首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
European fallow deer are an introduced species classified as partly protected wildlife in Tasmania, Australia. Current management practices are primarily governed under the Quality Deer Management regime, in which animals are harvested during designated hunting seasons. Among populations, prominent morphological differences have been reported; however, the genetic relationship of these populations has until now been poorly understood. Representative animals were sampled from three key areas across their range and genotyped at ten polymorphic microsatellite loci to investigate genetic diversity, population structure, and genetic bottlenecks. Allelic richness was low in all three populations and ranged between 2.20 and 2.49 alleles/locus. A genetic bottleneck was detected in two of the three populations (P < 0.001). Population differentiation was evident between Lake Echo and Benham (q = 0.122; P < 0.001) and Benham and Connorville (q = 0.110; P < 0.001), but not between Lake Echo and Connorville (q = 0.0235), with individuals being identified as belonging to two genetic clusters. The pattern of population differentiation from the three study populations suggests that deer from the western region of their range are genetically distinct to those from the eastern region. This correlates with morphological variation within Tasmanian fallow deer, in which differences between the regions maybe attributable to geographical barriers.  相似文献   

2.
The effect of glaciation on the levels and patterns of genetic variation has been well studied in the Northern Hemisphere. However, although glaciation has undoubtedly shaped the genetic structure of plants in the Southern Hemisphere, fewer studies have characterized the effect, and almost none of them using microsatellites. Particularly, complex patterns of genetic structure might be expected in areas such as the Andes, where both latitudinal and altitudinal glacial advance and retreat have molded modern plant communities. We therefore studied the population genetics of three closely related, hybridizing species of Nothofagus (Nobliqua, N. alpina, and N. glauca, all of subgenus Lophozonia; Nothofagaceae) from Chile. To estimate population genetic parameters and infer the influence of the last ice age on the spatial and genetic distribution of these species, we examined and analyzed genetic variability at seven polymorphic microsatellite DNA loci in 640 individuals from 40 populations covering most of the ranges of these species in Chile. Populations showed no significant inbreeding and exhibited relatively high levels of genetic diversity (HE = 0.502–0.662) and slight, but significant, genetic structure (RST = 8.7–16.0%). However, in N. obliqua, the small amount of genetic structure was spatially organized into three well‐defined latitudinal groups. Our data may also suggest some introgression of N. alpina genes into N. obliqua in the northern populations. These results allowed us to reconstruct the influence of the last ice age on the genetic structure of these species, suggesting several centers of genetic diversity for N. obliqua and N. alpina, in agreement with the multiple refugia hypothesis.  相似文献   

3.
South‐East Asia has an exceptionally high diversity of snakes, with more than 250 snake species currently recorded from Thailand. This diversity likely reflects the diverse range of geographical and climatic conditions under which they live, but the evolutionary history and population genetics of many snake species in South‐East Asia have been little investigated in comparison with morphological studies. Here, we investigated genetic variation in the monocled cobra, Naja kaouthia, Lesson, 1831, across its distribution range in Thailand using mitochondrial DNA (cytochrome b, control region) for ~100 individuals and the nuclear DNA gene (C‐mos) for a small subset. Using population genetic and phylogenetic methods, we show high levels of genetic variation between regional populations of this non‐spitting cobra, including the north‐eastern, north‐central and southern regions, in addition to a population on Pha‐ngan Island, 150 km offshore from the southern peninsula. Moreover, inclusion of the north‐eastern population renders N. kaouthia paraphyletic in relation to other regional Naja species. The north‐eastern population is therefore probably specifically distinct. Given that these cobras are otherwise undifferentiated based on colour and general appearance to the “typical” cobra type of this region, they would represent a cryptic species. As has been shown in other animal groups from Thailand, it is likely that the geographical characteristics and/or tectonic alteration of these regions have facilitated high levels of population divergence of N. kaouthia in this region. Our study highlights the need for dense sampling of snake populations to reveal their systematics, plan conservation and facilitate anti‐snake venom development.  相似文献   

