首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unusual disease lesions were observed in Montipora corals on the fringing reef of Magnetic Island (Great Barrier Reef, Australia) following a period of high water temperature in early January 2002. Tissue death in Montipora spp. appeared as a black layer that spread rapidly across the colony surface, though this appeared as the final phase of disease progression (with three previous disease phases now identified, S. Anthony, unpublished). Culture and molecular-based microbial analysis of this layer did not identify a likely microbial pathogen. Despite this, DNA sequencing of microbial 16S rDNA indicated a shift in the bacterial population associated with affected coral tissue. A clone library of the healthy coral sample predominantly contained sequences within the -Proteobacteria. A disease coral sample representing the margin of the black lesion and healthy coral tissue was dominated by sequences, which demonstrated low sequence identity to a range of -Proteobacteria, -Proteobacteria and cyanobacteria. The microbes identified in the diseased Montipora spp. samples are likely to be opportunistic rather than the causative agent of the observed lesion. Studies are in progress to further characterise the ecology of this disease and describe the potential microbial pathogen(s).  相似文献   

2.
Radiocarbon dating of seven drill cores from both the windward Lizard Island fringing reef and the windward and leeward margins of MacGillivray platform reef, Northern Great Barrier Reef Province, reveal the Holocene evolution of these two mid shelf coral reefs. The windward margin at Lizard Island started growing approximately 6,700 calendar years before present (cal yr BP) directly on an assumed granite basement and approached present day sea level approximately 4,000 cal yr BP. Growth of the windward margin at MacGillivray Reef was initiated by 7,600 cal yr BP and approached present day sea level by approximately 5,600 cal yr BP. The leeward margin at MacGillivray was initiated by 8,200 cal yr BP also directly on an assumed granite basement, but only approached sea level relatively recently, between 260 and 80 cal yr BP. None of the cores penetrated the Holocene-Pleistocene unconformity. The absence of Pleistocene reefal deposits, at 15 m depth in the cores from MacGillivray Reef, raises the possibility that the shelf in this region has subsided relative to modern day sea level by at least 15 m since the last interglacial [125,000 years ago (ka)].  相似文献   

3.
There is a widespread perception that coral larvae require stable (lithified) rock substrates to settle during reef initiation, and that these substrates are typically carbonate. However, reef core data show that reef establishment can also occur directly above a wide range of unlithified, non-carbonate sediment substrates, including relict alluvial sands and gravels. The mechanisms by which these lithic substrates are colonised and stabilised are not, however, well documented. Here, we describe such processes from an intertidal setting on the inner-shelf of the Great Barrier Reef, in a setting directly analogous to that which would have existed around many inner-shelf high islands during the post-glacial marine transgression when mid-Holocene reef initiation was taking place. Communicated by Geology Editor Dr. Bernhard Riegl  相似文献   

4.
Adaptation to localised thermal regimes is facilitated by restricted gene flow, ultimately leading to genetic divergence among populations and differences in their physiological tolerances. Allozyme analysis of six polymorphic loci was used to assess genetic differentiation between nine populations of the reef-building coral Acropora millepora over a latitudinal temperature gradient on the inshore regions of the Great Barrier Reef (GBR). Small but significant genetic differentiation indicative of moderate levels of gene flow (pairwise F ST 0.023 to 0.077) was found between southern populations of A. millepora in cooler regions of the GBR and the warmer, central or northern GBR populations. Patterns of genetic differentiation at these putatively neutral allozyme loci broadly matched experimental variation in thermal tolerance and were consistent with local thermal regimes (warmest monthly-averages) for the A. millepora populations examined. It is therefore hypothesized that natural selection has influenced the thermal tolerance of the A. millepora populations examined and greater genetic divergence is likely to be revealed by examination of genetic markers under the direct effects of natural selection.  相似文献   

5.
 CaCO3 production by reef-building organisms on Green Island Reef in the Great Barrier Reef of Australia is estimated and compared with the contribution of benthic foraminifera to the sediment mass of the vegetated sand cay. Major constituents of the cay are benthic foraminifera (mainly Amphistegina lessonii, Baculogypsina sphaerulata, and Calcarina hispida), calcareous algae (Halimeda and coralline algae), hermatypic corals, and molluscs. Among these reef-building organisms, benthic foraminifera are the single most important contributor to the sediment mass of the island (ca. 30% of total sediments), although their production of CaCO3 is smaller than other reef-building organisms. Water current measurements and sediment traps indicate that the velocity of the current around Green Island is suitable for transportation and deposition of foraminiferal tests. Abundant foraminifera presently live in association with algal turf on the shallow exposed reef flat, whose tests were accumulated by waves resulting in the formation and maintenance of the coral sand cay. Accepted: 30 June 1999  相似文献   

