首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yokoyama S  Hosoi T  Ozawa K 《Gene》2012,497(2):340-343
Saturated fatty acids, acting as ligands for toll-like receptor 4 (TLR4), induce inflammation and mediate the development of insulin resistance. Myeloid differentiation factor 88 (MyD88) is an adaptor protein for TLR4. Previously, we found MyD88-deficient mice fed a high-fat diet (HFD) exhibited a severe diabetic phenotype. Stearoyl-CoA Desaturase 1 (SCD1) is the rate-limiting enzyme in the biosynthesis of monounsaturated fatty acids and known as a risk factor of diabetes. In the present study, we found SCD1 was dramatically increased in HFD-fed MyD88-deficient mice liver. This finding showed the novel linkage between MyD88 and SCD1 in the development of diabetes mellitus.  相似文献   

2.
3.
4.
5.
6.
This study focused on the association of polymorphisms of the FADS2 gene with fatty acid profiles in egg yolk of eight Japanese quail lines selected for high and low omega-6:omega-3 PUFA ratio (h2 = 0.36-0.38). For the identification of polymorphisms within the FADS2 gene 1350 bp of cDNA sequence were obtained encoding 404 amino acids. Five synonymous SNPs were found by comparative sequencing of animals of the high and low lines. These SNPs were genotyped by single base extension on 160 Japanese quail. The association analysis, comprising analysis of variance and family based association test (FBAT), revealed significant effects of SNP3 and SNP4 genotypes on the egg yolk fatty acid profiles, especially the omega-6 and omega-3 PUFAs (P < 0.05). No effects of the other SNPs were found - indicating that these are not in linkage disequilibrium with the causal polymorphism. The results of this study promote FADS2 as a functional candidate gene for traits related to omega-6 and omega-3 PUFA concentration in the egg yolk.  相似文献   

7.
Branched chain fatty acids (BCFA) and linear chain/normal odd chain fatty acids (n-OCFA) are major fatty acids in human skin lipids, especially sebaceous gland (SG) wax esters. Skin lipids contain variable amounts of monounsaturated BCFA and n-OCFA, in some reports exceeding over 20% of total fatty acids. Fatty acid desaturase 2 (FADS2) codes for a multifunctional enzyme that catalyzes Δ4-, Δ6- and Δ8-desaturation towards ten unsaturated fatty acids but only one saturate, palmitic acid, converting it to 16:1n-10; FADS2 is not active towards 14:0 or 18:0. Here we test the hypothesis that FADS2 also operates on BCFA and n-OCFA. MCF-7 cancer cells stably expressing FADS1 or FADS2 along with empty vector control cells were incubated with anteiso-15:0, iso-16:0, iso-17:0, anteiso-17:0, iso-18:0, or n-17:0. BCFA were Δ6-desaturated by FADS2 as follows: iso-16:0 → iso-6Z-16:1, iso-17:0 → iso-6Z-17:1, anteiso-17:0 → anteiso-6Z-17:1 and iso-18:0 → iso-6Z-18:1. anteiso-15:0 was not desaturated in either FADS1 or FADS2 cells. n-17:0 was converted to both n-6Z-17:1 by FADS2 Δ6-desaturation and n-9Z-17:1 by SCD Δ9-desaturation. We thus establish novel FADS2-coded enzymatic activity towards BCFA and n-OCFA, expanding the number of known FADS2 saturated fatty acid substrates from one to six. Because of the importance of FADS2 in human skin, our results imply that dysfunction in activity of sebaceous FADS2 may play a role in skin abnormalities associated with skin lipids.  相似文献   

