首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The sensitivity of non-small cell lung cancer (NSCLC) patients to EGFR tyrosine kinase inhibitors (TKIs) is strongly associated with activating EGFR mutations. Although not as sensitive as patients harboring these mutations, some patients with wild-type EGFR (wtEGFR) remain responsive to EGFR TKIs, suggesting that the existence of unexplored mechanisms renders most of wtEGFR-expressing cancer cells insensitive.

Methodology/Principal Findings

Here, we show that acquired resistance of wtEGFR-expressing cancer cells to an EGFR TKI, gefitinib, is associated with elevated expression of breast cancer resistance protein (BCRP/ABCG2), which in turn leads to gefitinib efflux from cells. In addition, BCRP/ABCG2 expression correlates with poor response to gefitinib in both cancer cell lines and lung cancer patients with wtEGFR. Co-treatment with BCRP/ABCG2 inhibitors enhanced the anti-tumor activity of gefitinib.

Conclusions/Significance

Thus, BCRP/ABCG2 expression may be a predictor for poor efficacy of gefitinib treatment, and targeting BCRP/ABCG2 may broaden the use of gefitinib in patients with wtEGFR.  相似文献   

2.
目的:探讨METTL3在非小细胞肺癌中的表达及作用,并探讨其可能的机制。方法:通过慢病毒转染,在HCC827细胞中过表达和敲除METTL3,并通过免疫印迹验证METTL3蛋白表达。免疫印迹检测HCC827细胞中生长抑制物家族成5(Methyltransferase Like 3,甲基转移酶3)调控ING5(Inhibitor Of Growth Family Member 5,METTL3)。使用基因表达交互分析(Gene Expression Profiling Interactive Analysis,GEPIA)探究了METTL3和ING5在非小细胞肺癌组织和正常组织中的表达相关性。用CCK-8法检测METTL3和ING5表达对非小细胞肺癌细胞增殖的影响。使用KM-plotter验证METTL3、ING5的表达与非小细胞肺癌的总生存期(OS)、进展后生存期(PPS)和无进展生存期(PFS)之间的相关性。结果:免疫印迹结果显示,在HCC827细胞中METTL3过表达上调了ING5蛋白的表达,而METTL3表达下调了ING5蛋白的表达。GEPIA数据库分析显示METTL3在非小细胞肺癌中的表达明显低于正常组织(P<0.05)。CCK-8检测结果显示,与对照组相比METTL3缺失促进了HCC827细胞的增殖能力,而METTL3过表达显著抑制了HCC827细胞的增殖能力。此外,METTL3通过ING5调控非小细胞肺癌细胞的增殖能力。KM-plotter分析显示METTL3、ING5 m RNA的表达与非小细胞肺癌患者的生存有较好的预后关系。结论:METTL3在非小细胞肺癌低表达,并通过调控ING5的表达在非小细胞肺癌的发生进展中发挥重要地抑癌基因作用。  相似文献   

3.
Persistently activated IL‐6/STAT3 pathway promotes acquired resistance to targeted therapy with epidermal growth factor receptor‐tyrosine kinase inhibitors (EGFR‐TKIs) in non–small‐cell lung cancer (NSCLC) treatment. miR‐206 has been verified to be dysregulated and plays as a negative regulator in lung cancer. However, whether miR‐206 may overcome IL6‐induced gefitinib resistance in EGFR‐mutant lung cancer remains elusive. In this study, we investigated the role of miR‐206 in IL6‐induced gefitinib‐resistant EGFR‐mutated lung cancer cell lines. We showed that forced miR‐206 expression restored gefitinib sensitivity in IL6‐induced gefitinib‐resistant EGFR‐mutant lung cancer cells by inhibiting IL6/JAK1/STAT3 pathway. Specifically, mechanistic investigations revealed that miR‐206 blocked IL‐6/STAT3 signalling via directly targeting the 3'‐UTR of intracellular IL‐6 messenger RNA. Moreover, IL‐6 induced miR‐206 down‐regulation by reducing the cropping process of primary miR‐206 (pri‐miR‐206) into the Drosha/DGCR8 complex. Taken together, our findings reveal a direct role of miR‐206 in regulating IL‐6/STAT3 pathway and contrarily activated IL‐6/STAT3 signalling mediates the miR‐206 maturation process in gefitinib‐resistant EGFR‐mutant lung cancer cells.  相似文献   