4.
5.
Measures of genetic diversity within and among populations and historical geomorphological data on stream landscapes were used in model simulations based on approximate Bayesian computation (ABC) to examine hypotheses of the relative importance of stream features (geomorphology and age) associated with colonization events and gene flow for coho salmon Oncorhynchus kisutch breeding in recently deglaciated streams (50–240 years b.p .) in Glacier Bay National Park (GBNP), Alaska. Population estimates of genetic diversity including heterozygosity and allelic richness declined significantly and monotonically from the oldest and largest to youngest and smallest GBNP streams. Interpopulation variance in allele frequency increased with increasing distance between streams (r = 0·435, P < 0·01) and was inversely related to stream age (r = –0·281, P < 0·01). The most supported model of colonization involved ongoing or recent (<10 generations before sampling) colonization originating from large populations outside Glacier Bay proper into all other GBNP streams sampled. Results here show that sustained gene flow from large source populations is important to recently established O. kisutch metapopulations. Studies that document how genetic and demographic characteristics of newly founded populations vary associated with successional changes in stream habitat are of particular importance to and have significant implications for, restoration of declining or repatriation of extirpated populations in other regions of the species' native range.  相似文献   

6.
Nibea albiflora (yellow drum) is an important seafood fish species in East Asia. We explored the population genetic variation of N. albiflora along the coastal waters of the China Sea using microsatellite markers to facilitate a selective breeding programme that is undertaken in China. A total of 256 alleles were detected at 12 loci in four wild populations. A high level of genetic diversity was observed with the mean number of alleles and the observed and expected heterozygosity in each population ranging from 7.917 to 14.083, 0.701 to 0.764 and 0.765 to 0.841, respectively. Pairwise fixation index (FST) analysis indicated significant but weak genetic differentiation among populations from four localities (FST?=?0.030, P?<?0.01), which was also confirmed by analysis of molecular variance (AMOVA). Significant genetic differentiation was detected between Ningde and the other populations (FST?=?0.047–0.056, P?<?0.01). Structure analysis suggested that N. albiflora within the examined range might be composed of two stocks. The data of the present study revealed high genetic diversity and low genetic differentiation among the N. albiflora populations along the coast of the China Sea. This baseline information could be valuable for future selective breeding programmes of N. albiflora.  相似文献   

7.
Genetic diversity of Epinephelus coioides (Hamilton, 1822), which inhabits coastal reefs from the western Indian Ocean to the western Pacific Ocean, was studied based on four polymorphic microsatellite loci. Two hundred and fifty individuals were collected from two locations in Thailand (Nakornsrithammarat-N and Trang-T) and four in Indonesia (Sibolga-S, Lampung-L, Jepara-J, and Flores-F). The genetic variation of E. coioides was relatively low; the observed heterozygosities (Ho) ranged between 0.36 (F) and 0.55 (N). The average number of alleles/locus was between 3.57 (L) and 5.09 (J). Genotypic distribution for most population pairs was significantly different after Bonferroni correction (P < 0.0024) except for J and F. Population structuring was significant (FST = 0.074). The genetic distances between populations ranged between 0.016 (L and N) to 0.086 (F and S). Mantel's test showed no correlation between genetic distance and geographical distance. The NJ tree clearly separated N from the others which comprised two subgroups, T-S and L-J-F.  相似文献   

8.
The oriental armyworm, Mythimna separata, is a serious agricultural pest in China. Seasonal and roundtrip migration has recently led to sudden, localized outbreaks and crop losses. To evaluate genetic differentiation between populations in eastern and western China and elucidate gene flow, the genetic structure of 20 natural populations from nine provinces was examined using seven microsatellite markers. The results indicated high genetic diversity. However, little to moderate (0 < FST < 0.15) genetic differentiation was detected, and there was no correlation between genetic distance and geographical distance. Bayesian clustering analysis identified three groups whereas discriminant analysis of principal components identified ten clusters that were considered as two clear‐cut clusters and one admixed group. Gene flow occurred frequently in most population pairs, and an asymmetrical migration rate was detected in several pairwise population comparisons. The bottleneck test showed that few populations had experienced recent bottlenecks. Correspondingly, large‐scale and long‐distance migration of M. separata has caused low genetic differentiation and frequent gene exchange. Our findings are important for studying genetic evolution and help to improve predictions of M. separata outbreaks in China.  相似文献   

