首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. Arrival, establishment, and further dispersal of non-native natural enemies are considered essential for a successful biological control programme, while among the factors that may determine the success of such a programme, genetic diversity of the introduced population plays an important role in the establishment of a non-native species.
  2. The Chinese parasitoid wasp Torymus sinensis Kamijo (Hymenoptera: Torymidae) was initially released in Europe in Italy to control biologically the Asian chestnut gall wasp Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae), and reduce the damage induced on sweet chestnut (Castanea sativa Miller). In the following years, T. sinensis was then released in numerous other European countries as a biological control agent of D. kuriphilus. Its presence has also been reported beyond the countries of release due to rapid natural dispersal.
  3. To assess the post-release genetic diversity of D. kuriphilus, we screened T. sinensis populations from six European countries and tested the possibility of these populations suffering from frequently observed genetic effects that could threaten its successful establishment in Europe.
  4. Our results exhibit that T. sinensis populations have suffered neither from the Allee effect nor from genetic bottleneck after their release and establishment in Europe, something that increases the possibility to effectively control D. kuriphilus in Europe.
  相似文献   

2.
刘慧  朱国平 《应用生态学报》2020,31(3):1015-1022
为了分析南极磷虾分布时空格局的长期变动,利用1926—2016年南极磷虾密度数据,通过Getis-Ord Gi*统计法和不规则三角网方法对该资源时空分布进行了热点分析,并比较了10年际热(冷)点的磷虾丰度、磷虾丰度占比以及热(冷)点区的面积,分析了热(冷)点区的时空变化。结果表明: 1926—1935年、1936—1945年均各存在1个核心热点区、次热点区和边缘热点区;1976—1985年各存在1个核心热点区、次热点区和边缘热(冷)点区;1986—1995年各存在2个核心热点区、次热点区、边缘热点区和1个次冷点区、边缘冷点区;1996—2005年各存在2个核心热点区、次热(冷)点区和边缘热(冷)点区;2006—2016年各存在2个次热点区、边缘热点区和1个次冷点区、边缘冷点区。这些热(冷)点多出现在南桑威奇群岛、南极半岛和普里兹湾西侧等周边海域。各年代热(冷)点的空间分布存在较大的差异,研究期间(1926—2016年)热点区内磷虾丰度、磷虾丰度占比以及面积总体上呈降低趋势,而冷点区内磷虾丰度、磷虾丰度占比呈现上升趋势,冷点区面积呈现下降趋势。通过构建不规则三角网测度热(冷)点范围大小,并采用95%置信度的热点分析是进行南极磷虾资源时空格局变动研究的可行方法。  相似文献   

3.
Dispersal is a factor of great importance in determining a species spatial distribution. Short distance dispersal (SDD) and long distance dispersal (LDD) strategies yield very different spatial distributions. In this paper we compare spatial spread patterns from SDD and LDD simulations, contrast them with patterns from field data, and assess the significance of biological and population traits. Simulated SDD spread using an exponential function generates a single circular patch with a well‐defined invasion front showing a travelling‐wave structure. The invasive spread is relatively slow as it is restricted to reproductive individuals occupying the outer zone of the circular patch. As a consequence of this dispersal dynamics, spread is slower than spread generated by LDD. In contrast, the early and fast invasion of the entire habitat mediated by power law LDD not only involves a significantly greater invasion velocity, but also an entirely different habitat occupation. As newly dispersed individuals soon reach very distant portions of the habitat as well as the vicinity of the original dispersal focus, new growing patches are generated while the main patch increases its own growth absorbing the closest patches. As a consequence of both dispersal and lower density dependence, growth of the occupied area is much faster than with SDD. SDD and LDD also differ regarding pattern generation. With SDD, fractal patterns appear only in the border of the invasion front in SDD when competitive interaction with residents is included. In contrast, LDD patterns show fractality both in the spatial arrangements of patches as well as in patch borders. Moreover, values of border fractal dimension inform on the dispersal process in relation with habitat heterogeneity. The distribution of patch size is also scale‐free, showing two power laws characteristic of small and large patch sizes directly arising from the dispersal and reproductive dynamics. Ecological factors like habitat heterogeneity are relevant for dispersal, although its importance is greater for SDD, lowering the invasion velocity. Among the life history traits considered, adult mortality, the juvenile bank and mean dispersal distance are the most relevant for SDD. For LDD, habitat heterogeneity and changes in life history traits are not so relevant, causing minor changes in the values of the scale‐free parameters. Our work on short and long distance dispersal shows novel theoretical differences between SDD and LDD in invasive systems (mechanisms of pattern formation, fractal and scaling properties, relevance of different life history traits and habitat variables) that correspond closely with field examples and were not analyzed, at least in this degree of detail, by the previously existing models.  相似文献   

