首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 186 毫秒
1.
Fish models are essential for research in many biological and medical disciplines. With a typical lifespan of only 6 months, the Turquoise killifish (Nothobranchius furzeri) was recently established as a time- and cost-efficient model to facilitate whole-life and multigenerational studies in several research fields, including behavioural ecotoxicology. Essential information on the behavioural norm and on how laboratory conditions affect behaviour, however, is deficient. In the current study, we examined the impact of the social and structural environment on a broad spectrum of behavioural endpoints in N. furzeri. While structural enrichment affected only fish boldness and exploratory behaviour, fish rearing density affected the total body length, locomotor activity, boldness, aggressiveness and feeding behaviour of N. furzeri individuals. Overall, these results contribute to compiling a behavioural baseline for N. furzeri that increases the applicability of this new model species. Furthermore, our findings will fuel the development of improved husbandry protocols to maximize the welfare of N. furzeri in a laboratory setting.  相似文献   

2.
Theory predicts that fish should show colour-assortative shoaling in order to avoid the oddity effect whereby individuals that differ in some feature from the group majority appear to incur increased risk of predation. It has also been shown that early experience plays an important role in affecting social preferences in some fish species. In this study, the importance of colour phenotype in promoting assortative shoaling and the role played by the recent social environment on its expression were investigated in juvenile angelfish, Pterophyllum scalare. Individuals of the uniformly black and golden colour morphs were housed in a group with conspecifics of like and unlike body colour to themselves, as well as in mixed-colour groups for 4 weeks. Subsequently, they were subjected to a binary choice to shoal with a group of conspecifics composed of unfamiliar fish of either a like or unlike colour phenotype to themselves. The response of the individuals to the colour attributes of the shoals was related to their recent social environment. Fish in like- and mixed-colour previous treatments showed a preferential association with like colour conspecifics. In contrast, the shoaling behaviour exhibited by fish previously maintained with a group of unlike-coloured conspecifics (cross-housed treatment) indicated no significant preference for any of the shoals. The results suggest that angelfish use body colouration as an intraspecific shoaling cue and that learning, in the form of recent familiarisation with a specific colour phenotype of conspecifics, can affect colour-assortative shoaling preferences in this species. This learning component of the choice need not be restricted to early developmental stages.  相似文献   

3.
Although some fish species have been shown to be able to discriminate between two groups (shoals) of conspecifics differing in the number of members, most studies have not controlled for continuous variables that covary with number. Previously, using angelfish (Pterophyllum scalare) we started the systematic analysis of the potential influence of such continuous variables, and found that they play different roles in shoal discrimination depending on whether large (≥4 fish) or small (<4 fish) shoals were contrasted. Here, we examine the potential role of the overall body surface area of stimulus fish in shoal preference, a prominent variable not yet examined in angelfish. We report that both when numerically large (5 versus 10 fish) and when small (2 versus 3 fish) shoals were contrasted, angelfish were unable to discriminate the numerically different shoals as long as the surface area of the contrasted shoals was equated. Thus, we conclude that body surface may be an important continuous variable in shoal discrimination. This conclusion was further supported by the analysis of preference when shoals of the same numerical size but different body surface area were contrasted. We found subjects to spend significantly more time close to the shoals with the greater overall surface area. Last, we conducted an experiment in which we simultaneously controlled a set of continuous variables, including overall surface area, and found angelfish to use the number of shoal members as a cue only in large shoal contrasts but not in small shoal contrasts. This result suggests the potential existence of different processing systems for large and small numbers in fish.  相似文献   

4.
Environments and experiences encountered in early life stages of animals shape their adult behaviour. When environments are maintained for several generations, differential selection forces act upon individuals to select those most fit to the particular conditions. As such, differences in the behaviour of captive bred and wild caught individuals have been observed recurrently. In fish, hatchery raised individuals tend to seek refuge less, making them more vulnerable to predators. We tested the hypothesis that captive breeding induces non‐adaptive changes in behaviour of freshwater angelfish, Pterophyllum scalare. Wild‐caught and captive‐bred fish were exposed to a natural predator and measured for their anti‐predator behaviours; no differences were found in behaviour under control conditions. When exposed to a natural predator, wild‐caught fish exhibited significantly shorter freezing durations than captive‐bred fish, and took significantly shorter time to resume normal behaviour. No differences in the time taken to initiate investigations of the predator were detected. The results demonstrate that captive‐bred fish respond differently than their wild counterparts when exposed to a natural predator, and that this domestication has implications for captive rearing programmes.  相似文献   