6.
Abstract Acanthochromis polyacanthus is an unusual tropical marine damselfish that uniquely lacks pelagic larvae and has lost the capacity for broad‐scale dispersal among coral reefs. On the modern Great Barrier Reef (GBR), three color morphs meet and hydridize at two zones of secondary contact. Allozyme electrophoreses revealed strong differences between morphs from the southern zone but few differences between morphs from the northern counterpart, thus suggesting different contact histories. We explore the phylogeography of Acanthochromis polyacanthus with mitochondrial cytochrome b region sequences (alignment of 565 positions) obtained from 126 individuals representing seven to 12 fish from 13 sites distributed over 12 reefs of the GBR and the Coral Sea. The samples revealed three major clades: (1) black fish collected from the southern GBR; (2) bicolored fish collected from the GBR and one reef (Osprey) from the northern Coral Sea; (3) black and white monomorphs collected from six reefs in the Coral Sea. All three clades were well supported (72–100%) by bootstrap analyses. Sequence divergences were very high between the major clades (mean = 7.6%) as well as within them (2.0–3.6%). Within clades, most reefs segregated as monophyletic assemblages. This was revealed both by phylogenetic analyses and AMOVAs that showed that 72–90% of the variance originated from differences among groups, whereas only 5–13% originated within populations. These patterns are discussed in relation to the known geological history of coral reefs of the GBR and the Coral Sea. Finally, we ask whether the monospecific status of Acanthochromis should be revisited because the sequence divergences found among our samples is substantially greater than those recorded among well‐recognized species in other reef fishes.  相似文献   

7.
Ocean warming and coral bleaching are patchy phenomena over a wide range of scales. This paper is part of a larger study that aims to understand the relationship between heat stress and ecological impact caused by the 2002-bleaching event in the Great Barrier Reef (GBR). We used a Bayesian belief network (BBN) as a framework to refine our prior beliefs and investigate dependencies among a series of proxies that attempt to characterize potential drivers and responses: the remotely sensed environmental stress (sea surface temperature — SST); the geographic setting; and topographic and ecological attributes of reef sites for which we had field data on bleaching impact. Sensitivity analyses helped us to refine and update our beliefs in a manner that improved our capacity to hindcast areas of high and low bleaching impact. Our best predictive capacity came by combining proxies for a sites heat stress in 2002 (remotely sensed), acclimatization temperatures (remote sensed), the ease with which it could be cooled by tidal mixing (modeled), and type of coral community present at a sample of survey sites (field data). The potential for the outlined methodology to deliver a transparent decision support tool to aid in the process of identifying a series of locations whose inclusion in a network of protected areas would help to spread the risk of bleaching is discussed.  相似文献   

8.
The visual pigments in the retinal photoreceptors of 12 species of snappers of the genus Lutjanus (Teleostei; Perciformes; Lutjanidae) were measured by microspectrophotometry. All the species were caught on the Great Barrier Reef (Australia) but differ in the colour of the water in which they live. Some live in the clear blue water of the outer reef, some in the greener water of the middle and inshore reefs and some in the more heavily stained mangrove and estuarine water. All the species had double cones, each member of the pair containing a different visual pigment. Using Baker's and Smith's (1982) model to predict the spectral distribution of ambient light from chlorophyll and dissolved organic matter it was found that the absorption spectra of the visual pigments in the double cones were close to those that confer the maximum sensitivity in the different water types. Single cones contained a blue or violet-sensitive visual pigment. The visual pigments in the rods showed little variation, their wavelength of maximum absorption always being in the region 489–502 nm.Abbreviations DOC dissolved organic carbon - DOM dissolved organic material - MSP microspectrophotometry deceased  相似文献   