4.
Understanding how invasive species establish and spread is vital for developing effective management strategies for invaded areas and identifying new areas where the risk of invasion is highest. We investigated the explanatory power of dispersal histories reconstructed based on local‐scale wind data and a regional‐scale wind‐dispersed particle trajectory model for the invasive seed chalcid wasp Megastigmus schimitscheki (Hymenoptera: Torymidae) in France. The explanatory power was tested by: (1) survival analysis of empirical data on M. schimitscheki presence, absence and year of arrival at 52 stands of the wasp's obligate hosts, Cedrus (true cedar trees); and (2) Approximate Bayesian analysis of M. schimitscheki genetic data using a coalescence model. The Bayesian demographic modeling and traditional population genetic analysis suggested that initial invasion across the range was the result of long‐distance dispersal from the longest established sites. The survival analyses of the windborne expansion patterns derived from a particle dispersal model indicated that there was an informative correlation between the M. schimitscheki presence/absence data from the annual surveys and the scenarios based on regional‐scale wind data. These three very different analyses produced highly congruent results supporting our proposal that wind is the most probable vector for passive long‐distance dispersal of this invasive seed wasp. This result confirms that long‐distance dispersal from introduction areas is a likely driver of secondary expansion of alien invasive species. Based on our results, management programs for this and other windborne invasive species may consider (1) focusing effort at the longest established sites and (2) monitoring outlying populations remains critically important due to their influence on rates of spread. We also suggest that there is a distinct need for new analysis methods that have the capacity to combine empirical spatiotemporal field data, genetic data, and environmental data to investigate dispersal and invasion.  相似文献   

5.
Although changes in land-use, climate, and the spread of introduced tree species have increased the global importance of tree invasions into grasslands, our ability to predict any particular invasion is limited. To elucidate mechanisms driving tree invasions of grasslands, we studied in detail how seed dispersal and fine-scale environment control the expansion of an introduced Picea abies Karst. (Norway spruce) population into Western Carpathian grassland. We mapped invading trees and measured tree size, fecundity, seed rain, seedling density, plant community composition, and light and soil environment within a 200 × 60 m belt across the invasion front. Maximum likelihood estimates of dispersal kernels suggested peak seed deposition directly underneath tree crowns where germination was poor, but mean dispersal distances were sufficiently large to generate overlapping seed shadows from multiple trees that saturated the invasion front with seeds further away from seed-dispersing trees. Partial Mantel tests indicated that germinant density was affected considerably less by seed rain than by moss cover (r = 0.54), overstory tree influence (r = −0.32), soil moisture (r = 0.21), grass cover (r = −0.15), and diffuse radiation (r = 0.13). However, these variables were not independent but formed complex multivariate gradients within the invasion front. Moss cover and soil moisture were negatively correlated with overstory tree influence and the resulting gradient clearly affected germinant density (partial Mantel r = 0.45). In contrast, positively correlated light and grass cover defined a gradient related weakly to germinant density (partial Mantel r = 0.05) as it integrated opposing effects of these variables on germinants. Seedlings had similar environmental associations, but except for the lasting positive effects of moss these tended to weaken with seedling size. Although a few seedlings may establish and survive in the more adverse environment of the outer edges of the invasion front, a significant population expansion may require a gradual build-up of the critical density of invading trees to reduce grass cover and facilitate germination on moist mossy seedbeds within uncolonized areas. Thus, Picea abies appears more likely to spread within temperate grasslands by gradual expansion of its population frontier rather than by advanced groups.  相似文献   