4.
Han W  Pan H  Chen Y  Sun J  Wang Y  Li J  Ge W  Feng L  Lin X  Wang X  Wang X  Jin H 《PloS one》2011,6(6):e18691
Epidermal growth factor receptor tyrosine kinase inhibitors gefitinib and erlotinib have been widely used in patients with non-small-cell lung cancer. Unfortunately, the efficacy of EGFR-TKIs is limited because of natural and acquired resistance. As a novel cytoprotective mechanism for tumor cell to survive under unfavorable conditions, autophagy has been proposed to play a role in drug resistance of tumor cells. Whether autophagy can be activated by gefitinib or erlotinib and thereby impair the sensitivity of targeted therapy to lung cancer cells remains unknown. Here, we first report that gefitinib or erlotinib can induce a high level of autophagy, which was accompanied by the inhibition of the PI3K/Akt/mTOR signaling pathway. Moreover, cytotoxicity induced by gefitinib or erlotinib was greatly enhanced after autophagy inhibition by the pharmacological inhibitor chloroquine (CQ) and siRNAs targeting ATG5 and ATG7, the most important components for the formation of autophagosome. Interestingly, EGFR-TKIs can still induce cell autophagy even after EGFR expression was reduced by EGFR specific siRNAs. In conclusion, we found that autophagy can be activated by EGFR-TKIs in lung cancer cells and inhibition of autophagy augmented the growth inhibitory effect of EGFR-TKIs. Autophagy inhibition thus represents a promising approach to improve the efficacy of EGFR-TKIs in the treatment of patients with advanced non-small-cell lung cancer.  相似文献   

5.
The potential benefits of drugs directly targeting the ErbB receptors for cancer therapy have led to an extensive development within this field. However, the clinical effects of ErbB receptor-targeting drugs in cancer treatment are limited due to a high frequency of resistance. It has been reported that, when inhibiting the epidermal growth factor receptor (EGFR) with the tyrosine kinase inhibitor gefitinib, increased activation of ErbB3 via MET, or by re-localization of ErbB3 mediates cell survival. Here we show further evidence that members of the ErbB receptor family facilitate resistance to EGFR inhibitor treatment in ErbB2 overexpressing breast cancer cells. We found that gefitinib treatment increased ErbB3 expression, both at protein and mRNA levels. ErbB3 expression was upregulated not only by gefitinib but also by a panel of different EGFR inhibitors, suggesting that inhibition of EGFR in general affects ErbB3 expression. In addition, we found that gefitinib treatment increased ErbB2 expression levels while EGFR inhibitors decreased the activity of ErbB2. Concentrations of gefitinib that decreased phospho-ErbB2 reversely increased ErbB3 levels. We further examined changes induced by gefitinib treatment on mRNA levels of the most common genes known to be involved in breast cancer. As expected, we found that gefitinib downregulated genes whose functions were linked to cellular proliferation, such as Ki-67, topoisomerase II alpha and cyclins, and surprisingly downregulated gene expression of FAS which is involved in apoptotic signaling. Together, our data strongly suggest that resistance to EGFR inhibitors may result from the compensation of other family members and that combinations of anti-cancer drugs are required to increase the sensitivity of these treatments.  相似文献   

6.
《Translational oncology》2021,14(11):101204
Lung adenocarcinoma patients with epidermal growth factor receptor (EGFR)-activating mutations respond well to tyrosine kinase inhibitors but typically develop resistance. Current therapies mainly target differentiated cells, not cancer stem cells (CSCs), but CSCs affect the occurrence, invasion, metastasis and treatment sensitivity of malignant tumours. Recently, aerobic exercise has emerged as adjuvant therapy for cancer. Aerobic exercise can accelerate blood circulation, improve tissue oxygen supply, reduce the stress level of patients, improve the antioxidant capacity of the body, and facilitate the degradation of hypoxia-inducible factor-1 (HIF-1) in tumour tissues, thus weakening its maintenance effect on CSCs. In this study, we successfully established lung adenocarcinoma cell lines with gefitinib resistance. Long-term gefitinib induction could increase the level of oxidative stress in lung adenocarcinoma cells and reduce the antioxidant capacity, resulting in the high expression of HIF-1 and ALDH1 and leading to the enrichment of CSCs, and a decreased response to gefitinib. This may be one of the important reasons for gefitinib-acquired resistance in lung adenocarcinoma. In the case of drug resistance, effective aerobic exercise could reduce ROS, activate SOD, inhibit HIF-1 and ALDH1, and cause a reduction in CSCs to sensitise cells to gefitinib again and ultimately inhibit the malignant proliferation of tumours. Therefore, in the treatment of lung adenocarcinoma, the inhibitory effect of aerobic exercise on oxidative stress can enhance the response of drug-resistant cells to gefitinib and can be used as an effective adjunct measure in the treatment of lung adenocarcinoma.  相似文献   

