首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Although NADPH oxidase (NOX)-mediated oxidative stress is considered one of the major mechanisms triggering the pathogenic actions of ischemic stroke and very recent studies have indicated that NADPH oxidase is a major source of reactive oxygen species (ROS) production controlling glutamate release, how neuronal NADPH oxidase activation is coupled to glutamate release is not well understood. Therefore, in this study, we used an in vivo transient middle cerebral artery occlusion model and in vitro primary cell cultures to test whether complexins, the regulators of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes necessary for vesicle fusion, are associated with NOX2-derived ROS and contribute to glutamate-mediated excitotoxicity in ischemic stroke. In this study, we first identified the upregulation of complexin II in the ischemic brain and evaluated its potential role in ischemic stroke showing that gene silencing of complexin II ameliorated cerebral injury as evidenced by reduced infarction volume, neurological deficit, and neuron necrosis accompanied by decreased glutamate levels, consistent with the results from NOX2−/− mice with ischemic stroke. We further demonstrated that complexin II expression was mediated by NOX2 in primary cultured neurons subjected to oxygen–glucose deprivation (OGD) and contributed to OGD-induced glutamate release and neuron necrosis via SNARE signaling. Taken together, these findings for the first time provide evidence that complexin II is a central target molecule that links NADPH oxidase-derived ROS to glutamate-mediated neuronal excitotoxicity in ischemic stroke.  相似文献   

4.
《Free radical research》2013,47(12):1494-1504
Abstract

Beta cell destruction in type 1 diabetes (TID) is associated with cellular oxidative stress and mitochondrial pathway of cell death. The aim of this study was to determine whether oxidative stress and mitochondrial dysfunction are present in T1D model (non-obese diabetic mouse, NOD) and if they are related to the stages of disease development. NOD mice were studied at three stages: non-diabetic, pre-diabetic, and diabetic and compared with age-matched Balb/c mice. Mitochondria respiration rates measured at phosphorylating and resting states in liver and soleus biopsies and in isolated liver mitochondria were similar in NOD and Balb/c mice at the three disease stages. However, NOD liver mitochondria were more susceptible to calcium-induced mitochondrial permeability transition as determined by cyclosporine-A-sensitive swelling and by decreased calcium retention capacity in all three stages of diabetes development. Mitochondria H2O2 production rate was higher in non-diabetic, but unaltered in pre-diabetic and diabetic NOD mice. The global cell reactive oxygen species (ROS), but not specific mitochondria ROS production, was significantly increased in NOD lymphomononuclear and stem cells in all disease stages. In addition, marked elevated rates of 2′,7′-dichlorodihydrofluorescein (H2DCF) oxidation were observed in pancreatic islets from non-diabetic NOD mice. Using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) and lipidomic approach, we identified oxidized lipid markers in NOD liver mitochondria for each disease stage, most of them being derivatives of diacylglycerols and phospholipids. These results suggest that the cellular oxidative stress precedes the establishment of diabetes and may be the cause of mitochondrial dysfunction that is involved in beta cell death.  相似文献   

5.
Offspring of diabetic mothers are at risk of cardiovascular diseases in adulthood. However, the underlying molecular mechanisms are not clear. We hypothesize that prenatal exposure to maternal diabetes up‐regulates myocardial NOX2 expression and enhances ischaemia/reperfusion (I/R) injury in the adult offspring. Maternal diabetes was induced in C57BL/6 mice by streptozotocin. Glucose‐tolerant adult offspring of diabetic mothers and normal controls were subjected to myocardial I/R injury. Vascular endothelial growth factor (VEGF) expression, ROS generation, myocardial apoptosis and infarct size were assessed. The VEGF‐Akt (protein kinase B)‐mammalian target of rapamycin (mTOR)‐NOX2 signalling pathway was also studied in cultured cardiomyocytes in response to high glucose level. In the hearts of adult offspring from diabetic mothers, increases were observed in VEGF expression, NOX2 protein levels and both Akt and mTOR phosphorylation levels as compared to the offspring of control mothers. After I/R, ROS generation, myocardial apoptosis and infarct size were all significantly higher in the offspring of diabetic mothers relative to offspring of control mothers, and these differences were diminished by in vivo treatment with the NADPH oxidase inhibitor apocynin. In cultured cardiomyocytes, high glucose increased mTOR phosphorylation, which was inhibited by the PI3 kinase inhibitor LY294002. Notably, high glucose‐induced NOX2 protein expression and ROS production were inhibited by rapamycin. In conclusion, maternal diabetes promotes VEGF‐Akt‐mTOR‐NOX2 signalling and enhances myocardial I/R injury in the adult offspring. Increased ROS production from NOX2 is a possible molecular mechanism responsible for developmental origins of cardiovascular disease in offspring of diabetic mothers.  相似文献   