6.
Aim The spatial extent of western Canada’s current epidemic of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae), is increasing. The roles of the various dispersal processes acting as drivers of range expansion are poorly understood for most species. The aim of this paper is to characterize the movement patterns of the mountain pine beetle in areas where range expansion is occurring, in order to describe the fine‐scale spatial dynamics of processes associated with mountain pine beetle range expansion. Location Three regions of Canada’s Rocky Mountains: Kicking Horse Pass, Yellowhead Pass and Pine Pass. Methods Data on locations of mountain pine beetle‐attacked trees of predominantly lodgepole pine (Pinus contorta var. latifolia) were obtained from annual fixed‐wing aircraft surveys of forest health and helicopter‐based GPS surveys of mountain pine beetle‐damaged areas in British Columbia and Alberta. The annual (1999–2005) spatial extents of outbreak ranges were delineated from these data. Spatial analysis was conducted using the spatial–temporal analysis of moving polygons (STAMP), a recently developed pattern‐based approach. Results We found that distant dispersal patterns (spot infestations) were most often associated with marginal increases in the areal size of mountain pine beetle range polygons. When the mountain pine beetle range size increased rapidly relative to the years examined, local dispersal patterns (adjacent infestation) were more common. In Pine Pass, long‐range dispersal (> 2 km) markedly extended the north‐east border of the mountain pine beetle range. In Yellowhead Pass and Kicking Horse Pass, the extension of the range occurred incrementally via ground‐based spread. Main conclusions Dispersal of mountain pine beetle varies with geography as well as with host and beetle population dynamics. Although colonization is mediated by habitat connectivity, during periods of low overall habitat expansion, dispersal to new distant locations is common, whereas during periods of rapid invasion, locally connected spread is the dominant mode of dispersal. The propensity for long‐range transport to establish new beetle populations, and thus to be considered a driver of range expansion, is likely to be determined by regional weather patterns, and influenced by local topography. We conclude that STAMP appears to be a useful approach for examining changes in biogeograpical ranges, with the potential to reveal both fine‐ and large‐scale patterns.  相似文献   

7.
Dispersal processes of fungal plant pathogens can be inferred from analysis of spatial genetic structures resulting from recent range expansion. The relative importance of long‐distance dispersal (LDD) events vs. gradual dispersal in shaping population structures depends on the geographical scale considered. The fungus Mycosphaerella fijiensis, pathogenic on banana, is an example of a recent worldwide epidemic. Founder effects in this species were detected at both global and continental scale, suggesting stochastic spread of the disease through LDD events. In this study, we analysed the structure of M. fijiensis populations in two recently (∼1979–1980) colonized areas in Costa Rica and Cameroon. Isolates collected in 10–15 sites distributed along a ∼250‐ to 300‐ km‐long transect in each country were analysed using 19 microsatellite markers. We detected low‐to‐moderate genetic differentiation among populations in both countries and isolation by distance in Cameroon. Combined with historical data, these observations suggest continuous range expansion at the scale of banana‐production area through gradual dispersal of spores. However, both countries displayed specific additional signatures of colonization: a sharp discontinuity in gene frequencies was observed along the Cameroon transect, while the Costa Rican populations seemed not yet to have reached genetic equilibrium. These differences in the genetic characteristics of M. fijiensis populations in two recently colonized areas are discussed in the light of historical data on disease spread and ecological data on landscape features.  相似文献   

8.
Infestations of Dendroctonus frontalisZimm. are often observed to enlarge continuously by the colonization of new hosts in a pattern similar to a forest fire. This pattern of infestation growth presents unique problems in quantitatively estimating populations of D. frontalis. Beetle populations on each infested tree in an infestation go through five processes: attack, oviposition, reemergence, survivorship, and emergence. These processes, which have been described mathematically in the literature, each take several days for completion. In order to follow the distribution and abundance of D. frontalis throughout the course of development of a spot, we need a daily estimate of the number of beetles involved in each process on every tree. Since it is not practical to sample each tree daily, we developed a procedure whereby quantitative estimation procedures for within-tree populations were used in combination with the mathematical models for the life processes to produce a daily record of the number of adults successfully attacking trees, the number of eggs oviposited, the number of beetles reemerging, number of beetles surviving within the trees, and the number of beetles emerging. These daily estimates were then summarized for all trees in the spot for the duration of the infestation. The daily record of populations of D. frontalis, used with information on infestation geometry, were suggested to be of value in describing and elucidating several important facets of population dynamics including dispersal patterns within infestations, between tree beetle loss (mortality), and time lags among the various population processes. The information reported can be used to develop simulation models of population dynamics or to validate existing models.  相似文献   