5.
Teleost fish are commonly used as model species in laboratory studies of behaviour and ecology. In comparison to other groups of vertebrates used routinely in such studies, however, relatively little attention has been paid to their environmental requirements from a welfare perspective. Fish naturally inhabit a wide variety of aquatic habitats that differ enormously in the range of light environments they provide, and light regime has enormous potential to affect behaviour. Yet the level and quality of illumination (in terms of intensity and wavelength spectrum) provided in experimental studies of fish behaviour is generally designed to maximize ease of recording by the observer. In addition, display or home aquaria provide illumination that maximizes the ‘viewing pleasure’ of the observer, and specialist lighting tubes are available to stimulate rapid plant growth and to ‘show off’ the colours of fish, rather than to provide ‘natural’ light environments. Here we present the results of three studies designed to examine the effects of light intensity, wavelength spectrum and their interactions on the behaviour of a model species commonly used in behavioural studies, the three‐spined stickleback Gasterosteus aculeatus. Our aims are to determine whether unnatural light environments, generated by manipulating light intensity and wavelength spectrum, affect behaviour in ways that may lead to concern for the welfare of fish as research animals or pets.  相似文献   

6.
The ornamental fish trade is estimated to handle up to 1·5 billion fishes. Transportation and handling of fishes imposes a range of stressors that can result in mortality at rates of up to 73%. These rates vary hugely, however, and can be as low as 2%, because they are generally estimated rather than based on experimental work. Given the numbers of ornamental fishes traded, any of the estimated mortality rates potentially incur significant financial losses and serious welfare issues. Industry bodies, such as the Ornamental Aquatic Trade Association (OATA), have established standards and codes of best practice for handling fishes, but little scientific research has been conducted to understand the links between stress, health and welfare in ornamental species. In aquaculture, many of the same stressors occur as those in the ornamental trade, including poor water quality, handling, transportation, confinement, poor social and physical environment and disease and in this sector directed research and some resulting interventions have resulted in improved welfare standards. This review considers the concept of welfare in fishes and evaluates reported rates of mortality in the ornamental trade. It assesses how the stress response can be quantified and used as a welfare indicator in fishes. It then analyses whether lessons from aquaculture can be usefully applied to the ornamental fish industry to improve welfare. Finally, this analysis is used to suggest how future research might be directed to help improve welfare in the ornamental trade.  相似文献   

7.
Synopsis The purpose of this study was to determine if body and fin form affected the maneuverability of teleostean fishes as measured by their ability to negotiate simple obstacles. Obstacles were vertical and horizontal rectangular slits of different widths, for which width was defined as the minimum dimension of a slit irrespective of slit orientation. Performance was measured as the smallest slit width traversed. Three species with different body and fin patterns were induced to swim through slits. Species tested were; goldfish Carassius auratus with a fusiform body, anterio-ventral pectoral fins and posterio-ventral pelvic fins; silver dollars Metynnis hypsauchen with the same fin configurations but a gibbose body; angelfish Pterophyllum scalare with a gibbose body and anterio-lateral pectoral fins. Minimum slit widths negotiated were normalized with the length of various body dimensions: total length, maximum width, span at the pectoral fins, and volume1/3 (numerically equal to mass1/3). Goldfish had the poorest performance, requiring the largest slit widths relative to these body dimensions. No consistent patterns in performance were found for silver dollars vs. angelfish. There were no differences among species in the ratio of minimum vertical slit width negotiated to that for horizontal slits, indicating fish were equally able to control posture while swimming on their sides. There were also no consistent patterns in the times taken to transit slits. Although the deep-bodied fish were able to maneuver through smaller slits, the most striking result is the similarity of minimum slit widths traversed in spite of the large variation in body form. Body form and fin plan may be more important for maneuvering and posture control during sub-maximum routine activities.  相似文献   