9.
Understanding the amount and distribution of genetic diversity in natural populations can inform the conservation strategy for the species in question. In this study, genetic variation at eight nuclear microsatellite loci was used to investigate genetic diversity and population structure of wild litchi (Litchi chinensis Sonn. subsp. chinensis). Totally 215 individuals were sampled, representing nine populations of wild litchi. All eight loci were polymorphic, with a total of 51 alleles. The expected heterozygosity in the nine populations ranged from 0.367 to 0.638 with an average value of 0.526. Inbreeding within wild litchi populations was indicated by a strong heterozygote defect. Significant bottleneck events were detected in the populations from Yunnan and Vietnam, which could be responsible for lower levels of genetic diversity in these populations. Measures of genetic differentiation (F ST = 0.269) indicated strong differentiation among wild litchi populations. Significant correlation was found between genetic differentiation and geographical distance (r = 0.655, P = 0.002), indicating a strong isolation by distance in these populations. Bayesian clustering suggested genetic separation among three regional groups, namely, the western group, the central group and the eastern group. Some conservation strategies for wild litchi populations were also proposed based on our results.  相似文献   

10.
Human overpopulation, deforestation, invasion of agricultural areas, and livestock are the primary causes for population fragmentation of wildlife. The distribution range of species of the genus Macaca is constantly decreasing and becoming increasingly fragmented due to forest deterioration. Assamese macaques (M. assamensis) are classified as near threatened in the International Union for Conservation of Nature (IUCN) Red List of Threatened Animals (2008) and have been declared a protected wildlife animal according to Wildlife Preservation and Protection Act, B.E.2535 (1992) of Thailand. As studies of the population history and genetic diversity of Assamese macaques in Thailand are currently lacking, we aimed at a first investigation of their genetic diversity based on mitochondrial DNA [hypervariable regions 1 and 2 (HV1, HV2) and cytochrome B (CYTB) regions], as well as 15 microsatellite markers of five sampling sites distributed across Thailand. Our results indicate that Assamese macaques in Thailand are diverse, with eight maternal haplotypes and a low inbreeding coefficient in the Phu Khieo Wildlife Sanctuary (PKWS) population. Moreover, our phylogenetic and median-joining network analysis based on mitochondrial (mt)DNA suggests a population distribution in accordance with the evolutionary scenario proposed for M. sinica. Today, the population of Assamese macaques is fragmented, and conservation strategies are needed to ensure the maintenance of genetic diversity of this primate species.  相似文献   

11.
Genetic diversity of the giant tiger shrimp (Penaeus monodon) collected from 5 areas, Chumphon and Trat (Gulf of Thailand), and Phangnga, Satun, and Trang (Andaman Sea), was examined by randomly amplified polymorphic DNA (RAPD) and mitochondrial DNA (16S ribosomal DNA and an intergenic COI-COII) polymorphism. A total of 53 polymorphic fragments from UBC299, UBC273, and UBC268 was consistently scored across all samples. From the respective primers 26, 32, and 30 genotypes were generated. A 260-bp RAPD fragment generated by the primer UBC268 was specifically observed in 95.8% of Trat P. monodon, suggesting that this RAPD could be used as a marker for comparing phenotypic performance of P. monodon from Trat and other geographic samples. In addition, 37 mtDNA composite haplotypes were observed from restriction analysis of the same P. monodon samples. High haplotype diversity (0.855) and nucleotide diversity (3.328%) of Thai P. monodon were observed. Population differentiation of P. monodon between the Andaman Sea and Gulf of Thailand was clearly illustrated by both techniques (P < .0001). Nevertheless, contradictory results on patterns of differentiation were observed between P. monodon within the Gulf of Thailand. Analysis of nuclear DNA polymorphism (RAPD) indicated a genetically significant difference between Chumphon and Trat (P < .0001), whereas mtDNA polymorphism did not show differentiation between these samples (P= .0497). Under the presumption of selective neutrality of these markers, biased female gene flow between Trat and Chumphon P. monodon may exist and be responsible for an anomalous differentiation pattern between these geographic samples. Received October 11, 2000; accepted March 5, 2001.  相似文献   

