首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two mitochondrial genes were examined to compare an isolated population of the Adriatic brook lamprey Lampetra zanandreai in central Italy with other populations in the species range (Po plain) and with parasitic and freshwater lampreys. A single haplotype, identical to one in a Venetian sample, was found in 10 individuals from the isolated population. The reduced variability is consistent with a history of dispersal after the Pleistocene expansion of the Po basin. The results support the hypothesis of an origin of L. zanandreai and L. fluviatilisL. planeri from a common anadromous ancestor.  相似文献   

2.
Carpopeltis maillardii has been regarded as a widely distributed species in the Indo-Pacific region. In this study, we analyzed the genetic diversity of C. maillardii and related species collected from Taiwan and the Indian Ocean based on rbcL sequences, in order to elucidate species boundaries, diversity, and biogeographic patterns. Our analyses show that C. maillardii specimens are only distantly related to the genus Carpopeltis (type: C. phyllophora) but instead form a clade together with species of Yonagunia. We therefore propose the new combination Yonagunia maillardii comb. nov. In addition, two new species (Yonagunia palmata sp. nov. and Yonagunia taiwani-borealis sp. nov.) are described from Taiwan. The close relationship of Yonagunia to Grateloupia is corroborated by detailed observations of the female reproductive structures, which demonstrate that the development of auxiliary cell ampullae before and after diploidization is similar to that of Grateloupia sensu stricto. Namely, the ampullae are composed of only two orders of unbranched filaments in which only a few ampullar cells are incorporated into a basal fusion cell after diploidization of the auxiliary cell and the pericarp consists almost entirely of secondary medullary filaments. Of all Yonagunia species, Y. maillardii has the widest distribution in the Indo-Pacific, and can be identified in the field by its relatively thin, feathery, and highly branched morphology. Most other species, including those that occur in Taiwan, are seemingly more range-restricted. Our phylogenetic analyses resulted in a well-resolved phylogeny of Yonagunia, with an origin estimated in the Eocene–Oligocene, and diversification of species mainly in the Miocene.  相似文献   

3.
Ecological niche models can be useful for clarifying relationships between environmental factors and a species’ geographic distribution. In this study, we use presence‐only data and environmental layers to create an ecological niche model to better understand the distribution of the East African Angolan black and white colobus monkey, Colobus angolensis palliatus, and to assess whether the model supports considering the population as two separate subspecies, Colobus angolensis sharpei and C. a. palliatus. We found the range of the predicted distribution for suitable habitat of C. a. palliatus as currently classified to be only 12.4% of that shown in the International Union for Conservation of Nature Red List range map and to be fragmented. As C. angolensis is considered a “Least Concern” species, this difference suggests that generalized maps may lead to understating the species’ extinction risk. When presence points were divided into two previously proposed subspecies —C. a. palliatus (Kenya and Northern Tanzania) and C. a. sharpei (Southern Tanzania)—we found significant environmental differences between the distributions. The most important ecological variable for C. a. palliatus was predominantly precipitation of the driest month (69.1%) whereas for C. a. sharpei annual precipitation (44.8%) and land cover (normalized difference vegetation index, 16.4%) were the most important. When comparing suitable ranges for the separate distributions, we found only a 1.2% geographical overlap. These differences are consistent with previous subspecies delineations of C. a. palliatus and C. a. sharpei based upon morphology, pelage, and genetics. Our study suggests that extirpation of C. a. palliatus in suitable habitat areas and occurrence of this subspecies in anthropogenic environments, warrant further consideration for conservation actions.  相似文献   

4.
In 2007 we conducted a field study of almost 6 mo to determine the distribution of Callicebus oenanthe, formerly known as the Andean titi monkey. There previously has been no extensive study on the distribution and status by other fieldworkers. We visited a total of 96 localities within or around the presumed distribution of this rare primate species to determine the distribution of Callicebus oenanthe. We collected additional information on group size and threats to the species. Our expeditions revealed that the species is not endemic to the Alto Mayo Valley, as earlier authors suggested, but that its distribution extends into the Bajo Mayo and Huallaga Central. The study area is heavily deforested, and to date only one area was found where a viable population might live, although further research is needed to confirm this. The species lives in the southern part of its distribution in sympatry with another, undescribed species of Callicebus. We will continue the study to determine more precisely the distribution and conservation status of the Callicebus oenanthe, to determine if conservation measures are necessary for this species. This is the first activity of a long-term project for the conservation of Callicebus oenanthe initiated by La Vallée des Singes Primate park.  相似文献   