8.
Modern behavioural scientists have come to acknowledge that individual animals may respond differently to the same stimuli and that the quality of welfare and lived experience can affect behavioural responses. However, much of the foundational research in behavioural science lacked awareness of the effect of both welfare and individuality on data, bringing their results into question. This oversight is rarely addressed when citing seminal works as their findings are considered crucial to our understanding of animal behaviour. Furthermore, more recent research may reflect this lack of awareness by replication of earlier methods – exacerbating the problem. The purpose of this review is threefold. First, we critique seminal papers in animal behaviour as a model for re-examining past experiments, attending to gaps in knowledge or concern about how welfare may have affected results. Second, we propose a means to cite past and future research in a way that is transparent and conscious of the abovementioned problems. Third, we propose a method of transparent reporting for future behaviour research that (i) improves replicability, (ii) accounts for individuality of non-human participants, and (iii) considers the impact of the animals' welfare on the validity of the science. With this combined approach, we aim both to advance the conversation surrounding behaviour scholarship while also serving to drive open engagement in future science.  相似文献   

9.
The number of farmed fish in the world has increased considerably. Aquaculture is a growing industry that will in the future provide a large portion of fishery products. Moreover, in recent years, the number of teleost fish used as animal models for scientific research in both biomedical and ecological fields has increased. Therefore, it is increasingly important to implement measures designed to enhance the welfare of these animals. Currently, a number of European rules exist as requirements for the establishment, care and accommodation of fish maintained for human purposes. As far as (teleost) fish are concerned, the fact that the number of extant species is much greater than that of all other vertebrates must be considered. Of further importance is that each species has its own specific physical and chemical requirements. These factors make it difficult to provide generalized recommendations or requirements for all fish species. An adequate knowledge is required of the physiology and ecology of each species bred. This paper integrates and discusses, in a single synthesis, the current issues related to fish welfare, considering that teleosts are target species for both aquaculture and experimental models in biological and biomedical research. We first focus on the practical aspects, which must be considered when assessing fish welfare in both research and aquaculture contexts. Next, we address husbandry and the care of fish housed in research laboratories and aquaculture facilities in relation to their physiological and behavioural requirements, as well as in reference to the suggestions provided by European regulations. Finally, to evaluate precisely which parameters described by Directive 2010/63/EU are reported in scientific papers, we analysed 82 articles published by European researchers in 2014 and 2015. This review found that there is a general lack of information related to the optimal environmental conditions that should be provided for the range of species covered by this directive.  相似文献   

10.
The ornamental aquatic industry involves the global commercial trade of live aquatic organisms such as fish, invertebrates and plants. It comprises a range of businesses including collectors, breeders, exporters, importers and retailers. Together, these form a supply chain through which aquatic organisms pass from their point of origin to the end point e.g., domestic aquaria and ponds. On a worldwide basis, the legal and legitimate ornamental aquatic trade is subject to regulation and monitoring throughout the majority of its supply chain. Approximately 90% of ornamental freshwater fish species traded are captive-bred, but, due to their complex breeding cycles, 90–95% of ornamental marine fish species are wild-caught. The ornamental aquatic industry and consumers therefore have a responsibility to ensure that wild-caught species are sourced sustainably, legally and to good welfare standards. Such good practice should be considered a necessity for the longevity, not only of the ornamental aquatic industry, but of the livelihoods which depend on it and the future of ecosystems dependent on such communities.  相似文献   

11.
Barber  I.  & Svensson  P. A.   《Journal of fish biology》2003,63(S1):246-246
Teleost fish are commonly used as model species in laboratory studies of behaviour and ecology. In comparison to other groups of vertebrates used routinely in such studies, however, relatively little attention has been paid to their environmental requirements from a welfare perspective. Fish naturally inhabit a wide variety of aquatic habitats that differ enormously in the range of light environments they provide, and light regime has enormous potential to affect behaviour. Yet the level and quality of illumination (in terms of intensity and wavelength spectrum) provided in experimental studies of fish behaviour is generally designed to maximize ease of recording by the observer. In addition, display or home aquaria provide illumination that maximizes the 'viewing pleasure' of the observer, and specialist lighting tubes are available to stimulate rapid plant growth and to 'show off' the colours of fish, rather than to provide 'natural' light environments. Here we present the results of three studies designed to examine the effects of light intensity, wavelength spectrum and their interactions on the behaviour of a model species commonly used in behavioural studies, the three‐spined stickleback Gasterosteus aculeatus . Our aims are to determine whether unnatural light environments, generated by manipulating light intensity and wavelength spectrum, affect behaviour in ways that may lead to concern for the welfare of fish as research animals or pets.  相似文献   

