首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Pools of human adipose-derived adult stem (hADAS) cells can exhibit multiple differentiated phenotypes under appropriate in vitro culture conditions. Because adipose tissue is abundant and easily accessible, hADAS cells offer a promising source of cells for tissue engineering and other cell-based therapies. However, it is unclear whether individual hADAS cells can give rise to multiple differentiated phenotypes or whether each phenotype arises from a subset of committed progenitor cells that exists within a heterogeneous population. The goal of this study was to test the hypothesis that single hADAS are multipotent at a clonal level. hADAS cells were isolated from liposuction waste, and ring cloning was performed to select cells derived from a single progenitor cell. Forty-five clones were expanded through four passages and then induced for adipogenesis, osteogenesis, chondrogenesis, and neurogenesis using lineage-specific differentiation media. Quantitative differentiation criteria for each lineage were determined using histological and biochemical analyses. Eighty one percent of the hADAS cell clones differentiated into at least one of the lineages. In addition, 52% of the hADAS cell clones differentiated into two or more of the lineages. More clones expressed phenotypes of osteoblasts (48%), chondrocytes (43%), and neuron-like cells (52%) than of adipocytes (12%), possibly due to the loss of adipogenic ability after repeated subcultures. The findings are consistent with the hypothesis that hADAS cells are a type of multipotent adult stem cell and not solely a mixed population of unipotent progenitor cells. However, it is important to exercise caution in interpreting these results until they are validated using functional in vivo assays.  相似文献   

2.
Adipose-derived stem cells are an attractive alternative as a source of stem cells that can easily be extracted from adipose tissue. Isolation, characterization, and multi-lineage differentiation of adipose-derived stem cells have been described for human and a number of other species. Here we aimed to isolate and characterize camel adipose-derived stromal cell frequency and growth characteristics and assess their adipogenic, osteogenic, and chondrogenic differentiation potential. Samples were obtained from five adult dromedary camels. Fat from abdominal deposits were obtained from each camel and adipose-derived stem cells were isolated by enzymatic digestion as previously reported elsewhere for adipose tissue. Cultures were kept until confluency and subsequently were subjected to differentiation protocols to evaluate adipogenic, osteogenic, and chondrogenic potential. The morphology of resultant camel adipose-derived stem cells appeared to be spindle-shaped fibroblastic morphology, and these cells retained their biological properties during in vitro expansion with no sign of abnormality in karyotype. Under inductive conditions, primary adipose-derived stem cells maintained their lineage differentiation potential into adipogenic, osteogenic, and chondrogenic lineages during subsequent passages. Our observation showed that like human lipoaspirate, camel adipose tissue also contain multi-potent cells and may represent an important stem cell source both for veterinary cell therapy and preclinical studies as well.  相似文献   

3.
The success of stem cell application in regenerative medicine, usually require a stable source of stem or progenitor cells. Fat tissue represents a good source of stem cells because it is rich in stem cells and there are fewer ethical issues related to the use of such stem cells, unlike embryonic stem cells. Therefore, there has been increased interest in adipose-derived stem cells (ADSCs) for tissue engineering applications. Here, we aim to provide an easy processing method for isolating adult stem cells from human adipose tissue harvested from the subcutaneous fat of the abdominal wall during gynecologic surgery. We used a homogenizer to mince fat and compared the results with those obtained from the traditional cut method involving a sterile scalpel and forceps. Our results showed that our method provides another stable and quality source of stem cells that could be used in cases with a large quantity of fat. Furthermore, we found that pregnancy adipose-derived stem cells (P-ADSCs) could be maintained in vitro for extended periods with a stable population doubling and low senescence levels. P-ADSCs could also differentiate in vitro into adipogenic, osteogenic, chondrogenic, and insulin-producing cells in the presence of lineage-specific induction factors. In conclusion, like human lipoaspirates, adipose tissues obtained from pregnant women contain multipotent cells with better proliferation and showed great promise for use in both stem cell banking studies as well as in stem cell therapy.  相似文献   

4.
探讨大鼠脂肪间充质干细胞(adipose-derived mesenchymal stem cells,AMSC)体外分化成心肌样细胞的潜能,为自体干细胞移植治疗心肌梗死提供理论基础.采用消化法分离大鼠AMSC,培养于RPMI1640生长培养基中,倒置相差显微镜观察细胞形态发现,随着培养时间的延长,细胞形态趋向于心肌细胞,SQ RT-PCR检测表达心肌特异性基因:β-肌球蛋白重链(β-MHC)、α-肌球蛋白重链(α-MHC)、心房利钠肽(ANP)、心肌肌钙蛋白(cTnT)、心肌肌动蛋白、肌肉增强因子和GATA-4;免疫细胞化学和免疫荧光染色检测表达心肌细胞特异性蛋白:结蛋白、横纹肌辅肌动蛋白、心肌肌动蛋白和间隙连接蛋白45(connexin 45);Western印迹检测表达心肌特异性蛋白Nkx2.5. 实验表明,大鼠AMSC在体外培养条件下能分化成心肌样细胞,在组织工程学及干细胞移植领域有着良好的应用前景.  相似文献   

