感性水平,能为合理选择高效杀虫剂进行科学防治提供依据。[方法] 采用浸叶法和喷雾法,对油麦菜上的欧洲甘蓝粉虱进行室内毒力测定和田间药效试验。[结果] 室内毒力测定结果表明:阿维菌素原药对B型和L型成虫毒力均最高,LC50分别为0.57、3.54 mg·L-1;甲维盐对B型和L型若虫毒力最高,LC50分别为0.65、2.29 mg·L-1。田间药效试验结果表明:5%阿维菌素EW对B型成虫和L型若虫防效最好,分别为65.77%和94.86%;22%氟啶虫胺腈SC对L型成虫的防治效果最好,防效为92.07%;60%啶虫脒WP对B型若虫的防效最好,为95.65%。[结论] 推荐在田间交替使用5%阿维菌素EW、22%氟啶虫胺腈SC和60%啶虫脒WP防治欧洲甘蓝粉虱B型和L型,同时应加强抗药性监测。  相似文献   

5.
The occurrence of species in rapidly changing environments, such as agricultural landscapes, is affected by their ability to recolonise habitats. Knowledge of the landscape scale affecting colonisation is essential for large‐scale pest management. Colonisation by insects can be affected on multiple landscape scales, as different morphs of a species may have specific dispersal abilities. The cabbage whitefly, Aleyrodes proletella (L.) (Hemiptera: Aleyrodidae), a major pest of Brassica vegetables, is known to colonise Brassica vegetables primarily from fields of oilseed rape, Brassica napus L. (Brassicaceae). We used field mapping and remote sensing to characterise the relevant scales for colonisation of Brussels sprouts by cabbage whiteflies. Surprisingly, oilseed rape fields in wide landscapes (2–8 km around study sites) explained colonisation better than oilseed rape areas in local landscapes (200–1 000 m around study sites). The explained variance increased when additional weight was given to upwind source habitats, indicating wind transport of whitefly colonisers. Low importance of local compared to wide landscape source habitats can be explained by the flight behaviour of whitefly morphs. Migratory morphs show phototactic attraction but are attracted by hosts only during the later phases of flight. Therefore, they ignore host plants close to their origin and disperse several kilometres. Trivial flight morphs rarely move more than a few hundred metres. In conclusion, as most whitefly colonisers reached Brassica vegetables from source habitats at a distance of 2–8 km, predictions on pest pressure and landscape‐scale whitefly management should consider these distances. In contrast, oilseed rape fields in the local landscape, which usually worry farmers, had little effect.  相似文献   

6.
《Biological Control》2013,64(3):279-286
Silverleaf whitefly, Bemisia tabaci biotype B (Gennadius) (Hemiptera: Aleyrodidae), western flower thrips, Frankliniella occidentalis (Pergande), and chilli thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae), are key pests of vegetable crops in the US. The present study established ornamental peppers as banker plants supporting Amblyseius swirskii (Acari: Phytoseiidae) against the three pests. Specifically, this study (a) evaluated survival and population buildup of A. swirskii on three ornamental pepper varieties, Masquerade (MA), Red Missile (RM), and Explosive Ember (EE) in both laboratory and greenhouses and (b) determined the predation of A. swirskii reared on ornamental pepper plants to the targeted pests under greenhouse conditions. The results showed that the three pepper varieties were excellent banker plants and able to support at least ∼1000 of all stages of A. swirskii per plant in greenhouse conditions and allow them to complete their life cycle. A. swirskii dispersed or released from the banker plants to target plants, resulting in significant suppression of the three pests, i.e., after 14 d post-release, a significantly lower average of 2.75 B. tabaci and 13.4 all stages of thrips (chilli thrips and western flower thrips) were found per bean plant, respectively, compared to 379.5 B. tabaci and 235.4 all stages of thrips per plant in the control. Furthermore, our experiment observed that the sweet pepper seedlings closed to banker plants were healthy, whereas those without banker plants were heavily infested by chilli thrips; their growth seriously stunted or died. This is the first report of ornamental pepper as banker plants supporting A. swirskii against three notorious pests. This established banker plant system could be a new addition to the integrated pest management programs for sustainable control of these three pests in greenhouse vegetables.  相似文献   