9.
Theory predicts that mixed forests are more resistant to native pests than pure forests (i.e. associational resistance) because of reduced host accessibility and increased top-down control by natural enemies. Yet, whether the same mechanisms also apply to invasive pests remains to be verified. We tested the hypothesis of associational resistance against the invasive Asian chestnut gall wasp (ACGW, Dryocosmus kuriphilus) by comparing ACGW infestation rates on chestnuts (Castanea sativa) in stands varying in species composition (chestnut alone or associated with oaks, pines or ashes). We investigated the effects of reduced chestnut density and frequency in mixed stands, as well as the effect of biotic interactions between ACGW, its parasitoids and the chestnut blight disease (caused by Cryphonectria parasitica). ACGW infestation rates were significantly lower in chestnut–oak and chestnut–ash mixtures than in pure chestnut stands and chestnut–pine mixtures. Infestation rate decreased with decreasing chestnut relative proportion. The composition of native parasitoid communities emerged from galls significantly differed between pure and mixed chestnut stands, but not the species richness or abundance of parasitoids. The abundance of the introduced parasitoid Torymus sinensis was not correlated with ACGW infestation rates and was independent of stand composition. Blight symptoms modified ACGW infestation rates with taller trees being preferred when they were asymptomatic but avoided when they presented blight disease damage. Our results suggest that conservation biological control based on tree species mixtures could contribute to reducing the damage of invasive forest pests.  相似文献   

10.
Long-distance dispersal (LDD) of plants is difficult to measure but disproportionately important for various ecological and evolutionary processes. Dispersal of seeds of gallery-forest trees in savanna provides an opportunity for the study of colonisation processes and species coexistence driven by LDD. Investigations were carried out on 91 isolated trees along four gallery forests sampled in the Biosphere Reserve of Pendjari, Benin. The abundance of adult trees within nearest gallery forest was combined with functional traits (species maximum height, seed weight, morphological adaptation for dispersal by wind, water, birds and mammals) to explain the floristic composition of forest seedlings and saplings under isolated trees and in savanna. Stepwise negative binomial regression was used to identify the most significant variables explaining abundance of seedlings and saplings beneath isolated trees and in savanna and then derive colonisation from seedlings and persistence from saplings. The maximum height of species and seed weight explained the highest proportion of variance in species colonisation. Morphological dispersal syndromes by wind and birds had poor explanatory importance. Species rare in gallery forest had higher potential to colonise new environments through LDD whilst abundant species had higher persistence abilities. Contrary to the predictions of the seedling-size effect, small-seeded species dominated the sapling stage. The findings revealed the strong dependence of LDD and subsequent colonisation and persistence processes on species traits specialised for a variety of dispersal vectors. They also suggest that LDD towards isolated trees established far away from gallery forest can be difficult.  相似文献   

11.
The Asian longhorned beetle (ALB), Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), is recognised as potentially one of the most damaging invasive insects in Europe and North America. International trade has increased the risk of accidental introduction of ALB. An eradication programme was initiated in Northeast Italy in June 2009, when an ALB infestation was discovered. The infestation was monitored by annual surveys of all host‐tree species growing in the eradication area. Infested trees were cut down and chipped. This study analyses the spatiotemporal distribution of infested trees for a 5‐year period from 2008 to 2012 using a generalised linear model approach. The results show that spread and infestation risk were significantly affected by (1) distance of suitable hosts from the nearest infested trees, (2) number of infested trees in the surroundings, and (3) annual variation. The significant differences in beetle dispersal between years reflect to some extent the onset of the eradication programme. The model allowed the estimation of arbitrary probability‐based management boundaries surrounding ALB‐infested trees. For example, the model estimated a 0.1% probability of attack on a suitable host tree 1 910 m from an existing attack.  相似文献   