5.
The stromal-vascular cell fraction (SVF) of adipose tissue can be an abundant source of both multipotent and pluripotent stem cells, known as adipose-derived stem cells or adipose tissue-derived stromal cells (ADSCs). The SVF also contains vascular cells, targeted progenitor cells, and preadipocytes. Stromal cells isolated from adipose tissue express common surface antigens, show the ability to adhere to plastic, and produce forms that resemble fibroblasts. They are characterized by a high proliferation potential and the ability to differentiate into cells of meso-, ecto- and endodermal origin. Although stem cells obtained from an adult organism have smaller capabilities for differentiation in comparison to embryonic and induced pluripotent stem cells (iPSs), the cost of obtaining them is significantly lower. The 40 years of research that mainly focused on the potential of bone marrow stem cells (BMSCs) revealed a number of negative factors: the painful sampling procedure, frequent complications, and small cell yield. The number of stem cells in adipose tissue is relatively large, and obtaining them is less invasive. Sampling through simple procedures such as liposuction performed under local anesthesia is less painful, ensuring patient comfort. The isolated cells are easily grown in culture, and they retain their properties over many passages. That is why adipose tissue has recently been treated as an attractive alternative source of stem cells. Essential aspects of ADSC biology and their use in regenerative medicine will be analyzed in this article.  相似文献   

6.
7.
This article presents the stem and progenitor cells from subcutaneous adipose tissue,briefly comparing them with their bone marrow counterparts,and discussing their potential for use in regenerative medicine.Subcutaneous adipose tissue differs from other mesenchymal stromal/stem cells(MSCs) sources in that it contains a pre-adipocyte population that dwells in the adventitia of robust blood vessels.Pre-adipocytes are present both in the stromal-vascular fraction(SVF;freshly isolated cells) and in the adherent fraction of adipose stromal/stem cells(ASCs;in vitro expanded cells),and have an active role on the chronic inflammation environment established in obesity,likely due their monocyticmacrophage lineage identity.The SVF and ASCs have been explored in cell therapy protocols with relative success,given their paracrine and immunomodulatory effects.Importantly,the widely explored multipotentiality of ASCs has direct application in bone,cartilage and adipose tissue engineering.The aim of this editorial is to reinforce the peculiarities of the stem and progenitor cells from subcutaneous adipose tissue,revealing the spheroids as a recently described biotechnological tool for cell therapy and tissue engineering.Innovative cell culture techniques,in particular 3 D scaffold-free cultures such as spheroids,are now available to increase the potential for regeneration and differentiation of mesenchymal lineages.Spheroids are being explored not only as a model for cell differentiation,but also as powerful 3 D cell culture tools to maintain the stemness and expand the regenerative and differentiation capacities of mesenchymal cell lineages.  相似文献   

8.
We compared the two sources of adipose and bone marrow-derived mesenchymal stem cells (BMSCs and AMSCs ) in multiple differentiation capacity and biological characteristics to provide a theoretical basis for stem cells transplantation. We isolated bone marrow- and adipose-derived mesenchymal stem cells and compared their phenotype,cell doubling time, the secretion of factors and their ability of multi-differentiation. We also compared their differences in T lymphocyte activation, proliferation and suppression. BMSCs and AMSCs were similar in cell phenotype and the differences existed only in the expression of CD106. On the proliferation rate, AMSCs were faster than BMSCs (doubling time 28 vs. 39?h). In addition, both of these two sources of cells were able to differentiate into bone, fat and cartilage that proved their stem cells properties and the number of stem cell progenitors (CFU-F) from adipose tissue were 10 times larger than those from bone marrow. But AMSCs showed a diminished capacity for suppressing T lymphocyte proliferation and activation compared to BMSCs. Cell origin and abundance were decisive factors in stem cells applications and, in the same volume, with the same premise of AMSCs and BMSCs, adipose tissue is a more promising source of stem cells.  相似文献   

9.
Adipose-derived stem cells: isolation, expansion and differentiation   总被引:1,自引:0,他引:1  
The emerging field of regenerative medicine will require a reliable source of stem cells in addition to biomaterial scaffolds and cytokine growth factors. Adipose tissue has proven to serve as an abundant, accessible and rich source of adult stem cells with multipotent properties suitable for tissue engineering and regenerative medical applications. There has been increased interest in adipose-derived stem cells (ASCs) for tissue engineering applications. Here, methods for the isolation, expansion and differentiation of ASCs are presented and described in detail. While this article has focused on the isolation of ASCs from human adipose tissue, the procedure can be applied to adipose tissues from other species with minimal modifications.  相似文献   