9.
10.
11.
Detailed mapping of coral bleaching events provides an opportunity to examine spatial patterns in bleaching over scales of 10 s to 1,000 s of km and the spatial correlation between sea surface temperature (SST) and bleaching. We present data for two large-scale (2,000 km) bleaching events on the Great Barrier Reef (GBR): one from 1998 and another from 2002, both mapped by aerial survey methods. We examined a wide range of satellite-derived SST variables to determine which one best correlated with the observed bleaching patterns. We found that the maximum SST occurring over any 3-day period (max3d) during the bleaching season predicted bleaching better than anomaly-based SST variables and that short averaging periods (3–6 days) predicted bleaching better than longer averaging periods. Short periods of high temperature are therefore highly stressful to corals and result in highly predictable bleaching patterns. Max3d SST predicted the presence/absence of bleaching with an accuracy of 73.2%. Large-scale (GBR-wide) spatial patterns of bleaching were similar between 1998 and 2002 with more inshore reefs bleached compared to offshore reefs. Spatial change in patterns of bleaching occurred at scales of ~10 s km, indicating that reefs bleach (or not) in spatial clusters, possibly due to local weather patterns, oceanographic conditions, or both. Approximately 42% of reefs bleached to some extent in 1998 with ~18% strongly bleached, while in 2002, ~54% of reefs bleached to some extent with ~18% strongly bleached. These statistics and the fact that nearly twice as many offshore reefs bleached in 2002 compared to 1998 (41 vs. 21%, respectively) makes the 2002 event the worst bleaching event on record for the GBR. Modeling of the relationship between bleaching and max3d SST indicates that a 1 °C increase would increase the bleaching occurrence of reefs from 50% (approximate occurrence in 1998 and 2002) to 82%, while a 2 °C increase would increase the occurrence to 97% and a 3 °C increase to 100%. These results suggest that coral reefs are profoundly sensitive to even modest increases in temperature and, in the absence of acclimatization/adaptation, are likely to suffer large declines under mid-range International Panel for Climate Change predictions by 2050.
Ray BerkelmansEmail: Phone: +61-7-47534268Fax: +61-7-47534429
  相似文献   

12.
Juvenile parasitic cymothoid isopods (mancae) can injure or kill fishes, yet few studies have investigated their biology. While the definitive host of the adult cymothoids is usually a single host from a particular fish species, mancae may use so-called optional intermediate hosts before settling on the definitive host. Little, however, is known about these early interactions. The cymothoid isopod, Anilocra apogonae, infests the definitive host, Cheilodipterus quinquelineatus. This study examined their host preference among potential optional intermediate hosts. Their effect on the growth and mortality of the young of three apogonid fishes, including the definitive host, was investigated. The number of mancae produced per brood was positively correlated with female length. When given a choice of intermediate hosts, significantly more mancae attached to Apogon trimaculatus (Apogonidae) than to Apogon nigrofasciatus. When presented with Ap. trimaculatus and Pomacentrus amboinensis (Pomacentridae), mancae only attached to Ap. trimaculatus suggesting that mancae may show a taxonomic affiliation with preferred hosts. Mancae fed on all three apogonid species, with C. quinquelineatus being fed on earlier than Ap. trimaculatus and Ap. nigrofasciatus. Mancae feeding frequency, adjusted for fish survival, was lowest on C. quinquelineatus and highest on Ap. trimaculatus. Infested apogonids had reduced growth and increased mortality compared with uninfested fish. A. apogonae mancae can use several species of young apogonid fishes as optional intermediate hosts. Via reduced growth and increased mortality, mancae have the potential to negatively influence definitive host populations and also other young species of apogonid fishes.  相似文献   

13.
Exposure of coral reefs to river plumes carrying increasing loads of nutrients and sediments is a pressing issue for coral reefs around the world including the Great Barrier Reef (GBR). Laboratory experiments were conducted to investigate the effects of changes in inorganic nutrients (nitrate, ammonium and phosphate), salinity and various types of suspended sediments in isolation and in combination on rates of fertilisation and early embryonic development of the scleractinian coral Acropora millepora. Dose–response experiments showed that fertilisation declined significantly with increasing sediments and decreasing salinity, while inorganic nutrients at up to 20 μM nitrate or ammonium and 4 μM phosphate had no significant effect on fertilisation. Suspended sediments of ≥100 mg l−1 and salinity of 30 ppt reduced fertilisation by >50%. Developmental abnormality occurred in 100% of embryos at 30 ppt salinity, and no fertilisation occurred at ≤28 ppt. Another experiment tested interactions between sediment, salinity and nutrients and showed that fertilisation was significantly reduced when nutrients and low concentrations of sediments co-occurred, although both on their own had no effect on fertilisation rates. Similarly, while slightly reduced salinity on its own had no effect, fertilisation was reduced when it coincided with elevated levels of sediments or nutrients. Both these interactions were synergistic. A third experiment showed that sediments with different geophysical and nutrient properties had differential effects on fertilisation, possibly related to sediment and nutrient properties. The findings highlight the complex nature of the effects of changing water quality on coral health, particularly stressing the significance of water quality during coral spawning time. Communicated by Environment Editor Professor Rob van Woesik  相似文献   