7.
Although epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) gefitinib has exhibited notable clinical efficacy in non-small cell lung cancer (NSCLC) patients. However, its therapeutic efficacy is ultimately limited by the development of gefitinib resistance. The present study aimed to investigate the effects of the long non-coding RNA, RHPN1-AS1 on gefitinib resistance in NSCLC and explore the underlying mechanisms. In this study, RHPN1-AS1 was observed to be downregulated in gefitinib resistant patients and NSCLC cell lines. Besides, decreased expression of RHPN1-AS1 was found to be associated with poor prognosis of NSCLC patients. RHPN1-AS1 knockdown conferred gefitinib resistance to gefitinib sensitive NSCLC cells, whereas the overexpression of RHPN1-AS1 sensitized gefitinib resistant NSCLC cells to gefitinib treatment. Mechanistically, RHPN1-AS1 was found to positively regulate the expression of TNFSF12 by directly interacting with miR-299-3p. Collectively, RHPN1-AS1 modulates gefitinib resistance through miR-299-3p/TNFSF12 pathway in NSCLC. Our findings indicate that RHPN1-AS1 may serve as not only a prognostic biomarker for gefitinib resistance but also as a promising therapeutic biomarker and target for the treatment of NSCLC patients.  相似文献   

8.
Hepatocyte growth factor (HGF) overexpression is an important mechanism in acquired epidermal growth factor receptor (EGFR) kinase inhibitor gefitinib resistance in lung cancers with EGFR activating mutations. MiR‐1‐3p and miR‐206 act as suppressors in lung cancer proliferation and metastasis. However, whether miR‐1‐3p and miR‐206 can overcome HGF‐induced gefitinib resistance in EGFR mutant lung cancer is not clear. In this study, we showed that miR‐1‐3p and miR‐206 restored the sensitivities of lung cancer cells PC‐9 and HCC‐827 to gefitinib in present of HGF. For the mechanisms, we demonstrated that both miR‐1‐3p and miR‐206 directly target HGF receptor c‐Met in lung cancer. Knockdown of c‐Met mimicked the effects of miR‐1‐3p and miR‐206 transfections Meanwhile, c‐Met overexpression attenuated the effects of miR‐1‐3p and miR‐206 in HGF‐induced gefitinib resistance of lung cancers. Furthermore, we showed that miR‐1‐3p and miR‐206 inhibited c‐Met downstream Akt and Erk pathway and blocked HGF‐induced epithelial‐mesenchymal transition (EMT). Finally, we demonstrated that miR‐1‐3p and miR‐206 can increase gefitinib sensitivity in xenograft mouse models in vivo. Our study for the first time indicated the new function of miR‐1‐3p and miR‐206 in overcoming HGF‐induced gefitinib resistance in EGFR mutant lung cancer cell.  相似文献   

9.
DYRK1A is considered a potential cancer therapeutic target, but the role of DYRK1A in NSCLC oncogenesis and treatment requires further investigation. In our study, high DYRK1A expression was observed in tumour samples from patients with lung cancer compared with normal lung tissues, and the high levels of DYRK1A were related to a reduced survival time in patients with lung cancer. Meanwhile, the DYRK1A inhibitor harmine could suppress the proliferation of NSCLC cells compared to that of the control. As DYRK1A suppression might be effective in treating NSCLC, we next explored the possible specific molecular mechanisms that were involved. We showed that DYRK1A suppression by siRNA could suppress the levels of EGFR and Met in NSCLC cells. Furthermore, DYRK1A siRNA could inhibit the expression and nuclear translocation of STAT3. Meanwhile, harmine could also regulate the STAT3/EGFR/Met signalling pathway in human NSCLC cells. AZD9291 is effective to treat NSCLC patients with EGFR‐sensitivity mutation and T790 M resistance mutation, but the clinical efficacy in patients with wild‐type EGFR remains modest. We showed that DYRK1A repression could enhance the anti‐cancer effect of AZD9291 by inducing apoptosis and suppressing cell proliferation in EGFR wild‐type NSCLC cells. In addition, harmine could enhance the anti‐NSCLC activity of AZD9291 by modulating STAT3 pathway. Finally, harmine could enhance the anti‐cancer activity of AZD9291 in primary NSCLC cells. Collectively, targeting DYRK1A might be an attractive target for AZD9291 sensitization in EGFR wild‐type NSCLC patients.  相似文献   