12.
Animal‐focused research has been crucial for scientific advancement, but rodents are still taking a starring role. Starting as merely supporting evidence found in rodents, the use of fish models has slowly taken a more central role and expanded its overall contributions in areas such as social sciences, evolution, physiology and recently in translational medical research. In the neurosciences, zebrafish Danio rerio have been widely adopted, contributing to our understanding of the genetic control of brain processes and the effects of pharmacological manipulations. However, discussion continues regarding the paradox of function versus structure, when fishes and mammals are compared and on the potentially evolutionarily conserved nature of behaviour across fish species. From a behavioural standpoint, we explore aversive–stress and social behaviour in selected fish models and refer to the extensive contributions of stress and monoaminergic systems. We suggest that, in spite of marked neuroanatomical differences between fishes and mammals, stress and sociality are conserved at the behavioural and molecular levels. We also suggest that stress and sociality are mediated by monoamines in predictable and non‐trivial ways and that monoamines could bridge the relationship between stress and social behaviour. To reconcile the level of divergence with the level of similarity, we need neuroanatomical, pharmacological, behavioural and ecological studies conducted in the laboratory and in nature. These areas need to add to each other to enhance our understanding of fish behaviour and ultimately how this all may lead to better model systems for translational studies.  相似文献   

13.
Juveniles of many coral reef fish species are thought to either follow the same bathymetric distribution patterns as the adults, or to occupy shallower waters. However, our knowledge base suffers a dearth of data from the deep reefs (>40 m). In a recent survey of the deep reefs of the northern Gulf of Aqaba (<65 m), we examined the bathymetric distribution of 26 diurnal zooplanktivorous species. In sharp contrast to the general trend known from the literature and from this research, the abundance of juvenile zebra angelfish, Genicanthus caudovittatus, peaked at deeper waters (60–65 m) compared with the adults (30 m). This suggests that the deeper reefs may serve as nursery grounds for the zebra angelfish. Peak juvenile abundance coincided with relatively low predator abundances. This raises the question, which factors constrain the bathymetric distribution of the remaining species. Our findings stress the potential importance of deep coral reef research for understanding the ecological patterns and processes that govern reef community structure.  相似文献   

14.
A study was conducted to determine the effects of increasing the levels of dietary carotenoid‐rich microalgae biomass on the skin colouration of angelfish (Pterophyllum scalare). A natural microalgae product characterised by a high content (approximately 5% w/w) of the carotenoid astaxanthin was included in a basal diet at 0.25, 0.50, 1.00 and 2.00 g per 100 g as a substitute for wheat flour. Each diet was fed at 3% of live weight to three replicates of 10 fish each for a period of 28 days. Final weights of replicates were determined as indications of growth. Further, non‐invasive techniques were applied to evaluate skin colour. Whole body images of individual fish were processed using specialised computer software to measure the different components of the RGB, HSV and CIE L*a*b* colour evaluation systems, which were also assessed by three independent judges familiar with the rearing and trade of ornamental fishes. No significant influence of the microalgae addition was detected (P > 0.05) on the final live weight of the fish. The colour components Red, Hue, Value and L* were not linearly related (P < 0.05) to dietary microalgae inclusion levels. Where related (Green, Blue, Saturation, a*, b*), correlation coefficients were 0.66 at most. Second‐order polynomial regression models showed that maximum or minimum values for colour measurements were frequently outside the range (0.00–2.00 g per 100 g) of the microalgae inclusion levels applied. When visual evaluation (the most common assessment approach in practice) was used, the judges clearly confirmed that the colour changes were directly related to increasing levels of microalgae inclusion.  相似文献   