12.
Patterns of woody plants dispersal in a semi-arid nature reserve situated in Eastern Transvaal, South Africa, revealed that trees have spread from core areas and converted previously open grasslands to densely vegetated woodlands. These patterns were found in catchment areas of the gently undulating terrain which characterizes the region.Two plant communities dominated by Acacia senegal-Acacia tortilis and Euclea divinorum-Acacia nilotica were distinguished. Analysis of nearest-neighbour distances, dispersal patterns of seedlings and mature woody plants identified successional processes. These were manifested through intra and interspecific competition among the dominant tree species. Within each plant community, a transition of relative abundance was occurring namely, A. senegal became dominant in areas previously dominated by A. tortilis while E. divinorum was replacing previous A. nilotica dominance.Comparative assessment of the two plant communities was facilitated by the summary of competition and seedling dispersal indices in a multivariate analysis. Results indicated that tree species had characteristic dispersal strategies. Identification the patterns of woody plants establishment could advance the evaluation of successional dynamics and management of savannas in areas prone to bush encroachment.  相似文献   

13.
14.
Understanding the ability of plants to spread is important for assessing conservation strategies, landscape dynamics, invasiveness and ability to cope with climate change. While long‐distance seed dispersal is often viewed as a key process in population spread, the importance of inter‐specific variation in demography is less explored. Indeed, the relative importance of demography vs seed dispersal in determining population spread is still little understood. We modelled species’ potential for population spread in terms of annual migration rates for a set of species inhabiting dry grasslands of central Europe. Simultaneously, we estimated the importance of demographic (population growth rate) versus long‐distance dispersal (99th percentile dispersal distance) characteristics for among‐species differences in modelled population spread. In addition, we assessed how well simple proxy measures related to demography (the number and survival of seedlings, the survival of flowering individuals) and dispersal (plant height, terminal velocity and wind speed during dispersal) predicted modelled spread rates. We found that species’ demographic rates were the more powerful predictors of species’ modelled potential to spread than dispersal. Furthermore, our simple proxies were correlated with modelled species spread rates and together their predictive power was high. Our findings highlight that for understanding variation among species in their potential for population spread, detailed information on local demography and dispersal might not always be necessary. Simple proxies or assumptions that are based primarily on species demography could be sufficient.  相似文献   

15.
The climatic oscillations of the last glacial period have had profound influences on the demography and levels of genetic diversity of extant species. Molecular evidence of glacial effects on temperate species has been well documented, whereas little is known regarding that on subtropical species. Here we present analyses based on partial sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene (1052 bp) and genotypes at 15 microsatellite loci to investigate the historical demography, population structure and ongoing gene flow of an undescribed fig‐pollinating wasp (Ceratosolen sp. 1) of Ficus septica in subtropical Taiwan. Reconstructed historical demography based on the coalescent tree of COI sequences suggests that C. sp. 1 has undergone a drastic population expansion which was tightly coupled with climatic changes since the last glacial maximum (LGM). The magnitude of the population size change was approximately 500‐fold, indicating that the population of this wasp and its host was likely highly compressed during the last glacial period. The lack of significant population differentiation (FST < 0.02, for all pairwise FST values) may be due to rapid postglacial expansion facilitated by long‐distance dispersal, although a low frequency of first‐generation migrants was detected. Our results clearly demonstrate how recent climatic changes since the LGM and dispersal ability have jointly shaped the genetic composition of a subtropical fig‐pollinating wasp.  相似文献   

16.
The wood‐boring wasp, Sirex noctilio, is a global invasive pest that infects and kills pine trees by inoculating spores of a symbiotic fungus (Amylostereum areolatum) at oviposition. Wasp larvae depend on fungal growth to feed, while the fungus relies on female wasps to initially condition the pine tree by inoculating a phytotoxic venom and for dispersal. Wasp larvae use the fungus as an external gut for the digestion of lignocellulosic compounds resulting in a strong correlation between fungal growth inside the wood and wasp fitness. This study explores the hypothesis that female wasps will use fungal volatiles as a synomone in the process of locating suitable oviposition areas (i.e. trees). Using a Y‐tube olfactometer, adult female wasp behaviour was assessed towards fungal and pine tree volatiles (i.e. positive control). Our results are the first to demonstrate attraction of female S. noctilio towards volatiles of their fungal symbiont. Furthermore, the positive response towards these volatiles seems to be stronger than the response to a known attractant (i.e. pine volatiles). These results could be an important contribution to improving baits for monitoring and control purposes. Further work is needed, mainly oriented towards the identification of the volatiles that trigger the observed attraction response and their possible synergistic effects with tree volatiles.  相似文献   