12.
Very little information is available on the intraspecific genetic structure of topshell populations. Here, we report the characterization of five polymorphic microsatellite loci in the New Zealand mudflat topshell, Diloma subrostrata. The number of alleles per locus ranged from two to 23, observed and expected heterozygosities did not deviate from Hardy–Weinberg equilibrium (P < 0.05) and no linkage disequilibrium was detected between locus pairs (P < 0.05). We are currently using these markers to investigate genetic population structure of D. subrostrata in New Zealand.  相似文献   

13.
The oriental fruit fly, Bactrocera dorsalis (Hendel), is a key pest that causes reduction of the crop yield within the international fruit market. Fruit flies have been suppressed by two Area-Wide Integrated Pest Management programs in Thailand using Sterile Insect Technique (AW-IPM-SIT) since the late 1980s and the early 2000s. The projects’ planning and evaluation usually rely on information from pest status, distribution, and fruit infestation. However, the collected data sometimes does not provide enough detail to answer management queries and public concerns, such as the long term sterilization efficacy of the released fruit fly, skepticism about insect migration or gene flow across the buffer zone, and the re-colonisation possibility of the fruit fly population within the core area. Established microsatellite DNA markers were used to generate population genetic data for the analysis of the fruit fly sampling from several control areas, and non-target areas, as well as the mass-rearing facility. The results suggested limited gene flow (m < 0.100) across the buffer zones between the flies in the control areas and flies captured outside. In addition, no genetic admixture was revealed from the mass-reared colony flies from the flies within the control area, which supports the effectiveness of SIT. The control pests were suppressed to low density and showed weak bottleneck footprints although they still acquired a high degree of genetic variation. Potential pest resurgence from fragmented micro-habitats in mixed fruit orchards rather than pest incursion across the buffer zone has been proposed. Therefore, a suitable pest control effort, such as the SIT program, should concentrate on the hidden refuges within the target area.  相似文献   

14.
The endangered twoline skiffia Neotoca bilineata, a viviparous fish of the subfamily Goodeinae, endemic to central Mexico (inhabiting two basins, Cuitzeo and Lerma‐Santiago) was evaluated using genetic and habitat information. The genetic variation of all remaining populations of the species was analysed using both mitochondrial and microsatellite markers and their habitat conditions were assessed using a water quality index (IWQ). An 80% local extinction was found across the distribution of N. bilineata. The species was found in three of the 16 historical localities plus one previously unreported site. Most areas inhabited by the remaining populations had IWQ scores unsuitable for the conservation of freshwater biodiversity. Populations showed low but significant genetic differentiation with both markers (mtDNA φST = 0·076, P < 0·001; microsatellite FST = 0·314, P < 0·001). Borbollon, in the Cuitzeo Basin, showed the highest level of differentiation and was identified as a single genetic unit by Bayesian assignment methods. Rio Grande de Morelia and Salamanca populations showed the highest genetic diversity and also a high migration rate facilitated by an artificial channel that connected the two basins. Overall, high genetic diversity values were observed compared with other freshwater fishes (average Na = 16 alleles and loci and mean ±s.d . Ho = 0·63 ± 0·10 and nucleotide diversity π = 0·006). This suggests that the observed genetic diversity has not diminished as rapidly as the species' habitat destruction. No evidence of correlation between habitat conditions and genetic diversity was found. The current pattern of genetic diversity may be the result of both historical factors and recent modifications of the hydrological system. The main threat to the species may be the rapid habitat deterioration and associated demographic stochasticity rather than genetic factors.  相似文献   