10.
Lee JY  Lee YM  Chang GC  Yu SL  Hsieh WY  Chen JJ  Chen HW  Yang PC 《PloS one》2011,6(8):e23756

Background

Non-small cell lung cancer (NSCLC) patients with L858R or exon 19 deletion mutations in epidermal growth factor receptor (EGFR) have good responses to the tyrosine kinase inhibitor (TKI), gefitinib. However, patients with wild-type EGFR and acquired mutation in EGFR T790M are resistant to gefitinib treatment. Here, we showed that curcumin can improve the efficiency of gefitinib in the resistant NSCLC cells both in vitro and in vivo models.

Methods/Principal Findings

After screening 598 herbal and natural compounds, we found curcumin could inhibit cell proliferation in different gefitinib-resistant NSCLC cell lines; concentration-dependently down-regulate EGFR phosphorylation through promoting EGFR degradation in NSCLC cell lines with wild-type EGFR or T790M EGFR. In addition, the anti-tumor activity of gefitinib was potentiated via curcumin through blocking EGFR activation and inducing apoptosis in gefitinib-resistant NSCLC cell lines; also the combined treatment with curcumin and gefitinib exhibited significant inhibition in the CL1-5, A549 and H1975 xenografts tumor growth in SCID mice through reducing EGFR, c-MET, cyclin D1 expression, and inducing apoptosis activation through caspases-8, 9 and PARP. Interestingly, we observed that the combined treatment group represented better survival rate and less intestinal mucosal damage compare to gefitinib-alone therapy. We showed that curcumin attenuated the gefitinib-induced cell proliferation inhibition and apoptosis through altering p38 mitogen-activated protein kinase (MAPK) activation in intestinal epithelia cell.

Conclusions/Significance

Curcumin potentiates antitumor activity of gefitinib in cell lines and xenograft mice model of NSCLC through inhibition of proliferation, EGFR phosphorylation, and induction EGFR ubiquitination and apoptosis. In addition, curcumin attenuates gefitinib-induced gastrointestinal adverse effects via altering p38 activation. These findings provide a novel treatment strategy that curcumin as an adjuvant to increase the spectrum of the usage of gefitinib and overcome the gefitinib inefficiency in NSCLC patients.  相似文献   

11.
Despite initial dramatic efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR‐TKIs) in EGFR‐mutant lung cancer patients, subsequent emergence of acquired resistance is almost inevitable. Resveratrol and its derivatives have been found to exert some effects on EGFR‐TKI resistance in non‐small cell lung cancer (NSCLC), but the underlying mechanisms remain unclear. We screened several NSCLC cell lines with gefitinib resistance by MTT assay and analysed the miR‐345/miR‐498 expression levels. NSCLC cells were pre‐treated with a resveratrol derivative, trans‐3,5,4‐trimethoxystilbene (TMS) and subsequently challenged with gefitinib treatment. The changes in apoptosis and miR‐345/miR‐498 expression were analysed by flow cytometry and q‐PCR respectively. The functions of miR‐345/miR‐498 were verified by CCK‐8 assay, cell cycle analysis, dual‐luciferase reporter gene assay and immunoblotting analysis. Our results showed that the expression of miR‐345 and miR‐498 significantly decreased in gefitinib resistant NSCLC cells. TMS pre‐treatment significantly upregulated the expression of miR‐345 and miR‐498 increasing the sensitivity of NSCLC cells to gefitinib and inducing apoptosis. MiR‐345 and miR‐498 were verified to inhibit proliferation by cell cycle arrest and regulate the MAPK/c‐Fos and AKT/Bcl‐2 signalling pathways by directly targeting MAPK1 and PIK3R1 respectively. The combination of TMS and gefitinib promoted apoptosis also by miR‐345 and miR‐498 targeting the MAPK/c‐Fos and AKT/Bcl‐2 signalling pathways. Our study demonstrated that TMS reduced gefitinib resistance in NSCLCs via suppression of the MAPK/Akt/Bcl‐2 pathway by upregulation of miR‐345/498. These findings would lay the theoretical basis for the future study of TMS for the treatment of EGFR‐TKI resistance in NSCLCs.  相似文献   