8.
Polyunsaturated fatty acids (PUFAs) are essential dietary components. They are not only used for energy, but also act as signaling molecules. The delta-6 desaturase (D6D) enzyme, encoded by the FADS2 gene, is one of two rate limiting enzymes that convert the PUFA precursors – α-linolenic (n-3) and linoleic acid (n-6) to their respective metabolites. Alterations in the D6D enzyme activity alters fatty acid profiles and are associated with metabolic and inflammatory diseases including cardiovascular disease and type 2 diabetes. Omega-3 PUFAs, specifically its constituent fatty acids DHA and EPA, are known for their anti-inflammatory ability and are also beneficial in the prevention of skeletal muscle wasting, however the mechanism for muscle preservation is not well understood. Moreover, little is known of the effects of altering the n-6/n-3 ratio in the context of a high-fat diet, which is known to downregulate protein synthesis. Twenty C57BL6 male mice were fed a high-fat lard (HFL, 45% fat (mostly lard), 35% carbohydrate and 20% protein, n-6:n-3 PUFA, 13:1) diet for 6 weeks. Mice were then divided into 4 groups (n = 5 per group): HFL– , high-fat oil– (HFO, 45% fat (mostly Menhaden oil), 35% carbohydrate and 20% protein, n-6:n-3 PUFA, 1:3), HFL+ (HFL diet plus an orally administered FADS2 inhibitor, 100 mg/kg/day), and HFO+ (HFO diet plus an orally administered FADS2 inhibitor, 100 mg/kg/day). After 2 weeks on their respective diets and treatments, animals were sacrificed and gastrocnemius muscle harvested. Protein turnover signaling were analyzed via Western Blot. 4-EBP1 and ribosomal protein S6 expression were measured. A two-way ANOVA revealed no significant change in the phosphorylation of both 4EBP-1 and ribosomal protein S6 with diet or inhibitor. There was a significant reduction in STAT3 phosphorylation with the inhibition of FADS2 (p = 0.03). Additionally, we measured markers of protein degradation through levels of FOXO phosphorylation, ubiquitin, and LC3B expression; there was a trend towards increased phosphorylation of FOXO (p = 0.08) and ubiquitinated proteins (p = 0.05) with FADS2 inhibition. LC3B expression, a marker of autophagy, was significantly higher in the HFL plus FADS2 inhibition group from all other comparisons. Lastly, we analyzed activation of mitochondrial biogenesis which is closely linked with protein synthesis through PGC1-α and Cytochrome-C expression, however no significant differences were associated with either marker across all groups. Collectively, these data suggest that the protective effects of muscle mass by omega-3 fatty acids are from inhibition of protein degradation. Our aim was to determine the role of PUFA metabolites, DHA and EPA, in skeletal muscle protein turnover and assess the effects of n-3s independently. We observed that by inhibiting the FADS2 enzyme, the protective effect of n-3s on protein synthesis and proliferation was lost; concomitantly, protein degradation was increased with FADS2 inhibition regardless of diet.  相似文献   

9.

Objective

We explored the desaturase activities and the correlation of fatty acid desaturases (FADS) gene single nucleotide polymorphisms (SNPs) with plasma fatty acid in coronary artery disease (CAD) patients in a Chinese Han population.

Methods

Plasma fatty acids were measured by gas chromatography in CAD patients (n = 505) and a control group (n = 510). Five SNPs in the FADS gene were genotyped with high-resolution melting (HRM) methods.

Results

After adjustment, D6D activity, assessed as arachidonic acid (AA, C20:4n-6)/linoleic acid (LA, C18:2n-6), was higher in CAD patients (p<0.001). D9D activity, which was estimated as the ratio of palmitoleic acid (C16:1)/palmitic acid (C16:0) or oleic acid (C18:1n-9) to stearic acid (C18:0), was also increased (p<0.001). The genotype distributions of rs174537 G>T and rs174460 C>T were different between the two groups. The rs174537 T allele was associated with a lower risk of CAD [OR 0.743, 95% CI (0.624, 0.884), p = 0.001]. Carriers of the rs174460 C allele were associated with a higher risk of CAD [OR 1.357, 95% CI (1.106, 1.665), p = 0.003].

Conclusions

We firstly report that the rs174460 C allele is associated with a higher risk of CAD, and confirm that the rs174537 T allele is associated with a lower risk of CAD. Our results indicate that FADS gene polymorphisms are likely to influence plasma fatty acid concentrations and desaturase activities.  相似文献   

10.

Background:

Stearoyl-CoA desaturase (SCD) is a key enzyme that converts saturated fatty acids (SFAs) to monounsaturated fatty acids (MUFAs) in fat biosynthesis. Despite being crucial for interpreting SCDs’ roles across species, the evolutionary relationship of SCD proteins across species has yet to be elucidated. This study aims to present this evolutionary relationship based on amino acid sequences.