10.
Adipose-derived adult stem cells for cartilage tissue engineering   总被引:9,自引:0,他引:9  
Guilak F  Awad HA  Fermor B  Leddy HA  Gimble JM 《Biorheology》2004,41(3-4):389-399
Tissue engineering is a promising therapeutic approach that uses combinations of implanted cells, biomaterial scaffolds, and biologically active molecules to repair or regenerate damaged or diseased tissues. Many diverse and increasingly complex approaches are being developed to repair articular cartilage, with the underlying premise that cells introduced exogenously play a necessary role in the success of engineered tissue replacements. A major consideration that remains in this field is the identification and characterization of appropriate sources of cells for tissue-engineered repair of cartilage. In particular, there has been significant emphasis on the use of undifferentiated progenitor cells, or "stem" cells that can be expanded in culture and differentiated into a variety of different cell types. Recent studies have identified the presence of an abundant source of stem cells in subcutaneous adipose tissue. These cells, termed adipose-derived adult stem (ADAS) cells, show characteristics of multipotent adult stem cells, similar to those of bone marrow derived mesenchymal stem cells (MSCs), and under appropriate culture conditions, synthesize cartilage-specific matrix proteins that are assembled in a cartilaginous extracellular matrix. The growth and chondrogenic differentiation of ADAS cells is strongly influenced by factors in the biochemical as well as biophysical environment of the cells. Furthermore, there is strong evidence that the interaction between the cells, the extracellular biomaterial substrate, and growth factors regulate ADAS cell differentiation and tissue growth. Overall, ADAS cells show significant promise for the development of functional tissue replacements for various tissues of the musculoskeletal system.  相似文献   

11.
12.
Tissue engineering has shown promise for the development of constructs to facilitate large volume soft tissue augmentation in reconstructive and cosmetic plastic surgery. This article reviews the key progress to date in the field of adipose tissue engineering. In order to effectively design a soft tissue substitute, it is critical to understand the native tissue environment and function. As such, the basic physiology of adipose tissue is described and the process of adipogenesis is discussed. In this article, we have focused on tissue engineering using a cell-seeded scaffold approach, where engineered extracellular matrix substitutes are seeded with exogenous cells that may contribute to the regenerative response. The strengths and limitations of each of the possible cell sources for adipose tissue engineering, including adipose-derived stem cells, are detailed. We briefly highlight some of the results from the major studies to date, involving a range of synthetic and naturally derived scaffolds. While these studies have shown that adipose tissue regeneration is possible, more research is required to develop optimized constructs that will facilitate safe, predictable and long-term augmentation in clinical applications.Key words: tissue engineering, regenerative medicine, adipose tissue, adipose-derived stem cells, adipogenesis, cell culture, scaffolds, cell-biomaterial interactions  相似文献   

13.
14.
Populations of human mesenchymal stem cells were derived from bone marrow and adipose tissue. Here analysis of six individuals is represented. Cells were isolated, expanded and evaluated by the expression of surface antigens using flow cytometry. These cells displayed similar characteristics for many markers. Cells isolated from bone marrow and adipose tissue were found to be homogeneously positive for CD13, CD44, CD90, CD105, and negative for CD45, CD34, CD31 and CD117. Besides, differences in surface antigene CD10 expression between narrow and adipose tissue-derived cells were detected. All these findings indicate that both bone marrow and adipose tissue are important sources of mesenchymal stem cells, which could be used in cell therapy protocols.  相似文献   

15.
脂肪干细胞(adipose-derived stem cells,ADSCs)是从脂肪组织中分离得到的一种具有多元分化潜能的干细胞,且脂肪组织在人体内的储量丰富,取材简单。因此,人源脂肪干细胞(human adipose-derived stem cells,hADSCs)具有良好的应用前景,如干细胞治疗、再生以及药物研发等。然而,要将这些基础研究成果应用于临床,必须通过临床前的安全性、可行性和潜在的风险评估。而在实验动物中,猪与人类在解剖学、遗传学和生理学上非常相似,因此猪脂肪干细胞(porcine adiposederived stem cells,pADSCs)的相关研究对人脂肪干细胞走向临床应用具有重要的理论及实践意义。基于猪脂肪干细胞的重要作用,本文综述了猪脂肪干细胞的分离、培养、免疫表型、分化能力及应用前景。  相似文献   