17.
Macrodasyceras hirsutum Kamijo is the seed parasitoid wasp of the bird-dispersed, dioecious tree, Ilex integra Thunb. The wasp reduces the level of dispersal mutualism between the Ilex tree and its frugivorous birds by manipulating the color of mature berries. The female trees do not blossom every year and sometimes change sex. Thus, the reproduction biology of I. integra affects the population size and structure of M. hirsutum in a forest and consequently influences the seed dispersal mutualism between the tree and birds, because of limited ability of adult locomotion. To investigate the wasp population structure with reference to the dispersal mutualism between trees and birds, we isolated 14 microsatellite loci of M. hirsutum wasps. Every locus was polymorphic among 20 females, with 3–13 alleles per locus, without linkage disequilibrium. The observed and expected heterozygosities ranged from 0.100 to 0.900 and 0.099 to 0.818, respectively, indicating their utility in molecular analyses of the wasp population.  相似文献   

18.
The Asian chestnut gall wasp Dryocosmus kuriphilus (Hymenoptera: Cynipidae) is one of the most serious pests of chestnut trees worldwide. Wasps lay eggs into chestnut buds from mid Jane to late July, depending on latitude, and galls develop the following spring on new vegetation, reducing photosynthesis and nut production. We observed that modification of tissues surrounding D. kuriphilus eggs, which differentiate to form the larval chamber, started approximately 1 month after oviposition, shortly after eggs hatch. The larval chambers continued to increase slightly in size throughout the autumn months until January. After that, a period of stagnation, which corresponds to the plant's dormancy, occurred, followed by rapid growth from March to May, during the period from bud swelling to bud break. Galls continued to grow during the leaf expansion after bud break and stopped when plant organs achieved their final size. Our results have implications for the management of the pest, providing a better understanding of the critical time periods for the effective control.  相似文献   

19.
Abstract. Though fecundity and dispersal have been recognized as major factors in most invasion models, their ecological determinants are still poorly known. This paper aims to identify the main sources of variation in seed production and dispersal distance in a naturally expanding Pinus sylvestris population. We propose some tree measurements that may be related to their contribution to population expansion. We quantified cone and seed production and measured three seed characteristics related to their dispersal ability: mass, wing area and wing‐loading (mass:area ratio) in cones sampled at different relative heights and aspects in the canopy and in trees of different age and competitive status. Results showed that isolated trees had a much more abundant cone production, which was more evenly distributed in the canopy than trees within stands. Age was also positively related to cone production. Seed dimensions varied between and within trees but we found no effect of isolation or age. The strong positive correlation between wing area and seed mass leads to a limited variability of seed wing loading. Seed characteristics may thus play a minor role in individual dispersal ability and relative tree position in the stand that is strongly linked to tree fecundity should be more appropriate for estimating the individual contribution to the whole population expansion. Our results also highlight the importance of obtaining demographic data in low‐density populations to estimate the invasive potential of a species.  相似文献   

20.
Landscape diversity slows the spread of an invasive forest pest species   总被引:1,自引:0,他引:1  
According to the associational resistance hypothesis, diverse habitats provide better resistance to biological invasions than monocultures. Host‐plant abundance has been shown to affect the range expansion of invasive pests, but the effect of landscape diversity (i.e. density of host/non‐host patches and diversity of forest habitat patches) on invasions remains largely untested. We used boundary displacement models and boosted regression tree analyses to investigate the effects of landscape diversity on the invasion of Corsica by the maritime pine bast scale Matsucoccus feytaudi over an 18‐yr period. Taking the passive wind dispersal of the scale into account, we showed that open habitats and connectivity between host patches accelerated spread by up to 13%, whereas landscapes with high tree diversity and a high density of non‐host trees decreased scale spread by up to 14%. We suggest a new mechanism for such associational resistance to pest invasion at the landscape level, which we term ‘the pitfall effect’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号