12.
Activation of the epidermal growth factor receptor (EGFR) contributes to the pathogenesis of non-small-cell lung carcinomas (NSCLC) and gefitinib, a selective reversible EGFR inhibitor, is effective in treating patients with NSCLC. However, clinical resistance to gefitinib is a frequent occurrence highlighting the need for improved therapeutic strategies. Melanoma differentiation associated gene-7 (mda-7)/Interleukin-24 (IL-24) (mda-7/IL-24) displays cancer-selective apoptosis induction when delivered via a replication-incompetent adenovirus (Ad.mda-7). In this study, the effect of Ad.mda-7 infection, either alone or in combination with gefitinib, was analyzed in a panel of NSCLC cell lines carrying wild-type EGFR (H-460 and H-2030) or mutant EGFR (H-1650 and H-1975). While H-2030 and H-1650 cells were sensitive, H-460 and H-1975 cells were resistance to growth inhibition by Ad.mda-7, which was reversed by the combination of Ad.mda-7 and gefitinib. This combination increased MDA-7/IL-24 and downstream effector double-stranded RNA-activated protein kinase (PKR) protein expression, promoting apoptosis induction of NSCLC cells. Inhibition of PKR significantly inhibited apoptosis induction by Ad.mda-7 when administered alone but not when used in combination with gefitinib. The combination treatment also augmented inhibition of EGFR signaling. Our findings indicate that a combinatorial treatment with Ad.mda-7 and gefitinib may provide benefit in the treatment of NSCLC, especially in patients displaying resistance to clinically used EGFR inhibitors.  相似文献   

13.
The epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) such as gefitinib and erlotinib have been widely used in treating patients with advanced non-small cell lung cancer (NSCLC). However, acquired resistance to EGFR TKI almost occurs in every patient eventually. To identify its potential mechanism, we established a human NSCLC cell line PC9/AB2 which was 576-fold decrease in gefitinib sensitivity compared with its parental PC9 cell lines. No EGFR-T790M mutation or abnormal expression of c-Met protein was found in PC9/AB2 cells. Over-expression of integrin β1 was found, accompanied with increase of the cells' adhesion and migration. To further confirm the role of integrin β1 in gefitinib acquired resistance, we transferred its siRNA-expressing plasmid and its whole cDNA expressing plasmid into PC9/AB2 and into PC9 cells, respectively. The sensitivity of NSCLC cells to gefitinib was negatively correlated with integrin β1 expression levels. All these data suggest that up-regulation of integrin β1 might be an important factor for gefitinib resistance in NSCLC cell line PC9/AB2.  相似文献   

14.
Gefitinib is an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) of potential use in patients with breast cancer. Unfortunately, in clinical studies, gefitinib is often ineffective indicating that resistance to EGFR inhibitors may be a common occurrence in cancer of the breast. EGFR has been shown to be overexpressed in breast cancer, and in particular remains hyperphosphorylated in cell lines such as MDA-MB-468 that are resistant to EGFR inhibitors. Here, we investigate the cause of this sustained phosphorylation and the molecular basis for the ineffectiveness of gefitinib. We show that reactive oxygen species (ROS), known to damage cellular macromolecules and to modulate signaling cascades in a variety of human diseases including cancers, appear to play a critical role in mediating EGFR TKI-resistance. Furthermore, elimination of these ROS through use of a cell-penetrating catalase derivative sensitizes the cells to gefitinib. These results suggest a new approach for the treatment of TKI-resistant breast cancer patients specifically, the targeting of ROS and attendant downstream oxidative stress and their effects on signaling cascades.  相似文献   

15.
Gefitinib (Iressa) is an inhibitor of the epidermal growth factor receptor (EGFR) that has shown promising activity in the treatment of patients with non-small cell lung cancer (NSCLC). However, adverse side effects of gefitinib treatment, such as respiratory dysfunction, have limited the therapeutic benefit of this targeting strategy. The present results show that this adverse effect can be attributed to the inhibition of the novel gefitinib target GAK (Cyclin G-associated kinase), which is as potently inhibited by the drug as the tyrosine kinase activity of EGFR. Knockout mice expressing the kinase-dead form of GAK (GAK-kd) died within 30 min after birth primarily due to respiratory dysfunction. Immunohistochemical analysis revealed that surfactant protein A (SP-A) was abundant within alveolar spaces in GAK-kd(+/+) mice but not in GAK-kd(-/-) pups. E-cadherin and phosphorylated EGFR signals were also abnormal, suggesting the presence of flat alveolar cells with thin junctions. These results suggest that inhibition of GAK by gefitinib may cause pulmonary alveolar dysfunction, and the present study may help prevent side effects associated with gefitinib therapy in NSCLC patients.  相似文献   

