共查询到20条相似文献,搜索用时 15 毫秒
1.
Diabetes mellitus (DM) is a major risk factor for atherosclerosis and causes multiple cardiovascular complications. Although high glucose can induce matrix metalloproteinases (MMPs), its inhibitors and cell apoptosis, little is known about the roles of MMPs in regulating cell apoptosis in response to high glucose. To address this issue, we elucidated the relationship between MMPs, its inhibitors and cell apoptosis in human umbilical vein endothelial cells (HUVECs). HUVECs were treated with medium containing 5.5 mM or 33 mM of glucose in the presence or the absence of ascorbic acid and MMP inhibitors (GM6001 and endogenous tissue inhibitors of MMPs, TIMP-1, and TIMP-2). For detection of cell apoptosis, the cell death detection ELISA assay was used. The results revealed that high glucose-induced apoptosis could be suppressed by ascorbic acid, GM6001 and TIMP-2, but not by TIMP-1. The activities of MMP-2, MMP-9 and its inhibitors, TIMP-1, TIMP-2 after high glucose treatment, were also detected by ELISA method. We found that the activated form of MMP-2, but not MMP-9, was increased, while the level of TIMP-2, but not TIMP-1, was decreased. In Western blot and RT-PCR analysis, the expression of TIMP-2, but not TIMP-1, after high glucose treatment was downregulated, whereas the levels of MMP-2 and -9 proteins and mRNA were not changed. The present study indicated that oxidative stress induced by high glucose might be involved in the opposite effects on MMP-2 activation and TIMP-2 downregulation. This reactive oxygen species (ROS)-dependent MMP-2 activation in turn mediates high glucose-induced cell apoptosis in HUVECs. 相似文献
2.
Zuo Pei-Yuan Liu Yu-Wei Zha Xiang-Nan Tong Song Zhang Rong He Xiao-Xiao Shan Sheng-Shuai Wang Kun Liu Cheng-Yun 《Journal of cellular biochemistry》2019,120(7):11831-11841
The receptor tyrosine kinase Axl is involved in diabetic vascular disease. This study aims to investigate the effect of high glucose on endothelial cells injury and Axl expression in hypoxia condition in vitro, and we present details of the mechanism associated with overexpression of Axl rescue the high glucose injury. Our results showed that high glucose impaired both human umbilical vein endothelial cells (HUVECs) and EAhy926 cells angiogenesis in hypoxia condition. In addition, high glucose inhibits Axl and hypoxia-inducible factor 1-α (HIF-1α) protein expression in hypoxia condition. Axl overexpression significantly reversed endothelial cells dysfunction in high glucose/hypoxia. Furthermore, Axl overexpression in EAhy926 cells increases HIF-1α protein synthesis through PI3K/Akt/mTOR/p70 S6K signal pathway but not Mek/Erk in high glucose/hypoxia condition. This study demonstrates that high glucose can alter Axl signaling and HIF-1α in hypoxia condition. Overexpression of Axl may rescue endothelial cells dysfunction and HIF-1α expression through its downstream signals in high glucose/hypoxia. 相似文献
3.
Viviana Ribeiro Mónica Garcia Raquel Oliveira Pedro S. Gomes Bruno Colaço Maria Helena Fernandes 《Journal of cellular and molecular medicine》2014,18(1):27-37
Bisphosphonates (BPs) are known to affect bone homeostasis and also to have anti-angiogenic properties. Because of the intimate relationship between angiogenesis and osteogenesis, this study analysed the effects of Alendronate (AL) and Zoledronate (ZL) in the expression of endothelial and osteogenic genes on interacting endothelial and mesenchymal stem cells, an issue that was not previously addressed. Alendronate and ZL, 10−12–10−6 M, were evaluated in a direct co-culture system of human dermal microvascular endothelial cells (HDMEC) and human bone marrow mesenchymal stem cells (HMSC), over a period of 14 days. Experiments with the respective monocultures were run in parallel. Alendronate and ZL caused an initial dose-dependent stimulation in the cell proliferation in the monocultures and co-cultures, and did not interfere with their cellular organization. In HDMEC monocultures, the expression of the endothelial genes CD31, VE-cadherin and VEGFR2 was down-regulated by AL and ZL. In HMSC monocultures, the BPs inhibited VEGF expression, but up-regulated the expression of the osteogenic genes alkaline phosphatase (ALP), bone morphogenic protein-2 (BMP-2) and osteocalcin (OC) and, to a greater extent, osteoprotegerin (OPG), a negative regulator of the osteoclastic differentiation, and increased ALP activity. In co-cultured HDMEC/HMSC, AL and ZL decreased the expression of endothelial genes but elicited an earlier and sustained overexpression of ALP, BMP-2, OC and OPG, compared with the monocultured cells; they also induced ALP activity. This study showed for the first time that AL and ZL greatly induced the osteogenic gene expression on interacting endothelial and mesenchymal stem cells. 相似文献
4.