16.
Mesenchymal stem cells from adipose tissue (ADSCs) are an important source of cells for regenerative medicine. The therapeutic effect of culture-expanded adipose derived stem cells has been shown; however, optimal xeno-free culture conditions remain to be determined. Cancer patients, specifically those undergoing invasive surgery, constitute a subgroup of patients who could benefit from autologous stem cell transplantation. Although regenerative potential of their ADSCs could be affected by the disease and/or treatment, we are not aware of any study that has evaluated the therapeutic potential of ADSCs isolated from cancer patients in reference to that of ADSCs derived from healthy subjects. Here we report that ADSCs isolated from subabdominal adipose tissue of patients with urological neoplasms yielded similar growth kinetics, presented equivalent mesenchymal surface markers and showed similar differentiation potential into distinct mesodermal cell lineages: adipocytes, chondroblasts and osteoblasts than ADSCs isolated from adipose tissue of age-matched non-oncogenic participants, all under xeno-free growth culture conditions. Molecular karyotyping of patient expanded ADSCs genomes showed no disease-related alterations indicating their safety. In addition, vesicles <100 nm identified as exosomes (EXOs) which may be at least partly responsible for the attributed therapeutic paracrine effects of the ADSCs were effectively isolated from ADSCs and showed equivalent miRNA content regardless they were derived from cancer patients or non-oncogenic participants indicating that the repair capabilities of xeno-free expanded ADSCs are not compromised by patient condition and therefore their xeno-free culture expanded ADSCs should be suitable for autologous stem cell transplantation in a clinical setting.  相似文献   

17.
18.
种子细胞也是组织工程的核心研究内容,获得足够数量和质量的种子细胞是开展体外组织工程的必要基础。用于组织工程的种子细胞必须具有形成新组织结构的能力,主要来源于自体、同种异体或异种,在具体应用时各有利弊。一些成体干细胞由于不存在伦理争议以及发育分化条件相对简单等优势是重要的种子细胞,包括造血干细胞、骨髓干细胞、神经干细胞、脂肪干细胞、皮肤干细胞。人胚胎干细胞及其组织工程要真正在临床医学中得到应用,还有很长的一段路要走。其他一些细胞也可以作为组织工程种子细胞,包括内皮细胞、上皮细胞、成纤维细胞、骨细胞、成骨细胞、角质细胞、前脂肪细胞、脂肪细胞、肌腱细胞等。这些细胞已分化,分裂能力有限,但仍应用于组织工程。理想的种子细胞具有一定标准。  相似文献   

19.
This is a review of the growing scientific interest in the developmental plasticity and therapeutic potential of stromal cells isolated from adipose tissue. Adipose-derived stem/stromal cells (ASCs) are multipotent somatic stem cells that are abundant in fat tissue. It has been shown that ASCs can differentiate into several lineages, including adipose cells, chondrocytes, osteoblasts, neuronal cells, endothelial cells, and cardiomyocytes. At the same time, adipose tissue can be harvested by a minimally invasive procedure, which makes it a promising source of adult stem cells. Therefore, it is believed that ASCs may become an alternative to the currently available adult stem cells (e.g. bone marrow stromal cells) for potential use in regenerative medicine. In this review, we present the basic information about the field of adipose-derived stem cells and their potential use in various applications.  相似文献   

20.
Rapid repair of the denuded alveolar surface after injury is a key to survival. The respiratory tract contains several sources of endogenous adult stem cells residing within the basal layer of the upper airways, within or near pulmonary neuroendocrine cell rests, at the bronchoalveolar junction, and within the alveolar epithelial surface, which contribute to the repair of the airway wall. Bone marrow-derived adult mesenchymal stem cells circulating in blood are also involved in tracheal regeneration. However, an organism is frequently incapable of repairing serious damage and defects of the respiratory tract resulting from acute trauma, lung cancers, and chronic pulmonary and airway diseases. Therefore, replacement of the tracheal tissue should be urgently considered. The shortage of donor trachea remains a major obstacle in tracheal transplantation. However, implementation of tissue engineering and stem cell therapy-based approaches helps to successfully solve this problem. To date, huge progress has been achieved in tracheal bioengineering. Several sources of stem cells have been used for transplantation and airway reconstitution in animal models with experimentally induced tracheal defects. Most tracheal tissue engineering approaches use biodegradable three-dimensional scaffolds, which are important for neotracheal formation by promoting cell attachment, cell redifferentiation, and production of the extracellular matrix. The advances in tracheal bioengineering recently resulted in successful transplantation of the world's first bioengineered trachea. Current trends in tracheal transplantation include the use of autologous cells, development of bioactive cell-free scaffolds capable of supporting activation and differentiation of host stem cells on the site of injury, with a future perspective of using human native sites as micro-niche for potentiation of the human body's site-specific response by sequential adding, boosting, permissive, and recruitment impulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号