15.
Current issues in fish welfare   总被引:11,自引:0,他引:11  
Human beings may affect the welfare of fish through fisheries, aquaculture and a number of other activities. There is no agreement on just how to weigh the concern for welfare of fish against the human interests involved, but ethical frameworks exist that suggest how this might be approached. Different definitions of animal welfare focus on an animal's condition, on its subjective experience of that condition and/or on whether it can lead a natural life. These provide different, legitimate, perspectives, but the approach taken in this paper is to focus on welfare as the absence of suffering. An unresolved and controversial issue in discussions about animal welfare is whether non‐human animals exposed to adverse experiences such as physical injury or confinement experience what humans would call suffering. The neocortex, which in humans is an important part of the neural mechanism that generates the subjective experience of suffering, is lacking in fish and non‐mammalian animals, and it has been argued that its absence in fish indicates that fish cannot suffer. A strong alternative view, however, is that complex animals with sophisticated behaviour, such as fish, probably have the capacity for suffering, though this may be different in degree and kind from the human experience of this state. Recent empirical studies support this view and show that painful stimuli are, at least, strongly aversive to fish. Consequently, injury or experience of other harmful conditions is a cause for concern in terms of welfare of individual fish. There is also growing evidence that fish can experience fear‐like states and that they avoid situations in which they have experienced adverse conditions. Human activities that potentially compromise fish welfare include anthropogenic changes to the environment, commercial fisheries, recreational angling, aquaculture, ornamental fish keeping and scientific research. The resulting harm to fish welfare is a cost that must be minimized and weighed against the benefits of the activity concerned. Wild fish naturally experience a variety of adverse conditions, from attack by predators or conspecifics to starvation or exposure to poor environmental conditions. This does not make it acceptable for humans to impose such conditions on fish, but it does suggest that fish will have mechanisms to cope with these conditions and reminds us that pain responses are in some cases adaptive (for example, suppressing feeding when injured). In common with all vertebrates, fish respond to environmental challenges with a series of adaptive neuro‐endocrine adjustments that are collectively termed the stress response. These in turn induce reversible metabolic and behavioural changes that make the fish better able to overcome or avoid the challenge and are undoubtedly beneficial, in the short‐term at least. In contrast, prolonged activation of the stress response is damaging and leads to immuno‐suppression, reduced growth and reproductive dysfunction. Indicators associated with the response to chronic stress (physiological endpoints, disease status and behaviour) provide a potential source of information on the welfare status of a fish. The most reliable assessment of well‐being will be obtained by examining a range of informative measures and statistical techniques are available that enable several such measures to be combined objectively. A growing body of evidence tells us that many human activities can harm fish welfare, but that the effects depend on the species and life‐history stage concerned and are also context‐dependent. For example, in aquaculture, adverse effects related to stocking density may be eliminated if good water quality is maintained. At low densities, bad water quality may be less likely to arise whereas social interactions may cause greater welfare problems. A number of key differences between fish and birds and mammals have important implications for their welfare. Fish do not need to fuel a high body temperature, so the effects of food deprivation on welfare are not so marked. For species that live naturally in large shoals, low rather than high densities may be harmful. On the other hand, fish are in intimate contact with their environment through the huge surface area of their gills, so they are vulnerable to poor water quality and water borne pollutants. Extrapolation between taxa is dangerous and general frameworks for ensuring welfare in other vertebrate animals need to be modified before they can be usefully applied to fish. The scientific study of fish welfare is at an early stage compared with work on other vertebrates and a great deal of what we need to know is yet to be discovered. It is clearly the case that fish, though different from birds and mammals, however, are sophisticated animals, far removed from unfeeling creatures with a 15 s memory of popular misconception. A heightened appreciation of these points in those who exploit fish and in those who seek to protect them would go a long way towards improving fish welfare.  相似文献   