5.
Charophytes are benthic algae with a complex morphology and high phenotypic plasticity. This has led to ambiguities in species delineation. However, until now genetic studies on Chara have been based on samples collected from a restricted geographic range or only included a restricted number of taxa. This may have hindered a general interpretation of the results. We applied barcoding of matK, a rapidly evolving coding section of the plastid genome, in 324 Chara samples collected from 19 countries, in order to test whether the distribution of barcode haplotypes among individuals was consistent with species boundaries as they are currently understood. The phylogenetic tree grouped the 324 Chara individuals, which according to commonly used identification keys represented 29 species, into 12 well-defined groups (i.e. monophyletic morphospecies or groups of morphospecies). Considerable morphological variation occurred within genetically homogeneous groups. This included traits which are commonly used for Chara species determination, such as the length and number of spine cells, the length of stipulodes and bract cells, cortication (tylacanthous, isostichous, aulacanthous and absent cortication), as well as sex differentiation. However, there were also substantial genetic differences among morphologically similar species (e.g. C. virgataC. globularis – C. connivens). No morphological trait consistently reflected genetic differences. This indicates that morphological traits for specific taxa may serve as diagnostic tools for species delimitation, but that they are not generally suitable for inferring genetic differentiation or phylogenetic relationships. We propose that (i) C. virgata and C. strigosa, (ii) C. liljebladii, C. horrida and C. baltica, and (iii) C. hispida, C. rudis and C. polyacantha are conspecific. Our data also indicate that C. gymnophylla should be divided into tylacanthous forms (which are closely related to C. contraria) and aulacanthous forms (which are related to C. vulgaris).  相似文献   

6.
A fundamental consideration for the conservation of a species is the extent of its native range, that is, regions naturally colonized. However, both natural processes and human‐mediated introductions can drive species distribution shifts. Ruling out the human‐mediated introduction of a species into a given region is vital for its conservation, but remains a significant challenge in most cases. The crucian carp Carassius carassius (L.) is a threatened freshwater fish thought to be native to much of Europe. However, its native status in England is based only on anecdotal evidence. Here, we devise an approach that can be used to empirically test the native status of English fauna. We use this approach, along with 13 microsatellite loci, population structure analyses, and Approximate Bayesian Computation (ABC), to test hypotheses for the origins of C. carassius in England. Contrary to the current consensus, we find strong support for the human‐mediated introduction of C. carassius into England during the 15th century. This result stimulates an interesting and timely debate surrounding motivations for the conservation of species. We discuss this topic, and the potential for continued conservation of C. carassius in England, despite its non‐native origins.  相似文献   

7.
Aim Increasing our understanding of the effects of the Last Glacial Maximum (LGM) and determining the location of refugia requires studies on widely distributed species with dense sampling of populations. We have reconstructed the biogeographic history of Clitarchus hookeri (White), a widespread species of New Zealand stick insect that exhibits geographic parthenogenesis, using phylogeographic analysis and ecological niche modelling. Location New Zealand. Methods We used DNA sequence data from the mitochondrial cytochrome c oxidase subunit I gene to reconstruct phylogenetic relationships among haplotypes from C. hookeri and two undescribed Clitarchus species. We also used distribution data from our own field surveys and museum records to reconstruct the geographic distribution of C. hookeri during the present and the LGM, using ecological niche modelling. Results The ecological niche models showed that the geographic distribution of C. hookeri has expanded dramatically since the LGM. Our model predicted large areas of suitable LGM habitat in upper North Island, and small patches along the east coast of South Island. The phylogeographic analysis shows that populations in the northern half of North Island contain much higher levels of genetic variation than those from southern North Island and South Island, and is congruent with the ecological niche model. The distribution of bisexual populations is also non-random, with males completely absent from South Island and very rare in southern North Island. Main conclusions During the LGM C. hookeri was most likely restricted to several refugia in upper North Island and one or more smaller refugia along the east coast of South Island. The unisexual populations predominate in post-glacial landscapes and are clearly favoured in the recolonization of such areas. Our study exemplifies the utility of integrating ecological niche modelling and phylogeographic analysis.  相似文献   