15.
In the context of population genetic research, a faster and less invasive method of DNA sampling would allow large-scale assessments of genetic diversity and genetic differentiation with the help of volunteer observers. The aim of this study was to investigate the usefulness of eggshell membranes as a DNA source for population genetic research, by addressing eggshell membrane DNA quality, degeneration and cross-contamination. To this end, a comparison was made with blood-derived DNA samples. We have demonstrated 100% successful DNA extraction from post-hatched Black-tailed Godwit (Limosa limosa) eggshell membranes as well as from blood samples. Using 11 microsatellite loci, DNA amplification success was 99.1% for eggshell membranes and 97.7% for blood samples. Genetic information within eggshell membrane DNA in comparison to blood DNA was not affected (F ST = −0.01735, P = 0.999) by degeneration or possible cross-contamination. Furthermore, neither degeneration nor cross-contamination was apparent in total genotypic comparison of eggshell membrane DNA and blood sample DNA. Our research clearly illustrates that eggshell membranes can be used for population genetic research.  相似文献   

16.
Dispersal shapes demographic processes and therefore is fundamental to understanding biological, ecological, and evolutionary processes acting within populations. However, assessing population connectivity in scoters (Melanitta sp.) is challenging as these species have large spatial distributions that span remote landscapes, have varying nesting distributions (disjunct vs. continuous), exhibit unknown levels of dispersal, and vary in the timing of the formation of pair bonds (winter vs. fall/spring migration) that may influence the distribution of genetic diversity. Here, we used double‐digest restriction‐associated DNA sequence (ddRAD) and microsatellite genotype data to assess population structure within the three North American species of scoter (black scoter, M. americana; white‐winged scoter, M. deglandi; surf scoter, M. perspicillata), and between their European congeners (common scoter, M. nigra; velvet scoter, M. fusca). We uncovered no or weak genomic structure (ddRAD ΦST < 0.019; microsatellite FST < 0.004) within North America but high levels of structure among European congeners (ddRAD ΦST > 0.155, microsatellite FST > 0.086). The pattern of limited genomic structure within North America is shared with other sea duck species and is often attributed to male‐biased dispersal. Further, migratory tendencies (east vs. west) of female surf and white‐winged scoters in central Canada are known to vary across years, providing additional opportunities for intracontinental dispersal and a mechanism for the maintenance of genomic connectivity across North America. In contrast, the black scoter had relatively elevated levels of divergence between Alaska and Atlantic sites and a second genetic cluster found in Alaska at ddRAD loci was concordant with its disjunct breeding distribution suggestive of a dispersal barrier (behavioral or physical). Although scoter populations appear to be connected through a dispersal network, a small percentage (<4%) of ddRAD loci had elevated divergence which may be useful in linking areas (nesting, molting, staging, and wintering) throughout the annual cycle.  相似文献   

17.
Triploid Fritillaria camschatcensis (L.) Ker-Gawler (2n = 3x = 36) is a wild species growing in the low-lying areas of Hokkaido Island, Japan, including the Sapporo campus of Hokkaido University. Many F. camschatcensis plants grew on the campus about a century ago, but we seldom find the plants nowadays and so a project to restore this species is being planned. Because preservation of genetic diversity and composition in populations has become a major target of conservation, this study compared variation in the F. camschatcensis population on the Sapporo campus with that in two other populations in Hokkaido. Phenetic variation assessed by 57 randomly amplified polymorphic DNA markers showed that the three populations were significantly distinct from each other; analysis of molecular variance showed 64.3% of variation (P < 0.001) existed among the three populations. Comparison of phenetic diversity on the Sapporo campus population with that in the two other populations showed that the Sapporo campus population contained large genetic variation despite reduced plant numbers. These results indicate that multiplying F. camschatcensis individuals on the Sapporo campus is adequate to restore the Sapporo campus population because this population contains enough genetic diversity, and that transplanting from other populations should be avoided so as not to introduce different genotypes into the campus. These results will be used to design the restoration strategy.  相似文献   