Methods:

Using Multiple Sequence Alignment (MSA) and phylogenetic construction methods, a hypothetical evolutionary relationship was generated between the stearoyl-CoA desaturase (SCD) protein sequences between 18 different species.

Results:

SCD protein sequences from Homo sapiens, Pan troglodytes (chimpanzee), and Pongo abelii (orangutan) have the lowest genetic distances of 0.006 of the 18 species studied. Capra hircus (goat) and Ovis aries (Sheep) had the next lowest genetic distance of 0.023. These farm animals are 99.987% identical at the amino acid level.

Conclusions:

The SCD proteins are conserved in these 18 species, and their evolutionary relationships are similar. Key Words: Phylogenetic analysis, Stearoyl-CoA desaturase (SCD) proteins, Multiple sequence alignment  相似文献   

11.

Background

It is unknown if changes in the gene expression of the desaturase and elongase enzymes are associated with abnormal n-6 long chain polyunsaturated fatty acid (LC-PUFA) levels in children with atopic eczema (AE). We analyzed whether mRNA-expression of genes encoding key enzymes of LC-PUFA synthesis (FADS1, FADS2 and ELOVL5) is associated with circulating LC-PUFA levels and risk of AE in 4-year-old children.

Methods

AE (n=20) and non-AE (n=104) children participating in the Sabadell cohort within the INfancia y Medio Ambiente (INMA) Project were included in the present study. RT-PCR with TaqMan Low-Density Array cards was used to measure the mRNA-expression of FADS1, FADS2 and ELOVL5. LC-PUFA levels were measured by fast gas chromatography in plasma phospholipids. The relationship of gene expression with LC-PUFA levels and enzyme activities was evaluated by Pearson’s rank correlation coefficient, and logistic regression models were used to study its association with risk of developing AE.

Results

Children with AE had lower levels of several n-6 PUFA members, dihomo-γ-linolenic (DGLA) and arachidonic (AA) acids. mRNA-expression levels of FADS1 and 2 strongly correlated with DGLA levels and with D6D activity. FADS2 and ELOVL5 mRNA-expression levels were significantly lower in AE than in non-AE children (-40.30% and -20.36%; respectively), but no differences were found for FADS1.

Conclusions and Significance

Changes in the mRNA-expression levels of FADS1 and 2 directly affect blood DGLA levels and D6D activity. This study suggests that lower mRNA-expressions of FADS2 and ELOVL5 are associated with higher risk of atopic eczema in young children.  相似文献   

12.
13.
The pregnane X receptor (PXR) was previously known as a xenobiotic receptor. Several recent studies suggested that PXR also played an important role in lipid homeostasis but the underlying mechanism remains to be clearly defined. In this study, we found that rifampicin, an agonist of human PXR, induced lipid accumulation in HepG2 cells. Lipid analysis showed the total cholesterol level increased. However, the free cholesterol and triglyceride levels were not changed. Treatment of HepG2 cells with rifampicin induced the expression of the free fatty acid transporter CD36 and ABCG1, as well as several lipogenic enzymes, including stearoyl-CoA desaturase-1 (SCD1), long chain free fatty acid elongase (FAE), and lecithin-cholesterol acyltransferase (LCAT), while the expression of acyl:cholesterol acetyltransferase(ACAT1) was not affected. Moreover, in PXR over-expressing HepG2 cells (HepG2-PXR), the SCD1 expression was significantly higher than in HepG2-Vector cells, even in the absence of rifampicin. Down-regulation of PXR by shRNA abolished the rifampicin-induced SCD1 gene expression in HepG2 cells. Promoter analysis showed that the human SCD1 gene promoter is activated by PXR and a novel DR-7 type PXR response element (PXRE) response element was located at -338 bp of the SCD1 gene promoter. Taken together, these results indicated that PXR activation promoted lipid synthesis in HepG2 cells and SCD1 is a novel PXR target gene.  相似文献   