7.
Scanning electron microscopy has revealed the detailed structure of the antennae of three species of whitefly, Trialeurodes vaporariorum, Aleyrodes proletella, and Bemisia tabaci (Homoptera : Aleyrodidae). All 3 species have microtrichia and 5 types of sensilla on the antennae: chaetica, campaniform, basiconic, coeloconic, and pegs with digitate tips, the latter 3 of these being unique to the flagellum. The number and distribution of the sensilla unique to the flagellum vary among the species studied. The cuticle of the basiconic and the coeloconic sensilla is pitted and grooved, respectively, a prerequisite for an olfactory and/or a thermo-, hygroreceptive function. A sexual dimorphism does occur with respect to the position of the basiconic sensilla on flagella segment 5 of A. proletella, but not T. vaporariorum or B. tabaci.  相似文献   

8.
A transmission electron microscope study of the antennal sensilla of the whitefly Trialeurodes vaporariorum and Aleyrodes proletella (Homoptera : Aleyrodidae) revealed that of the sensilla unique to the antennal flagellum (basiconic, coeloconic and small digitate-tipped sensory pegs), basiconic and coeloconic sensilla occur as subtypes. Four subtypes of basiconic cone sensilla occur on the flagella of T. vaporariorum and 3 on A. proletella. All the subtypes of basiconic sensilla have an ultrastructure typical of olfactory sensilla and probably have a primary olfactory function. Two subtypes of coeloconic sensilla occur on the flagella of both species. Their ultrastructure suggests primarily a chemosensory function. The digitate-tipped sensory peg of both species possesses a triad of neurones which have ultrastructural characteristics similar to the known thermo-/hygroreceptors of other insect species. The other sensilla, which occur on the antennae of the whiteflies, include cheatae, campaniform and subcuticular sensilla, all of which have an ultrastructure typical of mechanoreceptors.  相似文献   

9.
The responses of plants to stress can highly depend on their developmental stage and furthermore influence biotic interactions. Effects of outdoor exposure to different ambient radiation conditions including (+UV) or excluding (?UV) solar ultraviolet radiation were investigated in broccoli plants (Brassica oleracea L. convar. botrytis) at two developmental stages. Plants either germinated directly under these different outdoor UV conditions, or were first kept for three weeks in a climate chamber under low radiation before outside exposure at +UV and ?UV. Access of herbivores to the plants was possible under the outdoor conditions. Plants of both groups protected their tissue against destructive UV by increasing concentrations of phenolic compounds (flavonoids and hydroxycinnamic acids) after +UV exposure. But only plants that germinated under +UV conditions kept smaller than plants grown under ?UV conditions, indicating certain costs for production of phenolics or for other potential metabolic processes specifically in young, growing plants. In contrast, growth of plants transferred at a later stage did not differ under both UV conditions. Thus, plants responded much more sensitive to the environment they experienced at first growth. Glucosinolates, the characteristic secondary compounds of Brassicaceae, as well as proteinase inhibitors, remained unaffected by UV in all plants, demonstrating independent regulation pathways for different metabolites. Plant infestation by phloem-feeding insects, Aleyrodidae and Aphididae, was more pronounced on +UV exposed plants, whereas cell content feeders, like Thripidae were more abundant on plants under the ?UV condition. Choice experiments with the cabbage whitefly Aleyrodes proletella L. (Aleyrodidae), commonly found on Brassica spp., revealed that the key environmental cue navigating their behaviour seems to be the radiation composition, rather than plant quality itself. In conclusion, stress mediated changes of plant chemistry and morphology depend on the plant life cycle stage and are not necessarily mirrored in the behavioural responses of herbivorous insects.  相似文献   