6.
This work investigated the contribution of AtRbohD and AtRbohF to regulating defence-associated metabolism during three types of interaction: (i) incompatible and (ii) compatible interaction with Pseudomonas syringae; and (iii) intracellular oxidative stress in the catalase-deficient cat2 background. In all three cases, loss of function of either gene modulated the response of defence compounds. AtRbohF gene function was necessary for rapid and full induction of salicylic acid (SA) during compatible and incompatible interactions, and for resistance to virulent bacteria. Both artrboh mutations modulated the effects of intracellular ROS in the cat2 background, although the predominant effect was mediated by atrbohF. Loss of this gene function increased lesion formation in cat2 but uncoupled this effect from cat2-triggered induction of SA and camalexin, accumulation of glutathione and disease resistance, all of which were much lower in cat2 artbohF than in cat2. A detailed comparison of GC-TOF-MS profiles produced by the three interactions revealed considerable overlap between cat2 effects and those produced by bacterial infection in the wild-type background. Analysis of the impact of the two atrboh mutations on these profiles provided further evidence that AtRbohF interacts closely with intracellular oxidative stress to tune dynamic metabolic responses during infection. Thus, AtRbohF appears to be a key player not only in HR-related cell death but also in regulating metabolomic responses and resistance. Based on the results obtained during the three types of interaction, a model is proposed of how NADPH oxidases and intracellular ROS interact to determine the outcome of pathogen defence responses.  相似文献   

7.
Glomerular endothelial cell injury plays an important role in the development and progression of diabetic nephropathy (DN). The expression and function of klotho in glomerular endothelial cells remain unclear. Thus, this study aimed to investigate the expression and the functional role of klotho in DN progression in mice and in high glucose (HG)-induced cell injury of human renal glomerular endothelial cells (HRGECs) and the underlying mechanism. In this study, HRGECs were cultured with media containing HG to induce endothelial cell injury and db/db mice were used as DN model mice. Klotho was overexpressed or knocked down in HRECs to evaluate its role in HG-induced HRGECs injury. klotho-overexpressing adenovirus (rAAV-klotho) was injected into db/db mice via the tail vein to further validate the protective effect of klotho in DN. Decreased klotho expression was observed in DN patients, DN mice, and HG-exposed HRGECs. Furthermore, klotho overexpression significantly abolished the HG-induced HRGECs injury and activation of Wnt/β-catenin pathway and RAAS. In contrast, klotho knockdown exerted the opposite effects. Moreover, klotho attenuated diabetic nephropathy in db/db mice, which was also associated with inhibition of the Wnt/β-catenin pathway and RAAS. In conclusion, klotho attenuates DN in db/db mice and ameliorates HG-induced injury of HRGECs.  相似文献   

8.
Acute kidney injury (AKI) is mainly caused by renal ischaemia reperfusion injury (IRI). Lots of evidence suggests that ferroptosis and oxidative stress play the vital role in renal IRI. However, the specific mechanism of renal IRI has not been fully elucidated. lysine‐specific demethylase 1 (LSD1) has been shown to regulate the pathogenesis of kidney disease. In this study, we firstly found that LSD1 was positively related to renal IRI. TCP, a classical LSD1 inhibitor, could alleviate tissue damage induced by renal IRI. Inhibition of LSD1 with either TCP or LSD1 knockdown could alleviate ferroptosis and oxidative stress caused by IRI both in vivo and in vitro. Furthermore, the results showed that suppression of LSD1 decreased the expression of TLR4/NOX4 pathway in HK‐2 cells subjected to H/R. With the si‐RNA against TLR4 or NOX4, it showed that the silence of TLR4/NOX4 reduced oxidative stress and ferroptosis in vitro. Moreover, to demonstrate the crucial role of TLR4/NOX4, TLR4 reduction, mediated by inhibition of LSD1, was compensated through delivering the adenovirus carrying TLR4 in vitro. The results showed that the compensation of TLR4 blunted the alleviation of oxidative stress and ferroptosis, induced by LSD1 inhibition. Further study showed that LSD1 activates TLR4/NOX4 pathway by reducing the enrichment of H3K9me2 in the TLR4 promoter region. In conclusion, our results demonstrated that LSD1 inhibition blocked ferroptosis and oxidative stress caused by renal IRI through the TLR4/NOX4 pathway, indicating that LSD1 could be a potential therapeutic target for renal IRI.  相似文献   