8.
Ectoparasites have often been shown to have detrimental effects on their host. Not much is known, however, about determinants of infestation, e.g. the question of which factors affect distribution and occurrence of parasites on different host species (degree of host specificity) and their infestation rates. In this study we examine possible effects of host determinants on parasite intensity of Carnus hemapterus (Carnidae), an ectoparasitic fly on nestling birds, in the European bee-eater (Merops apiaster), which is a common host of C. hemapterus. Our results show that European bee-eaters seem to be one of the most heavily infested host species of C. hemapterus. We found that brood size, nestling age, and colony size are the most important determinants of infestation by C. hemapterus. This parasite seems to prefer medium-sized bee-eater chicks and to select them according to their condition. Our results further suggest a negative effect of C. hemapterus on chick development.  相似文献   

9.
Although Cimicifuga foetida L. (Ranunculaceae) has been shown to be a distinct species distributed only in northern Asia (Siberia, Mongolia), the Sino‐Himalayan species C. frigida Royle remains to be much confused with the Chinese endemic C. mairei H. Lév. The independent species status of C. frigida is recognized by some authors, but refuted by others. A cytogeographical study has shown that the ploidy level is well correlated with the geographical distribution of C. frigida and C. mairei. Cimicifuga frigida is a tetraploid (2n = 32) occurring in the Sino‐Himalayan region, whereas C. mairei is a diploid (2n = 16) occurring in central and southwestern China. There is only minor overlap in their geographical distributions in northwestern Yunnan, China. The ploidy level is also well correlated with the morphological characters, in particular the shape of the staminodes, which has previously been used as the only reliable morphological character to distinguish between C. frigida and C. mairei. The cytogeographical pattern, therefore, lends strong support for the recognition of the independent species status of C. frigida. This species is the only polyploid species currently known in the genus.  相似文献   

10.
We used data from 12 allozyme loci for two endemic Brassicaceae from Gran Canaria (the endangered narrow endemic Crambe tamadabensis and its more widespread congener C. pritzelii) to assess whether their genetic diversity patterns reflect their phylogenetic closeness and contrasting population sizes and distribution areas, and to derive conservation implications. Genetic diversity values are high for both species and slightly higher in C. tamadabensis, despite its narrow distribution in north‐western Gran Canaria. At odds with the generally high interpopulation diversity levels reported in Canarian endemics, values of GST in C. tamadabensis and C. pritzelii are rather low (0.067 and 0.126, respectively). We construe that the higher genetic structure detected in C. pritzelii is mainly a result of unbalanced allele frequencies and low population sizes at the edges of its distribution. The overall high allozyme variation detected in C. tamadabensis and C. pritzelii is nevertheless compatible with an incipient but consistent genetic differentiation between the two species, modulated by recurrent bottlenecks caused by grazing and drift. Our data suggest that conservation efforts aimed at maintaining the existing genetic connectivity in each species and ex situ conservation of seeds are the best strategies to conserve their genetic diversity.  相似文献   