14.
Large-scale bleaching of corals on the Great Barrier Reef   总被引:10,自引:10,他引:10  
 The Great Barrier Reef (GBR) experienced its most intensive and extensive coral bleaching event on record in early 1998. Mild bleaching commenced in late January and intensified by late February/early March 1998. Broad-scale aerial surveys conducted of 654 reefs (∼23% of reefs on the GBR) in March and April 1998, showed that 87% of inshore reefs were bleached at least to some extent (>1% of coral cover) compared to 28% of offshore (mid- and outer-shelf) reefs. Of inshore reefs 67% had high levels of bleaching (>10% of coral) and 25% of inshore reefs had extreme levels of bleaching (>60% of coral). Fewer offshore reefs (14%) showed high levels of bleaching while none showed extreme levels of bleaching. Ground-truth surveys of 23 reefs, which experienced bleaching in intensities ranging from none to extreme, showed that the aerial survey data are likely to be underestimates of the true extent and intensity of bleaching on the GBR. The primary cause of this bleaching event is likely to be elevated sea temperature and solar radiation, exacerbated by lowered salinity on inshore and some offshore reefs in the central GBR. Accepted: 30 July 1998  相似文献   

15.
Previous research has identified a relationship between the rate of dissipation of turbulent kinetic energy, , and the mass-transfer-limited rate of uptake by a surface, herein called the 1/4 law, and suggests this law may be applicable to nutrient uptake on coral reefs. To test this suggestion, nitrate uptake rate and gravitational potential energy loss have been measured for a section of Warraber Island reef flat, Torres Strait, northern Australia. The reef flat section is 3 km long, with a 3 m tidal range, and on the days measured, subject to 6 m s–1 tradewinds. The measured nitrate uptake coefficient, S , on two consecutive days during the rising tide was 1.23±0.28 and 1.42±0.52×10–4 m s–1. The measured loss of gravitational potential energy across the reef flat, GPE , on the same rising tides over a 178 m section was 208±24 and 161±20 kg m–1 s–2. Assuming the GPE is dissipated as turbulent kinetic energy in the water column, and using the 1/4 law, the mass-transfer-limited nitrate uptake coefficient, SMTL , on the two days was 1.57±0.03 and 1.45±0.04×10–4 m s–1. Nitrate uptake on Warraber Island reef flat is close to the mass-transfer limit, and is determined by oceanographic nitrate concentrations and energy climate.Communicated by B.C. Hatcher  相似文献   

16.
    
Severe climatic disturbance events often have major impacts on coral reef communities, generating cycles of decline and recovery, and in some extreme cases, community‐level phase shifts from coral‐ to algal‐dominated states. Benthic habitat changes directly affect reef fish communities, with low coral cover usually associated with low fish diversity and abundance. No‐take marine reserves (NTRs) are widely advocated for conserving biodiversity and enhancing the sustainability of exploited fish populations. Numerous studies have documented positive ecological and socio‐economic benefits of NTRs; however, the ability of NTRs to ameliorate the effects of acute disturbances on coral reefs has seldom been investigated. Here, we test these factors by tracking the dynamics of benthic and fish communities, including the important fishery species, coral trout (Plectropomus spp.), over 8 years in both NTRs and fished areas in the Keppel Island group, Great Barrier Reef, Australia. Two major disturbances impacted the reefs during the monitoring period, a coral bleaching event in 2006 and a freshwater flood plume in 2011. Both disturbances generated significant declines in coral cover and habitat complexity, with subsequent declines in fish abundance and diversity, and pronounced shifts in fish assemblage structure. Coral trout density also declined in response to the loss of live coral, however, the approximately 2:1 density ratio between NTRs and fished zones was maintained over time. The only post‐disturbance refuges for coral trout spawning stocks were within the NTRs that escaped the worst effects of the disturbances. Although NTRs had little discernible effect on the temporal dynamics of benthic or fish communities, it was evident that the post‐disturbance refuges for coral trout spawning stocks within some NTRs may be critically important to regional‐scale population persistence and recovery.  相似文献   