18.
Amygdalus nana L., commonly known as wild almond, is an endangered wild relative of cultivated almond, which has great potential in almond crop breeding. In this study, we used microsatellite (SSR) loci derived from both expressed sequence tag (EST) and anonymous genomic sequence to explore the genetic diversity and population structure of A. nana in Xinjiang of China. Seven natural populations were collected across the whole distribution of A. nana in China, including populations from both inside (four populations) and outside (three populations) the established protected areas. A total of 22 and 19 alleles were detected from the seven pairs of EST and genomic SSR loci, respectively. Generally, the genomic SSRs showed lower levels of variation than EST-SSRs, which may partially due to the higher cross-species transferability in EST-SSRs than in genomic SSRs. The population-level genetic diversity (A = 1.84, P = 50.00%, Ho = 0.3491, HE = 0.2271) was lower than cultivated almond and several wild fruit species with similar breeding system. Most of the genetic variation (82.16%) was partitioned within populations. In particular, the population collected from Tacheng County (outside the protected areas) had the highest levels of genetic diversity and had significantly different genetic constitution from other populations.  相似文献   

19.
Hucho taimen are listed as endangered in China. The population size has declined recently, prompting an increase in the level of listing from grade three in 2002 to grade five in 2006. We analyzed the genetic diversity of wild populations using 17 microsatellite markers to establish a scientific basis for conservation of this species. We collected tissue samples from four populations in the Heilongjiang River basin: Huma River (HM), Hutou (HT), Haiqing (HQ), and Zhuaji (ZJ). A total of 21 loci were amplified, 18 of which were polymorphic. The number of alleles per locus ranged from 2 to 9 (mean: 4.1905). There were 13 highly polymorphic loci and 5 moderately polymorphic loci. Analysis of five genetic diversity parameters (Na, Ne, Ho, He, and PIC) suggested moderate levels of diversity within the populations. The populations were ranked HT > HQ > ZJ > HM, but the differences in diversity were not statistically significant (P > 0.05). A comparison of variation among all four populations suggested Hardy–Weinberg disequilibrium at 20% of the loci. Genetic differentiation (Fst) was 0.0644 and the gene flow among populations was estimated at 3.36 individuals per generation. The majority of diversity (93.88%) occurred among individuals within a population. In contrast, relatively little (6.12%) of the genetic diversity was distributed between the populations. An analysis of genetic differentiation and genetic distance between pairs of populations revealed that both parameters were higher in comparisons of the HM population to the HT, HQ, and ZJ populations than among the three latter populations. This suggests that the HM population has a distinct genetic structure. We hypothesize that habitat degradation and excessive fishing, not low genetic diversity, has caused the decline in H. taimen populations. However, this species should be protected from further declines in genetic diversity.  相似文献   

20.
Freshwater species with small distribution ranges are vulnerable to extinction, especially when they exhibit small effective population sizes. Squalius torgalensis, Cyprinidae, is an endemic critically endangered fish species from southwestern Portugal, confined to the intermittent streams of the Mira drainage. Assessment of genetic diversity and population structure levels was conducted through the analysis of both mitochondrial (cytochrome b) and nine nuclear microsatellite markers. Remarkable low levels of genetic diversity for both markers were observed (He < 0.38, π < 0.001). These results may be related with the restricted distribution range and dispersion patterns of the species together with demographic fluctuations associated with the intermittent features of the river system. Population structure analyses suggest the existence of two incipient divergent populations; one comprising the tributaries located upstream and the other comprising downstream tributaries of the Mira River. Data also supports the occurrence of high gene flow mainly from downstream to upstream, failing to reflect isolation of populations due to seasonal drought. Obtained results should be incorporated in future management plans for the species. These should be centred around the current connection between populations and on the maintenance of suitable habitat patches, not only for reproduction, but also for summer refuges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号