11.
Populations may potentially respond to climate change in various ways including moving to new areas or alternatively staying where they are and adapting as conditions shift. Traditional laboratory and mesocosm experiments last days to weeks and thus only give a limited picture of thermal adaptation, whereas ocean warming occurring over decades allows the potential for selection of new strains better adapted to warmer conditions. Evidence for adaptation in natural systems is equivocal. We used a 50‐year time series comprising of 117 056 samples in the NE Atlantic, to quantify the abundance and distribution of two particularly important and abundant members of the ocean plankton (copepods of the genus Calanus) that play a key trophic role for fisheries. Abundance of C. finmarchicus, a cold‐water species, and C. helgolandicus, a warm‐water species, were negatively and positively related to sea surface temperature (SST) respectively. However, the abundance vs. SST relationships for neither species changed over time in a manner consistent with thermal adaptation. Accompanying the lack of evidence for thermal adaptation there has been an unabated range contraction for C. finmarchicus and range expansion for C. helgolandicus. Our evidence suggests that thermal adaptation has not mitigated the impacts of ocean warming for dramatic range changes of these key species and points to continued dramatic climate induced changes in the biology of the oceans.  相似文献   

12.

Aim

To measure the effects of including biotic interactions on climate‐based species distribution models (SDMs) used to predict distribution shifts under climate change. We evaluated the performance of distribution models for an endangered marsupial, the northern bettong (Bettongia tropica), comparing models that used only climate variables with models that also took into account biotic interactions.

Location

North‐east Queensland, Australia.

Methods

We developed separate climate‐based distribution models for the northern bettong, its two main resources and a competitor species. We then constructed models for the northern bettong by including climate suitability estimates for the resources and competitor as additional predictor variables to make climate + resource and climate + resource + competition models. We projected these models onto seven future climate scenarios and compared predictions of northern bettong distribution made by these differently structured models, using a ‘global’ metric, the I similarity statistic, to measure overlap in distribution and a ‘local’ metric to identify where predictions differed significantly.

Results

Inclusion of food resource biotic interactions improved model performance. Over moderate climate changes, up to 3.0 °C of warming, the climate‐only model for the northern bettong gave similar predictions of distribution to the more complex models including interactions, with differences only at the margins of predicted distributions. For climate changes beyond 3.0 °C, model predictions diverged significantly. The interactive model predicted less contraction of distribution than the simpler climate‐only model.

Main conclusions

Distribution models that account for interactions with other species, in particular direct resources, improve model predictions in the present‐day climate. For larger climate changes, shifts in distribution of interacting species cause predictions of interactive models to diverge from climate‐only models. Incorporating interactions with other species in SDMs may be needed for long‐term prediction of changes in distribution of species under climate change, particularly for specialized species strongly dependent on a small number of biotic interactions.  相似文献   

13.
The germination requirements of sexually reproducing plants are regulated by environmental factors such as temperature. Those factors acting at the germination phase are part of the regeneration niche, which is fundamental in the processes that contribute to habitat suitability and geographic distribution. We tested the hypothesis that rarity is associated with regeneration niche in three species of plants in the family Gesneriaceae (tribe Sinningieae), Sinningia rupicola (Mart.) Wiehler, Paliavana sericiflora Benth and Sinningia allagophylla (Mart.) Wiehler, which vary in their distribution and habitat specificity but share a small zone of sympatry in rocky fields south of Belo Horizonte in Minas Gerais, Brazil. The regeneration niche was tested using a seed germination experiment under controlled light conditions at seven fixed temperatures (10–40°C at 5°C intervals). Each of the three species germinated differently at the various temperatures. The species with the smallest geographic range, S. rupicola, also had the most restricted germination: germination peaked at 15°C when relatively few seeds germinated (45%), and even fewer germinated at other temperatures. The regeneration niche was wider in P. sericiflora and wider still in S. allagophylla, with germination greater than 90% between 15–25°C and greater than 80% between 15–30°C, respectively. Our germination results provide qualified support for the hypothesis of correlation of the regeneration niche with geographic distribution of related plant taxa, with important conservation implications for rare and endangered species.  相似文献   