9.
This study investigated the direct roles of hydrogen peroxide (H2O2) in kidney aging using transgenic mice overexpressing glutathione peroxidase‐1 (GPX1 TG). We demonstrated that kidneys in old mice recapitulated kidneys in elderly humans and were characterized by glomerulosclerosis, tubular atrophy, interstitial fibrosis, and loss of cortical mass. Scavenging H2O2 by GPX1 TG significantly reduced mitochondrial and total cellular reactive oxygen species (ROS) and mitigated oxidative damage, thus improving these pathologies. The potential mechanisms by which ROS are increased in the aged kidney include a decreased abundance of an anti‐aging hormone, Klotho, in kidney tissue, and decreased expression of nuclear respiratory factor 2 (Nrf2), a master regulator of the stress response. Decreased Klotho or Nrf2 was not improved in the kidneys of old GPX1 TG mice, even though mitochondrial morphology was better preserved. Using laser capture microdissection followed by label‐free shotgun proteomics analysis, we show that the glomerular proteome in old mice was characterized by decreased abundance of cytoskeletal proteins (critical for maintaining normal glomerular function) and heat shock proteins, leading to increased accumulation of apolipoprotein E and inflammatory molecules. Targeted proteomic analysis of kidney tubules from old mice showed decreased abundance of fatty acid oxidation enzymes and antioxidant proteins, as well as increased abundance of glycolytic enzymes and molecular chaperones. GPX1 TG partially attenuated the remodeling of glomerular and tubule proteomes in aged kidneys. In summary, mitochondria from GPX1 TG mice are protected and kidney aging is ameliorated via its antioxidant activities, independent and downstream of Nrf2 or Klotho signaling.  相似文献   

10.
Changes in the level of oxidative damage to proteins in CD1 outbred mice γ irradiated with a dose of 3 Gy have been studied. The changes were estimated from the amount of carbonyl groups (CG) in the proteins. It was found that two hours after exposure to γ radiation, the amount of CG in the cytoplasmic and nuclear fractions of the liver, heart, brain, and spleen sharply increased. Two months after irradiation, the level of CG in the cytoplasmic and nuclear subcellular fractions of the liver and brain decreased to the level of CG in the control animals, which were not exposed to radiation. In the subcellular fractions of the heart and spleen, the increase in the degree of damage was more significant and a high level of damage was observed even two months after irradiation. An enhancement of the antigenic properties of proteins from the liver, heart, and spleen in the postirradiation period was found. Spleen proteins were most immunogenic. A comparison of the antigenic properties of proteins isolated from the tissues 60 days after irradiation revealed a correlation between the level of oxidative damage and the immunogenicity of the total protein fraction.  相似文献   

11.
Amino acids, leucine in particular, are known to inhibit autophagy, at least in part by their ability to stimulate MTOR-mediated signaling. Evidence is presented showing that glutamate dehydrogenase, the central enzyme in amino acid catabolism, contributes to leucine sensing in the regulation of autophagy. The data suggest a dual mechanism by which glutamate dehydrogenase activity modulates autophagy, i.e., by activating MTORC1 and by limiting the formation of reactive oxygen species.  相似文献   