16.
The marine ornamental fish trade began in the 1930s in Sri Lanka, spread to Hawaii and the Philippines in the 1950s, and expanded to a multi-million dollar industry in the 1970s with fisheries established throughout the tropical Pacific, Indian and Atlantic Oceans. Currently, 45 countries supply global markets an estimated 14-30 million fish annually, with an import value of US$28-44 million. The largest suppliers are Indonesia and the Philippines, followed by Brazil, Maldives, Vietnam, Sri Lanka and Hawaii. In the tropical Western Atlantic, 16 countries have export fisheries, including the U.S. (Florida and Puerto Rico). The U.S. is the world's largest buyer, followed by the European Union and Japan. The global trade consists of over 1400 species of reef fishes, of which only about 25 are captive bred on a commercial scale. Damselfish, anemonefish, and angelfish constitute over 50% of the global volume; butterflyfish, wrasses, blennies, gobies, triggerfish, filcfish, hawkfishes, groupers and basselets account for 31% of the trade, and the remaining 16% is represented by 33 families. The most important fishes from the Caribbean are angelfish (six species), seahorses (two species), royal gramma, jawfish, queen triggerfish, redlip blenny, puddingwife, bluehead wrasse, and blue chromis. The Caribbean currently supplies a small percentage of the global trade in marine ornamental species, but ornamental fisheries in this region represent important emerging industries. It is critical that effective ornamental fishery management plans and regulations are developed and enforced, and fishery-dependent and fishery-independent data are collected and utilized in decision making processes to ensure sustainable ornamental fisheries throughout the region.  相似文献   

17.
18.
Information about the welfare and husbandry of pet and laboratory fish is scarce although millions of fish are sold in pet shops and used in laboratory research every year. Inadequate housing conditions can cause behavioural problems also in fish since they are complex animals with sophisticated behaviour. In this study, we investigated the influence of environmental complexity on compartment preference and behaviour in zebrafish (Danio rerio) and checker barbs (Puntius oligolepis). For the preference test, large aquaria were divided by two semi-transparent walls of Plexiglas into an empty compartment, a structured compartment enriched with plants and clay pots, and a smaller compartment in-between, where food was provided. For observation, the empty and structured compartments were divided into six zones of similar size by defining three vertical layers and two horizontal areas (back vs. front area). Seven groups of six to nine zebrafish and seven groups of seven or eight checker barbs were observed on four days each (within a time period of ten days) to assess compartment use and activity, and to assess behavioural diversity and use of zones within compartments. Both zebrafish and checker barbs showed a significant preference for the structured compartment. Nevertheless, in neither species did behavioural diversity differ between the empty and structured compartment. Zebrafish used all zones in both compartments to the same extent. Checker barbs, however, used the structured compartment more evenly than the empty compartment, where they mainly used the lower and middle zones. These results suggest that zebrafish and checker barbs have a preference for complex environments. Furthermore, they indicate that the behavioural and ecological needs of fish may vary depending on species, and recommendations for husbandry should be specified at species level.  相似文献   

19.
Most species used for behavioural studies are bisexual. Sexual dimorphism determines genotypic diversity and behavioural variation within a species. The relative contribution of a genome to a specific behaviour is for the most part indiscernible, but gene changes can alter behaviour in many different ways1. Within a species, strain differences can contribute to behavioural differences and many less clearly systematic behaviours, such as the aptitude to learn or to recall, may be genetically determined2. Genotypic diversity, on the other hand, obscures gene correlates of behaviour because each organism brings a unique repertoire of behaviours to the experimental situation. Against this, learning research has found basic phenomena of learning and memory to be valid across many vertebrate species. In an effort to reduce genotypic and behavioural variability in studying memory processing, we have used a unisexual clonal fish, Poecilia formosa, as suggested by Agranoff and Davis3.  相似文献   

20.
The aim of the present study was to determine age, growth and mortality of the French angelfish Pomacanthus paru. Age was solely determined by sectioned otoliths. All tetracycline‐treated otoliths were 1 year of age and revealed a clear fluorescent mark when observed under UV light. Otolith weight increased exponentially with standard length, and linearly with age, indicating that otolith growth continues with age and is independent of size. Age of fish in the sample ranged from 1 to 27 years. The von Bertalanffy growth equation was TLt = 36.33 (1 ? e?0.12 (t + 0)). Total rate mortality (Z) was estimated to be 0.10. Attaining maximal size slowly, P. paru has a long life expectancy. Most linear growth is achieved within approximately 74% of the lifetime of the fish. Besides being an important ornamental species, P. paru has been commonly captured for decades as bycatch in trap fisheries. These growth parameters should be used with the purpose of managing fisheries targeting this species before more meaningful limits can be imposed. In the aquarium trade management, it is suggested that conservationist issues should be based on capture‐per‐area and the establishment of protected areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号