14.
LEPR, MC4R, IGF2 and PRKAG3 are genes with known effects on fat content and distribution in pig carcass and pork. In a study performed with Duroc × Landrace/Large White pigs, we have found that IGF2 has strong additive effects on several carcass conformational traits and on fatty acid composition in several anatomical locations. MC4R shows additive effects on saturated fatty acid content in several muscles. On the other side, almost no additive effect has been found for PRKAG3 and very few for LEPR. In this work, no dominant effect has been found for any of the four genes. Using a Bayesian Lasso approach, we have been able now to find first‐order epistatic (mainly dominant–additive) effects between LEPR and PRKAG3 for intramuscular fat content and for saturated fatty acid content in L. dorsii, B. femoralis, Ps. major and whole ham. The presence of interactions between genes in the shaping of traits of such importance as intramuscular fat content and composition highlights the complexity of heritable traits and the difficulty of gene‐assisted selection for such traits.  相似文献   

15.
In mammalian cells, essential polyunsaturated fatty acids (PUFAs) are converted to longer PUFAs by alternating steps of elongation and desaturation. In contrast to other PUFA-rich tissues, the testis is continuously drained of these fatty acids as spermatozoa are transported to the epididymis. Alteration of the germ cell lipid profile from spermatogonia to condensing spermatids and mature spermatozoa has been described, but the male gonadal gene expression of the desaturases, responsible for the PUFA-metabolism, is still not established. The focus of this study was to characterize the expression and regulation of stearoyl-CoA desaturase 1 (SCD1), stearoyl-CoA desaturase 2 (SCD2), and Delta5- and Delta6-desaturase in rat testis. Desaturase gene expression was detected in testis, epididymis, and separated cells from seminiferous tubulus using Northern blot analysis. For the first time, SCD1 and SCD2 expression is demonstrated in rat testis and epididymis, both SCDs are expressed in epididymis, while testis mainly contains SCD2. Examination of the testicular distribution of Delta5- and Delta6-desaturase and SCD1 and SCD2 shows that all four desaturases seem to be localized in the Sertoli cells, with far lower expression in germ cells. In light of earlier published results showing that germ cells are richer in PUFAs than Sertoli cells, this strengthens the hypothesis of a lipid transport from the Sertoli cells to the germ cells. As opposed to what is shown in liver, Delta5- and Delta6-desaturase mRNA levels in Sertoli cells are up-regulated by dexamethasone. Furthermore, dexamethasone induces SCD2 mRNA. Insulin also up-regulates these three genes in the Sertoli cell, while SCD1 mRNA is down-regulated by both insulin and dexamethasone. Delta5- and Delta6-desaturase, SCD1, and SCD2 are all up-regulated by FSH. A similar up-regulation of the desaturases is observed when treating Sertoli cells with (Bu)2cAMP, indicating that the desaturase up-regulation observed with FSH treatment results from elevated levels of cAMP. Finally, testosterone has no influence on the desaturase gene expression. Thus, FSH seems to be a key regulator of the desaturase expression in the Sertoli cell.  相似文献   

16.
This study focused on the association of polymorphisms of the FADS2 gene with fatty acid profiles in egg yolk of eight Japanese quail lines selected for high and low ω-6:ω-3 PUFA ratio (h2 = 0.36–0.38). For the identification of polymorphisms within the FADS2 gene 1350 bp of cDNA sequence were obtained encoding 404 amino acids. Five synonymous SNPs were found by comparative sequencing of animals of the high and low lines. These SNPs were genotyped by single base extension on 160 Japanese quail. The association analysis, comprising analysis of variance and family based association test (FBAT), revealed significant effects of SNP3 and SNP4 genotypes on the egg yolk fatty acid profiles, especially the ω-6 and ω-3 PUFAs (P < 0.05). No effects of the other SNPs were found—indicating that these are not in linkage disequilibrium with the causal polymorphism. The results of this study promote FADS2 as a functional candidate gene for traits related to ω-6 and ω-3 PUFA concentration in the egg yolk.  相似文献   

17.

Background

Previous studies suggested that dietary fatty acids could affect blood lipids by interacting with genetic variations in fatty acid desaturase 1 (FADS1). However, little is known about their direct effects on coronary artery disease (CAD). The aim of this study was to evaluate whether dietary n-3 long-chain polyunsaturated fatty acids (LCPUFAs) -eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) could modulate the effect of FADS1 rs174547 polymorphism on CAD.