12.
Oxidative stress is a damaging process resulting from an imbalance between excessive generation of oxidant compounds and insufficient antioxidant defence mechanisms. Oxidative stress plays a crucial role in the initiation and progression of cigarette smoke-induced lung injury, deterioration in lung functions, and development of chronic obstructive pulmonary disease (COPD). In smokers and in patients with COPD, the increased oxidant burden derives from cigarette smoke per se, and from activated inflammatory cells releasing enhanced amounts of reactive oxygen and nitrogen species (ROS, RNS, respectively). Although mild oxidative stress resulting from cigarette smoking leads to the upregulation of the antioxidative enzymes synthesis in the lungs, high levels of ROS and RNS observed in patients with COPD overwhelm the antioxidant enzymes capacities, resulting in oxidant-mediated lung injury and cell death. In addition, depletion of antioxidative systems in the systemic circulation was consistently observed in such patients. The imbalance between the generation of ROS/RNS and antioxidant capacities — the state of “oxidative stress” — is one of the major pathophysiologic hallmarks in the development of COPD. Detrimental effects of oxidative stress include impairment of membrane functions, inactivation of membrane-bound receptors and enzymes, and increased tissue permeability. In addition, oxidative stress aggravates the inflammatory processes in the lungs, and contributes to the worsening of the protease-antiprotease imbalance. Several markers of oxidative stress, such as increases in lipid peroxidation products and reductions in glutathione peroxidase activity, have been shown to be related to the reductions in pulmonary functions. In the present article we review the current knowledge about the vicious cycle of cigarette smoking, oxidative stress, and inflammation in the pathogenesis of COPD.  相似文献   

13.
Increasing evidence shows that the overproduction of reactive oxygen species, induced by diabetic hyperglycemia, contributes to the development of several cardiopathologies. The susceptibility of diabetic hearts to oxidative stress, induced in vitro by ADP-Fe2+ in mitochondria, was studied in 12-month-old Goto-Kakizaki rats, a model of non-insulin dependent diabetes mellitus, and normal (non-diabetic) Wistar rats. In terms of lipid peroxidation the oxidative damage was evaluated on heart mitochondria by measuring both the O2 consumption and the concentrations of thiobarbituric acid reactive substances. Diabetic rats display a more intense formation of thiobarbituric acid reactive substances and a higher O2 consumption than non-diabetic rats. The oxidative damage, assessed by electron microscopy, was followed by an extensive effect on the volume of diabetic heart mitochondria, as compared with control heart mitochondria. An increase in the susceptibility of diabetic heart mitochondria to oxidative stress can be explained by reduced levels of endogenous antioxidants, so we proceeded in determinating -tocopherol, GSH and coenzyme Q content. Although no difference of -tocopherol levels was found in diabetic rats as compared with control rat mitochondria, a significant reduction in GSH (21.5% reduction in diabetic rats) and coenzyme Q levels of diabetic rats was observed. The data suggest that a significant decrease of coenzyme Q9, a potent antioxidant involved in the elimination of mitochondria-generated reactive oxygen species, may be responsible for an increased susceptibility of diabetic heart mitochondria to oxidative damage.  相似文献   

14.
Exposure to chronic psychosocial stress is a risk factor for various pulmonary diseases. In view of the essential role of dipeptidyl peptidase 4 (DPP4) in animal and human lung pathobiology, we investigated the role of DPP4 in stress-related lung injury in mice. Eight-week-old male mice were randomly divided into a non-stress group and a 2-week immobilization stress group. Non-stress control mice were left undisturbed. The mice subjected to immobilized stress were randomly assigned to the vehicle or the DPP4 inhibitor anagliptin for 2 weeks. Chronic stress reduced subcutaneous and inguinal adipose volumes and increased blood DPP4 levels. The stressed mice showed increased levels in the lungs of genes and/or proteins related to oxidative stress (p67phox, p47phox, p22phox and gp91phox), inflammation (monocyte chemoattractant protein-1, vascular cell adhesion molecule-1, and intracellular adhesion molecule-1), apoptosis (caspase-3, -8, -9), senescence (p16INK4A, p21, and p53) and proteolysis (matrix metalloproteinase-2 to -9, cathepsin S/K, and tissue inhibitor of matrix metalloproteinase-1 and -2), and reduced levels of eNOS, Sirt1, and Bcl-2 proteins; and these effects were reversed by genetic and pharmacological inhibitions of DPP4. We then exposed human umbilical vein endothelial cells in vitro to hydrogen peroxide; anagliptin treatment was also observed to mitigate oxidative and inflammatory molecules in this setting. Anagliptin can improve lung injury in stressed mice, possibly by mitigating vascular inflammation, oxidative stress production, and proteolysis. DPP4 may become a new therapeutic target for chronic psychological stress-related lung disease in humans and animals.  相似文献   