10.
Natural populations of wild cabbage (Brassica oleracea) show significant qualitative diversity in heritable aliphatic glucosinolates, a class of secondary metabolites involved in defence against herbivore attack. One candidate mechanism for the maintenance of this diversity is that differential responses among herbivore species result in a net fitness balance across plant chemotypes. Such top-down differential selection would be promoted by consistent responses of herbivores to glucosinolates, temporal variation in herbivore abundance, and fitness impacts of herbivore attack on plants varying in glucosinolate profile. A 1-year survey across 12 wild cabbage populations demonstrated differential responses of herbivores to glucosinolates. We extended this survey to investigate the temporal consistency of these responses, and the extent of variation in abundance of key herbivores. Within plant populations, the aphid Brevicoryne brassicae consistently preferred plants producing the glucosinolate progoitrin. Among populations, increasing frequencies of sinigrin production correlated positively with herbivory by whitefly Aleyrodes proletella and negatively with herbivory by snails. Two Pieris butterfly species showed no consistent response to glucosinolates among years. Rates of herbivory varied significantly among years within populations, but the frequency of herbivory at the population scale varied only for B. brassicae. B. brassicae emerges as a strong candidate herbivore to impose differential selection on glucosinolates, as it satisfies the key assumptions of consistent preferences and heterogeneity in abundance. We show that variation in plant secondary metabolites structures the local herbivore community and that, for some key species, this structuring is consistent over time. We discuss the implications of these patterns for the maintenance of diversity in plant defence chemistry.  相似文献   

11.
Female cabbage whitefly, Aleyrodes proletella L., overwinter in ovarian diapause. A scoring system for ovarian development has proved valuable in following the progress of diapause and has revealed a marked difference between the effects of stationary short-day treatment and one involving a transfer from long-day to short-day photoperiods. The former results in a weak inhibition of ovarian development, whilst the latter completely inhibits pre-emergence oögenesis and greatly retards post-emergence development. Therefore, A. proletella may be regarded as a long-day-short-day species. Peak photoperiodic sensitivity is located in the third instar, although some degree of sensitivity is present for most of larval development. The inductive effect of 10 short-day cycles, at the time of peak sensitivity, is not abolished by subsequent long-day treatment.  相似文献   

12.
Four years after the release of two exotic parasitoids, Amitus hesperidum Silvestri (Hymenoptera: Platygasteridae) and Encarsia perplexa Huang and Polaszek (Hymenoptera: Aphelinidae) for the classical biological control of the citrus blackfly (CBF), Aleurocanthus woglumi Ashby (Hemiptera: Aleyrodidae) in Dominica, a survey was conducted to assess establishment as well as potential nontarget effects especially on Aleyrodidae and other related taxa. CBF populations were low to non-existent in 50 of 51 field sites examined. At the site where CBF was encountered, both E. perplexa and A. hesperidum were present and CBF populations were declining. The two parasitoids were not among the several species collected on nontarget Aleryodidae and Hemiptera. It is concluded that E. perplexa and A. hesperidum have kept CBF populations under effective biological control in Dominica and there is no evidence of any nontarget effects on other Aleyrodidae or their natural enemies. Handling Editor: Dirk Babendreier.  相似文献   