14.
Disjunct distribution patterns regularly resulted in the separation of different genetic lineages in glacial refugia. Recent patterns of survival and expansion have been often revealed by climatic niche modelling. We used the combination of genetic markers, geometric morphometry and climatic niche modelling to clear up the taxonomy and reconstruct the potential range of an endemic Iranian, taxonomically disputed Melitaea species in climatically different epochs. Our results show that this species (Melitaea abbas Gross and Ebert 1975, comb. n. = M. zagrosi Tóth and Varga syn. nova) is clearly separated from all taxa of the Melitaea phoebe species group and only occurs in Iran and Azerbaijan but were also predicted for some adjacent regions. Molecular markers and distribution modelling show consistently that this species should have had a long‐term survival in this area, and its range could have been slightly larger during the last glacial maximum than currently. Based on the studied molecular markers, three main groups in M. abbas can be recognized: those of steppic area of Azerbaijan, western Iran and northeastern Iran. Each group is characterized by own mitochondrial haplotypes, but also a high level of genetic diversity appears in the central part of the distribution area (Zagros Mts.).  相似文献   

15.
The sponge species Chondrilla nucula has a simple morphology and a very wide geographical distribution. To verify whether the latter might be an artifact of the former, samples of this species were collected across 10,000 km of its range, in the Mediterranean, the Caribbean, and the southwestern atlantic. The classical (spicule morphology) and molecular (allozymes) systematic approaches were compared, to try to define the geographic limits between populations and detect possible cryptic species. We found five distinct genetic forms within C. nucula that sometimes showed morphological homogeneity and other times plasticity. The difference in size of spicules could not be related to the clear-cut genetic differences, suggesting that the use of spicule sizes for sponge systematics should be reappraised. The population of one of the genetic forms along 3000 km of the Brazilian coast was highly structured (FST = 0.21; Nem = 0.96). Our results reject the null hypothesis of cosmopolitanism of C. nucula and indicate that the putative worldwide distribution of some marine sponges, and possibly many other benthic invertebrates, may be the result of overly conservative systematics. Cryptic species appear to be particularly prevalent when genera are well defined but species are characterized by only a few morphological characters.  相似文献   

16.
The relative growth rate of young sporophytes of Undaria pinnatifida (Harvey) Suringar and Undaria undarioides (Yendo) Okamura was examined in order to understand the difference in distribution of these two species around the coast of Japan. The optimal temperature for growth of both species was similar at 20°C and the upper critical temperature for growth was also similar, at 27°C for U. pinnatifida and 26°C for U. undarioides. Therefore, the optimal and upper critical temperatures for growth of the young sporophytes are not the main factors determining the distribution of each species. Next, the lower critical temperatures for growth were examined. For the young sporophytes of U. pinnatifida, the lower limit was less than 5°C while for those of U. undarioides it was 15°C. Thus, the difference in the lower critical temperature for growth between the two species was approximately 10°C. During the period of young sporophyte growth in the field, the temperature at the mouth of Ise Bay, Japan, where U. pinnatifida occurs, ranges from 12.7°C in December to 13.1°C in April, with a minimum of 7.9°C in February. Our experiments indicate that young sporophytes are able to grow throughout this period. The temperature off Hamajima, Japan, where U. undarioides occurs, ranges from 19.1°C to 14.8°C during the same time period. Again, young sporophytes are able to growth throughout this period, although minimum winter temperatures are only just high enough for growth. These natural temperature ranges during the growth season of the sporophytes agree well with the experimentally determined temperature requirements for growth of each species. Therefore, the difference between the two species in the critical temperature required for growth of the young sporophytes, especially in the low temperature range, is one of the major factors determining the distribution pattern of each species.  相似文献   

17.
We tested the hypothesis that the rate of marsupial cranial evolution is dependent on the distribution of genetic variation in multivariate space. To do so, we carried out a genetic analysis of cranial morphological variation in laboratory strains of Monodelphis domestica and used estimates of genetic covariation to analyse the morphological diversification of the Monodelphis brevicaudata species group. We found that within‐species genetic variation is concentrated in only a few axes of the morphospace and that this strong genetic covariation influenced the rate of morphological diversification of the brevicaudata group, with between‐species divergence occurring fastest when occurring along the genetic line of least resistance. Accounting for the geometric distribution of genetic variation also increased our ability to detect the selective regimen underlying species diversification, with several instances of selection only being detected when genetic covariances were taken into account. Therefore, this work directly links patterns of genetic covariation among traits to macroevolutionary patterns of morphological divergence. Our findings also suggest that the limited distribution of Monodelphis species in morphospace is the result of a complex interplay between the limited dimensionality of available genetic variation and strong stabilizing selection along two major axes of genetic variation.  相似文献   