15.
《Free radical research》2013,47(1):44-54
Abstract

Moderate exercise improves cardiac antioxidant status in young humans and animals with Type-2 diabetes (T2D). Given that both diabetes and advancing age synergistically decrease antioxidant expression in most tissues, it is unclear whether exercise can upregulate cardiac antioxidants in chronic animal models of T2D. To this end, 8-month-old T2D and normoglycemic mice were exercised for 3 weeks, and cardiac redox status was evaluated. As expected, moderate exercise increased cardiac antioxidants and attenuated oxidative damage in normoglycemic mice. In contrast, similar exercise protocol in 8-month-old db/db mice worsened cardiac oxidative damage, which was associated with a specific dysregulation of glutathione (GSH) homeostasis. Expression of enzymes for GSH biosynthesis [γ-glutamylcysteine synthase, glutathione reductase] as well as for GSH-mediated detoxification (glutathione peroxidase, glutathione-S-transferase) was lower, while toxic metabolites dependent on GSH for clearance (4-hydroxynonenal) were increased in exercised diabetic mice hearts. To validate GSH loss as an important factor for such aggravated damage, daily administration of GSH restored cardiac GSH levels in exercised diabetic mice. Such supplementation attenuated both oxidative damage and fibrotic changes in the myocardium. Expression of transforming growth factor beta (TGF-β) and its regulated genes which are responsible for such profibrotic changes were also attenuated with GSH supplementation. These novel findings in a long-term T2D animal model demonstrate that short-term exercise by itself can deplete cardiac GSH and aggravate cardiac oxidative stress. As GSH administration conferred protection in 8-month-old diabetic mice undergoing exercise, supplementation with GSH-enhancing agents may be beneficial in elderly diabetic patients undergoing exercise.  相似文献   

16.
《Free radical research》2013,47(7):742-750
Abstract

4-Hydroxynonenal (HNE) mediates oxidative stress-linked pathological processes; however, its role in the generation of reactive oxygen species (ROS) in macrophages is still unclear. Thus, this study investigated the sources and mechanisms of ROS generation in macrophages stimulated with HNE. Exposure of J774A.1 cells to HNE showed an increased production of ROS, which was attenuated by NADPH oxidase as well as 5-lipoxygenase (5-LO) inhibitors. Linked to these results, HNE increased membrane translocation of p47phox promoting NADPH oxidase activity, which was attenuated in peritoneal macrophages from 5-LO-deficient mice as well as in J774A.1 cells treated with a 5-LO inhibitor, MK886 or 5-LO siRNA. In contrast, HNE-enhanced 5-LO activity was not affected by inhibition of NADPH oxidase. Furthermore, leukotriene B4, 5-LO metabolite, was found to enhance NADPH oxidase activity in macrophages. Altogether, these results suggest that 5-LO plays a critical role in HNE-induced ROS generation in murine macrophages through activation of NADPH oxidase.  相似文献   

17.
Age-related loss of muscle mass and function, sarcopenia, has a major impact on the quality of life in the elderly. Among the proposed causes of sarcopenia are mitochondrial dysfunction and accumulated oxidative damage during aging. Dietary restriction (DR), a robust dietary intervention that extends lifespan and modulates age-related pathology in a variety of species, has been shown to protect from sarcopenia in rodents. Although the mechanism(s) by which DR modulates aging are still not defined, one potential mechanism is through modulation of oxidative stress and mitochondrial dysfunction. To directly test the protective effect of DR against oxidative stress-induced muscle atrophy in vivo, we subjected mice lacking a key antioxidant enzyme, CuZnSOD (Sod1) to DR (60% of ad libitum fed diet). We have previously shown that the Sod1(-/-) mice exhibit an acceleration of sarcopenia associated with high oxidative stress, mitochondrial dysfunction, and severe neuromuscular innervation defects. Despite the dramatic atrophy phenotype in the Sod1(-/-) mice, DR led to a reversal or attenuation of reduced muscle function, loss of innervation, and muscle atrophy in these mice. DR improves mitochondrial function as evidenced by enhanced Ca(2+) regulation and reduction of mitochondrial reactive oxygen species (ROS). Furthermore, we show upregulation of SIRT3 and MnSOD in DR animals, consistent with reduced mitochondrial oxidative stress and reduced oxidative damage in muscle tissue measured as F(2) -isoprostanes. Collectively, our results demonstrate that DR is a powerful mediator of mitochondrial function, mitochondrial ROS production, and oxidative damage, providing a solid protection against oxidative stress-induced neuromuscular defects and muscle atrophy in vivo even under conditions of high oxidative stress.  相似文献   