13.
Plants have evolved a variety of ways to defend themselves against biotic attackers. This has resulted in the presence of substantial variation in defense mechanisms among plants, even within a species. Genome-wide association (GWA) mapping is a useful tool to study the genetic architecture of traits, but has so far only had limited exploitation in studies of plant defense. Here, we study the genetic architecture of defense against the phloem-feeding insect cabbage whitefly (Aleyrodes proletella) in Arabidopsis thaliana. We determined whitefly performance, i.e. the survival and reproduction of whitefly females, on 360 worldwide selected natural accessions and subsequently performed GWA mapping using 214,051 SNPs. Substantial variation for whitefly adult survival and oviposition rate (number of eggs laid per female per day) was observed between the accessions. We identified 39 candidate SNPs for either whitefly adult survival or oviposition rate, all with relatively small effects, underpinning the complex architecture of defense traits. Among the corresponding candidate genes, i.e. genes in linkage disequilibrium (LD) with candidate SNPs, none have previously been identified as a gene playing a role in the interaction between plants and phloem-feeding insects. Whitefly performance on knock-out mutants of a number of candidate genes was significantly affected, validating the potential of GWA mapping for novel gene discovery in plant-insect interactions. Our results show that GWA analysis is a very useful tool to gain insight into the genetic architecture of plant defense against herbivorous insects, i.e. we identified and validated several genes affecting whitefly performance that have not previously been related to plant defense against herbivorous insects.  相似文献   

14.
15.
Nakano  Ryohei  Hinomoto  Norihide 《BioControl》2021,66(5):659-671

The zoophytophagous predator, Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae), is an important biological control agent. To maintain this insect, several non-crop host plants are used as banker plants in greenhouse crop systems. To optimize the efficiency of the predator-banker plant interaction, it is necessary to investigate how individual predators move between banker plants and crops. However, the movement is difficult to quantify under field conditions. Therefore, we investigated the movement of N. tenuis between tomato plants (Solanum lycopersicum L., Solanales: Solanaceae) and three banker plants (Cleome hassleriana Chod., Brassicales: Cleomaceae; Sesamum indicum L., Lamiales: Pedaliaceae; and Verbena × hybrida Voss, Lamiales: Verbenaceae) in a greenhouse by conducting PCR using plant-species-specific primers. Laboratory analysis results showed that our molecular method could detect N. tenuis activity within a relatively short time (≤ 24 h). In addition, N. tenuis predation on a pest species was unlikely to result in false detection of plant DNA in the pest (suggesting that N. tenuis had been on the plants). Multiple plant species were detected in adult insects collected from the greenhouse plants, indicating that N. tenuis frequently moved across the mentioned plant species. The movement patterns of N. tenuis between plant species varied substantially based on the plant species from which they were collected, which suggested each of the plant species had different functions for N. tenuis. Our findings revealed that planting multiple host plants would stabilize the N. tenuis population in biological control programs.

  相似文献   

16.
Worldwide, the most two important cryptic species of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) are MEAM1 (Middle East–Asia Minor 1, “B” biotype) and MED (Mediterranean, “Q” biotype). Although both B. tabaci MEAM1 and MED are polyphagous, they differ greatly in host choice and performance on various host plants. MEAM1 prefer to settle and perform better than MED on cabbage (Brassica oleracea), for example, but the underlying mechanism is largely unexplored. In the present study, we first measured the contents of the main secondary insect-resistant substances (glucosinolates and phenolics) and main nutrients (soluble proteins, total amino acids and total nitrogen) in five cabbage genotypes. We then examined the settling and oviposition choices of MEAM1 and MED on the five cabbage genotypes, respectively. The settling and oviposition preferences of both MEAM1 and MED were negatively related to the content of total phenolics rather than to the content of glucosinolates or main nutrients. Furthermore, our results showed that MEAM1 ranked the host quality of the cabbage genotypes more accurately than MED. The results at least in part indicate that total phenolics rather than glucosinolates mediate the host choice of B. tabaci MEAM1 and MED on the five cabbage genotypes.  相似文献   