16.
The application of tyrosine kinase inhibitors (TKIs) to the epidermal growth factor receptor (EGFR) has been proven to be highly effective for non‐small‐cell lung cancer (NSCLC). However, patients often evolve into acquired resistance. The secondary mutations in EGFR account for nearly half of the acquired resistance. While the remaining 50% of patients exhibit tolerance to EGFR‐TKIs with unclear mechanism(s). Cylindromatosis (CYLD), a deubiquitinase, functions as a tumor suppressor to regulate cell apoptosis, proliferation, and immune response, and so on. The role of CYLD in NSCLC EGFR‐TKI resistance remains elusive. Here, we found CYLD was upregulated in PC‐9 cells, whereas downregulated in PC‐9 acquired gefitinib‐resistant (PC‐9/GR) cells in response to the treatment of gefitinib, which is consistent with the results in the Gene Expression Omnibus database. Overexpression of CYLD promoted a more apoptotic death ratio in PC‐9/GR cells than that in PC‐9 cells. In addition, silencing the expression of CYLD resulted in an increase of the expression level of interleukin‐6, transforming growth factor‐β and tumor necrosis factor‐α, which may contribute to acquired resistance of PC‐9 cells to gefitinib. Taken together, our data in vitro demonstrate that PC‐9/GR cells downregulated CYLD expression, enhanced subsequent CYLD‐dependent antiapoptotic capacity and inflammatory response, which may provide a possible target for acquired gefitinib‐resistant treatment in NSCLC.  相似文献   

17.
18.
Epidermal growth factor receptor (EGFR)‐tyrosine kinase inhibitors (TKIs), including gefitinib, are the first‐line treatment of choice for nonsmall cell lung cancer patients who harbor activating EGFR mutations, however, acquired resistance to EGFR‐TKIs is inevitable. The main objective of this study was to identify informative protein signatures of extracellular vesicles (EV) derived from gefitinib‐resistant nonsmall cell lung cancer cells using proteomics analysis. Nano‐LC–MS/MS analysis identified with high confidence (false discovery rate < 0.05, fold change ≥2) 664 EV proteins enriched in PC9R cells, which are resistant to gefitinib due to EGFR T790M mutation. Computational analyses suggested components of several signal transduction mechanisms including the AKT (also PKB, protein kinase B)/mTOR (mechanistic target of rapamycin) pathway are overrepresented in EV from PC9R cells. Treatment of recipient cells with EV harvested from PC9R cells increased phosphorylation of signaling molecules, and enhanced proliferation, invasion, and drug resistance to gefitinib‐induced apoptosis. Dose‐ and time‐dependent pharmaceutical inhibition of AKT/mTOR pathway overcame drug resistance of PC9R cells and those of H1975 exhibiting EGFR T790M mutation. Our findings provide new insight into an oncogenic EV protein signature regulating tumor microenvironment, and will aid in the development of novel diagnostic strategies for prediction and assessment of gefitinib resistance.  相似文献   

19.
The rapid onset of resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) limits its clinical utility in colorectal cancer (CRC) patients, and pan-erb-b2 receptor tyrosine kinase (ErbB) treatment strategy may be the alternative solution. The aim of this study was to develop a possible microRNA multi-ErbB treatment strategy to overcome EGFR-TKI resistance. We detect the receptor tyrosine kinase activity in gefitinib-resistant colorectal cancer cells, ErbB3/EGFR is significantly activated and provides a potential multi-ErbB treatment target. MiR-323a-3p, a tumor suppressor, could target both ErbB3 and EGFR directly. Apoptosis is the miR-323a-3p inducing main biological process by functional enrichment analysis, and The EGFR and ErbB signaling are the miR-323a-3p inducing main pathway by KEGG analysis. MiR-323a-3p promotes CRC cells apoptosis by targeting ErbB3-phosphoinositide 3‐kinases (PI3K)/PKB protein kinase (Akt)/glycogen synthase kinase 3 beta (GSK3β)/EGFR-extracellular regulated MAP kinase (Erk1/2) signaling directly. And miR-323a-3p, as a multi-ErbBs inhibitor, increase gefitinib sensitivity of the primary cell culture from combination miR-323a-3p and gefitinib treated subcutaneous tumors. MiR-323a-3p reverses ErbB3/EGFR signaling activation in gefitinib-resistant CRC cell lines and blocks acquired gefitinib resistance.Subject terms: Colorectal cancer, Cancer therapeutic resistance  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号