18.
Fibrosis describes a dysregulated tissue remodelling response to persistent cellular injury and is the final pathological consequence of many chronic diseases that affect the liver, kidney and lung. Nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase (NOX) enzymes produce reactive oxygen species (ROS) as their primary function. ROS derived from NOX1 and NOX4 are key mediators of liver, kidney and lung fibrosis. Setanaxib (GKT137831) is a first-in-class, dual inhibitor of NOX1/4 and is the first NOX inhibitor to progress to clinical trial investigation. The anti-fibrotic effects of setanaxib in liver, kidney and lung fibrosis are supported by multiple lines of pre-clinical evidence. However, despite advances in our understanding, the precise roles of NOX1/4 in fibrosis require further investigation. Additionally, there is a translational gap between the pre-clinical observations of setanaxib to date and the applicability of these to human patients within a clinical setting. This narrative review critically examines the role of NOX1/4 in liver, kidney and lung fibrosis, alongside the available evidence investigating setanaxib as a therapeutic agent in pre-clinical models of disease. We discuss the potential clinical translatability of this pre-clinical evidence, which provides rationale to explore NOX1/4 inhibition by setanaxib across various fibrotic pathologies in clinical trials involving human patients.  相似文献   

19.
NADPH oxidases (Nox enzymes) are critical mediators of both physiologic and pathophysiologic processes. Nox enzymes catalyze NADPH-dependent generation of reactive oxygen species (ROS), including superoxide and hydrogen peroxide. Until recently, Nox4 was proposed to be involved exclusively in normal physiologic functions. Compelling evidence, however, suggests that Nox4 plays a critical role in fibrosis, as well as a host of pathologies and diseases. These considerations led to a search for novel, small molecule inhibitors of this important enzyme. Ultimately, a series of novel tertiary sulfonylureas (2325) was designed using pharmacophore modeling, synthesized, and evaluated for inhibition of Nox4-dependent signaling.  相似文献   

20.
《Free radical research》2013,47(9):1070-1084
Abstract

In addition to serving as the power house of mammalian cells, mitochondria are crucial for the maintenance of cellular homeostasis in response to physiological or environmental changes. Several lines of evidence suggest that posttranslational modification (PTM) of proteins plays a pivotal role in the regulation of the bioenergetic function of mitochondria. Among them, reversible lysine acetylation of mitochondrial proteins has been established as one of the key mechanisms in cellular response to energy demand by modulating the flux of a number of key metabolic pathways. In this article, we focus on the role of Sirt3-mediated deacetylation in: (1) flexibility of energy metabolism, (2) activation of antioxidant defense, and (3) maintenance of cellular redox status in response to dietary challenge and oxidative stress. We suggest that oxidative stress-elicited down-regulation of Sirt3 plays a role in the pathophysiology of diabetes, cardiac hypotrophy, mitochondrial diseases, and age-related diseases. Besides, the physiological role of newly identified lysine acylation mediated by Sirt5 and its biochemical effects on oxidative metabolism are also discussed. Moreover, we have integrated the regulatory function of several protein kinases that are involved in the phosphorylation of mitochondrial enzymes during oxidative stress. Finally, the functional consequence of the synergistic regulation through diverse protein modifications is emphasized on the maintenance of the bioenergetic homeostasis and metabolic adaptation of the animal and human cells. Together, we have provided an updated review of PTM in mitochondrial biology and their implications in aging and human diseases through an intricate regulation of energy metabolism under oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号