17.
The olfactory response of the parasitoid Aphidius colemani (Viereck) (Hymenoptera: Braconidae) to odours in a tritrophic system involving three cultivars of common cabbage, Brassica oleracea var capitata, characterized by different levels of susceptibility to Myzus persicae (Sulzer) (Hemiptera: Aphididae) was studied in a four‐way olfactometer. Odours influenced A. colemani response in the olfactometer to varying degrees. The magnitude of parasitoid response to odours of uninfested cabbage depended on cultivar, with Derby Day [green‐leaved, susceptible to M. persicae and the crucifer specialist, Brevicoryne brassicae (Linnaeus) (Hemiptera: Aphididae)] and Minicole (green‐leaved, partially resistant with known antibiosis factors for B. brassicae) preferred over Ruby Ball (red‐leaved with antixenosis factors for M. persicae and B. brassicae). The odour of the cabbage cultivar on which the parasitoid had been reared was preferred over the other cultivars. However, when provided with a choice between odours of infested plants, parasitoids did not show a significant preference for the cultivar on which they were reared. Results from the study show that parasitioids differentiated between odour of the three cultivars in dependence of their rearing history when the plant is uninfested.  相似文献   

18.
Pirimicarb is considered a selective and effective insecticide for the control of aphids and whiteflies. Coccinella undecimpunctata L. is a euriphagous predator autochthonous to the Azores, which feeds preferentially on aphids. The voracity of 4th instars and adults (males and females) of C. undecimpunctata using Aphis fabae Scopoli or Aleyrodes proletella L. as preys was evaluated in laboratory, as well as the impact of pirimicarb on the feeding performance using A. fabae as prey. In the absence of chemical treatment and when the prey was A. proletella, satiation lower limits were estimated on a density of 200 individuals in a 24-h period, for 4th instars, adult females and males of C. undecimpunctata. With A. fabae, satiation was attained when 200, 150 and 100 aphids were provided to 4th instars, adult females and males, respectively. C. undecimpunctata exhibited a type II functional response for both prey species. Fourth instars displayed a lower handling time than the adults; handling times of the adults where higher when A. fabae was the prey and attack rates were sex-dependent, that is, attack rate of females was higher on A. fabae while of males was higher on A. proletella. Voracity of C. undecimpunctata was not significantly affected by pirimicarb; therefore, the use of this insecticide can constitute a complementary component for the integrated management of A. fabae.  相似文献   

19.
The dark period (scotophase) is the most photoperiodically important part of a light-dark cycle in Aleyrodes proletella. Night-interruption studies have revealed three distinct dark stages: the photosensitive stage 1 lasts for about 3 h after dusk and 1-h light breaks both stop and re-set the photoperiodic clock; stage 2 also lasts about 3 h, but is photorefractory to some degree; stage 3 is photosensitive, but short light breaks do not re-set the clock although a 4-h light break (equivalent to a main photophase) does restore the capacity to respond to a normal critical night length in the post-interruption scotophase.Action spectra revealed peak photoperiodic sensitivity to blue light (410–430 nm) with 50% responses., at 1.5 μWcm−2 and 2.5 μWcm−2 for the dusk and dawn peaks respectively. These data are consistent with the view that the photopigment is a carotenoprotein.The results are interpreted in terms of the photoperiodic clock in A. proletella operating on the hour glass principle.  相似文献   

20.
The duration of development of immature stages of Aleyrodes proletella (L.) decreased with increase in temperature. The rate of the developmental time was smallest in the egg and largest in the second instar. The calculated threshold temperatures of development were approximately equal for the egg (10°) and the fourth-instar larva (10.4°) but differed significantly (P<0.05) from those of the first instar (7.3°), second instar (5°), and third instar (6.5°).
Zusammenfassung Die Entwicklungszeit des Eistadiums und der Larvenstadiums von Aleyrodes proletella nahm mit zunehmender Temperatur ab. Die relative tägliche Entwicklung war am geringsten beim Ei und am höchsten bei der Zweitlarve. Der berechnete Entwicklungsnullpunkt war ungefähr gleich für das Ei (10°) und für die Viertlarve (10,4°), während er für die Erstlarve (7,3°), für die Zweitlarve (5°) und für die Drittlarve (6,5°) etwas tiefer lag.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号