18.
The complex history of the Mediterranean region illustrates how ancient and recent phenomena are closely associated with species distribution and the creation of phylogeographic divisions within Mediterranean flora. A good model to explore the genetic consequences of fragmentation can be found in Centaurea cineraria and its close relatives. We applied simple sequence repeat molecular markers to a dense population sampling throughout the distribution area of all C. cineraria taxa to study how fragmentation has altered the genetic structure and distribution of C. cineraria. The average gene diversity (He) was 0.286, and the average allelic richness (Ar) was 3.65 and ranged from 2.15 (C. gymnocarpa) to 5.25 (C. busambarensis). The FIS averaged a relatively high 0.223, ranging from ? 0.724 in C. aeolica subsp. aeolica to 0.589 in C. leucadea. Our results indicate that habitat fragmentation over several generations reduced heterozygosity due to random genetic drift in populations of C. cineraria. This heterozygosity erosion becomes more severe when the inbreeding coefficient is positive and the outcrossing rates show a significant increase. The results observed for outcrossing rates and inbreeding coefficient could also indirectly support the possibility of disrupted gene flow or mating pattern changes in fragmented C. cineraria populations.  相似文献   

19.
Thalli of the intertidal Phaeophyte Fucus spiralis L. and the subtidal Chlorophyte Ulva olivascens Dangeard were exposed to artificial UV-A, UV-B and photosynthetically active radiation (PAR) by combination of PAR + UV-A + UV-B (PAB), PAR + UV-A (PA) and PAR (P) treatments. UV-A enhanced photosynthesis and stimulated carbonic anhydrase (CA) and nitrate reductase (NR) in F. spiralis whilst PAR only had an inhibitory effect in this species. U. olivascens suffered chronic photoinhibition in all the treatments as evidenced by reduced maxima photosynthesis (Pmax) and photosynthetic efficiency (α). Non stimulatory effect was observed upon CA and NR in this species. Our results showed that artificial UV radiation triggered opposite responses in both species. We suggest that differences shown by both species might be related to their location in the rocky shore and their ability to sense UV. We propose that the ratio UV:PAR acts as an environmental signal involved in the control of photosynthesis as shown by pronounced inhibition in samples exposed to only PAR. We also suggest that UV-regulated photosynthesis would be related to carbon (C) and nitrogen (N) cycles, regulating feedback processes that control C and N assimilation.  相似文献   

20.
We performed a comparison of molecular and morphological diversity in a freshwater colonial genus Synura (Chrysophyceae, Stramenopiles), using the island of Newfoundland (Canada) as a case study. We examined the morphological species diversity in collections from 79 localities, and compared these findings to diversity based on molecular characters for 150 strains isolated from the same sites. Of 27 species or species-level lineages identified, only one third was recorded by both molecular and morphological techniques, showing both approaches are complementary in estimating species diversity within this genus. Eight taxa, each representing young evolutionary lineages, were recovered only by sequencing of isolated colonies, whereas ten species were recovered only microscopically. Our complex investigation, involving both morphological and molecular examinations, indicates that our knowledge of Synura diversity is still poor, limited only to a few well-studied areas. We revealed considerable cryptic diversity within the core S. petersenii and S. leptorrhabda lineages. We further resolved the phylogenetic position of two previously described taxa, S. kristiansenii and S. petersenii f. praefracta, propose species-level status for S. petersenii f. praefracta, and describe three new species, S. vinlandica, S. fluviatilis, and S. cornuta. Our findings add to the growing body of literature detailing distribution patterns observed in the genus, ranging from cosmopolitan species, to highly restricted taxa, to species such as S. hibernica found along coastal regions on multiple continents. Finally, our study illustrates the usefulness of combining detailed morphological information with gene sequence data to examine species diversity within chrysophyte algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号