Methods

FADS1 single-nucleotide polymorphisms rs174547 genotypes were measured in 440 CAD patients and 838 healthy controls. Dietary EPA and DHA intakes were assessed with a validated quantitative frequency food questionnaire. The association between FADS1 rs174547 and CAD was estimated using logistic regression under both dominant and additive genetic models. The interactions between rs174547 polymorphism and LCPUFAs were analyzed by using multiple logistic regression and the “genotype × n-3 LCPUFAs” interaction term was included into the model.

Results

We found that the minor T allele of FADS1 rs174547 increased CAD risk (OR = 1.36, 95%CIs 1.03-1.80), and observed significant interaction between rs174547 and dietary EPA intakes on CAD (P-interaction = 0.028). The T-allele was only associated with higher CAD risk among individuals with lower dietary EPA intakes, but not in those with higher EPA intakes. Similarly, significant interaction was also observed between rs174547 and dietary DHA intakes on CAD (P-interaction = 0.020).

Conclusions

Dietary n-3 LCPUFA intakes could modulate the association between FADS1 rs174547 polymorphism and CAD. High dietary n-3 LCPUFA intakes could negate the unfavorable effect of genetic variation in FADS1 on CAD in middle-aged and elderly Chinese population.  相似文献   

18.
There is increasing evidence suggesting that higher intakes of fish or n-3 polyunsaturated fatty acids supplements may decrease the risk of preterm delivery (PTD). We hypothesized that genetic variants of the enzymes critical to fatty acids biosynthesis and metabolism may be associated with PTD. We genotyped 231 potentially functional single nucleotide polymorphisms (SNPs) and tagSNPs in 9 genes (FADS1, FADS2, PTGS1, PTGS2, ALOX5, ALOX5AP, PTGES, PTGES2, and PTGES3) among 1,110 black mothers, including 542 mothers who delivered preterm (<37 weeks gestation) and 568 mothers who delivered full-term babies (≥37 weeks gestation) at Boston Medical Center. After excluding SNPs that are in complete linkage disequilibrium or have lower minor allele frequency (<1%) or call rate (<90%), we examined the association of 206 SNPs with PTD using multiple logistic regression models. We also imputed 190 HapMap SNPs via program MACH and examined their associations with PTD. Finally, we explored gene-level and pathway-level associations with PTD using the adaptive rank truncated product (ARTP) methods. A total of 21 SNPs were associated with PTD (p value ranging from 0.003 to 0.05), including 3 imputed SNPs. Gene-level ARTP statistics indicated that the gene PTGES2 was significantly associated with PTD with a gene-based p value equal to 0.01. No pathway-based association was found. In this large and comprehensive candidate gene study, we found a modest association of genes in fatty acid metabolism pathway with PTD. Further investigation of these gene polymorphisms jointly with fatty acid measures and other genetic factors would help better understand the pathogenesis of PTD.  相似文献   

19.
Six genes involved in the heparan sulfate and heparin metabolism pathway, DSEL (dermatan sulfate epimerase-like), EXTL1 (exostoses (multiple)-like 1), HS6ST1 (heparan sulfate 6-O-sulfotransferase 1), HS6ST3 (heparan sulfate 6-O-sulfotransferase 3), NDST3 (N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 3), and SULT1A1 (sulfotransferase family, cytosolic, 1A, phenol-preferring, member 1), were investigated for their associations with muscle lipid composition using cattle as a model organism. Nineteen single nucleotide polymorphisms (SNPs)/multiple nucleotide length polymorphisms (MNLPs) were identified in five of these six genes. Six of these mutations were then genotyped on 246 Wagyu x Limousin F(2) animals, which were measured for 5 carcass, 6 eating quality and 8 fatty acid composition traits. Association analysis revealed that DSEL, EXTL1 and HS6ST1 significantly affected two stearoyl-CoA desaturase activity indices, the amount of conjugated linoleic acid (CLA), and the relative amount of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) in skeletal muscle (P<0.05). In particular, HS6ST1 joined our previously reported SCD1 and UQCRC1 genes to form a three gene network for one of the stearoyl-CoA desaturase activity indices. These results provide evidence that genes involved in heparan sulfate and heparin metabolism are also involved in regulation of lipid metabolism in bovine muscle. Whether the SNPs affected heparan sulfate proteoglycan structure is unknown and warrants further investigation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号