17.
Summary Calcified demosponges (coralline sponges, sclero-sponges), the first metazoa producing a carbonate skeleton, used to be important reef building organisms in the past. The relatives of this group investigated here,Spirastrella (Acanthochaetetes) wellsi, Astrosclera willeyana andVaceletia cf.crypta, are restricted to cryptic niches of modern Pacific coral reefs and may be considered as “living fossils’. They are characterized by a basic biologically controlled metazoan biomineralization process. Each of the investigated taxa forms its calcareous basal skeleton in a highly specialized way. Moreover, each taxon secretes distinct Ca2+-binding macromolecules which were entrapped within the calcium carbonate crystals during skeleton formation. Therefore these Ca2+-binding macromolecules were also described as intracrystalline macromolecules. When isolated and separated by SDS polyacrylamide gel electrophoresis, the organic skeleton matrix of the three species revealed to be composed of a respective distinct array of EDTA-soluble proteins. A single protein of 41 kDa was detected inS. wellsi, two proteins of 38 and 120 kDa inA. willeyana, and four proteins of 18 kDa, 30 kDa, 33 kDa, and 37 kDa inVaceletia sp. When run on IEF gel, the Ca2+-binding proteins gave staining bands at pH values between 5.25 and 5.65. As proved by anin vitro mineralization assay, the extracted proteins effectively inhibit CaCO3 and SrCO3 precipitation, respectively, in a saturated solution. Biochemical properties and behavior of the extracted proteins strongly suggest that they are involved in crystal nucleation and skeleton carbonate formation within the calcified sponges studied here.  相似文献   

18.
Synopsis Visual census techniques applicable to coral reef-associated fishes are reviewed and the results of field tests using six (three transect-based and three point-based) to estimate the density of carangids at Carter Reef, Great Barrier Reef, are presented. Data are analyzed with respect to the effects of observers on fishes seen, observer biasses, precision of the estimates and, as far as possible, accuracy of the estimates. Transects generate estimates of population density and structure different from those of point-based estimates. Various point-based census methods, however, generate density estimates consistent with one another and are generally more precise than transect-based methods. The results of the field study obviously cannot be generalized to other quite different types of reef fishes. The problems we encountered and a review of the techniques used to census reef fishes visually in the past, however, suggest that: (1) interval counts, such as Rapid Visual Census techniques, are likely to be inaccurate and difficult to compare; (2) for species with high probabilities of detection, instantaneous area counts appear to be the most effective way to estimate densities, whereas cryptic species are best censused using instantaneous variable distance point counts, and (3) strip transects may often be less efficient than line transects, due to inconstant levels of subject detectability.  相似文献   

19.
 Significant coral reef ecosystems occur along the northwest (NW) coast of Australia in an oceanographic setting somewhat similar to that of the Great Barrier Reef off the northeast (NE) Australian coast. Seasonal and inter-annual variations of several surface climate variables are described for the NW coastal region of Australia from 10°–30°S over the period 1960 to 1992. Average climatic conditions in this region are compared with those for similar latitudes on the Great Barrier Reef. On average, sea surface temperatures (SSTs) along the NW Australian coast are warmer than at similar latitudes along the NE coast north of ∼20°S and cooler than the NE coast at higher latitudes. The annual range of SSTs along the NW coast is lower than found along the NE coast. There is also lower average cloud amount (and greater incoming solar radiation) along the NW coast compared with the NE coast. Corals reefs off the NW Australian coast are less likely to be influenced by freshwater and associated terrestrial impacts than nearshore reefs of the GBR. Although the latitudinal distribution of tropical cyclone activity is similar along the NW and NE Australian coasts, the total number of tropical cyclones and tropical cyclone days is substantially higher on the NW coast compared with the NE coast. Accepted: 22 June 1998  相似文献   

20.
    
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号