茂丹通脉片含药血清体外诱导 S 分M化C为 内皮细胞的作用 总被引:2,自引:1,他引:2
目的:观察芪丹通脉片含药血清体外诱导大鼠骨髓间充质干细胞(MSCs)向内皮细胞分化的作用。方法:灌胃法制备芪丹通脉片含药血清和对照血清。采用密度梯度离心法分离和培养大鼠MSCs,取第三代MSCs,采用10wg/LVEGF预诱导24h后,分别加入15%芪丹通脉片含药血清与对照血清体外时MSCs诱导分化,至第7天,利用相差显微镜观察细胞形态改变,透射电镜观察细胞超微结构。免疫荧光方法检测内皮细胞特异性表面标志CD31、Ⅷ因子的表达。结果:至第7天,合15%芪丹通脉片合药血清组诱导后的MSCs形态发生明显改变,呈“卵石样”改变,透射电镜下细胞胞浆内可见Weible-Palade小体,共聚焦显微镜下可见CD31、Ⅷ因子阳性细胞。对照血清组MSCs形态仍呈长梭型,电镜下胞浆内无Weible-Palade小体,共聚焦显微镜下无CD31、Ⅷ因子阳性细胞。结论:益气活血复方芪丹通脉片含药血清具有体外诱导大鼠MSCs向内皮细胞定向分化的作用。 相似文献
5.
6.
Xiao-Jun Chen Xin Zhang Kai Jiang James D. Krier Xiangyang Zhu Sabena Conley Amir Lerman Lilach O. Lerman 《Journal of cellular physiology》2020,235(12):9806-9818
Effective therapeutic strategies are needed to preserve renal function in patients with atherosclerotic renal artery stenosis (ARAS). Low-energy shockwave therapy (SW) and adipose tissue-derived mesenchymal stem/stromal cells (MSCs) both stimulate angiogenesis repair of stenotic kidney injury. This study tested the hypothesis that intrarenal delivery of adipose tissue-derived MSCs would enhance the capability of SW to preserve stenotic kidney function and structure. Twenty-two pigs were studied after 16 weeks of ARAS, ARAS treated with a SW regimen (bi-weekly for 3 weeks) with or without subsequent intrarenal delivery of adipose tissue-derived MSCs and controls. Four weeks after treatment, single-kidney renal blood flow (RBF) before and after infusion of acetylcholine, glomerular filtration rate (GFR), and oxygenation were assessed in vivo and the renal microcirculation, fibrosis, and oxidative stress ex vivo. Mean arterial pressure remained higher in ARAS, ARAS + SW, and ARAS + SW + MSC compared with normal. Both SW and SW + MSC similarly elevated the decreased stenotic kidney GFR and RBF observed in ARAS to normal levels. Yet, SW + MSC significantly improved RBF response to acetylcholine in ARAS, and attenuated capillary loss and oxidative stress more than SW alone. Density of larger microvessels was similarly increased by both interventions. Therefore, although significant changes in functional outcomes were not observed in a short period of time, adjunct MSCs enhanced pro-angiogenic effect of SW to improve renal microvascular outcomes, suggesting this as an effective stratege for long-term management of renovascular disease. 相似文献
7.
目的:分析人骨髓间充质干细胞(hMSCs)和脐静脉内皮细胞(hUVECs)的基因表达差异,探讨体外基因转染诱导内皮分化的可行性以及作为血管组织工程种子细胞来源的应用前景。方法:分别从人骨髓和脐静脉分离间充质干细胞(hMSCs)和内皮细胞(hUVECs),扩增培养后进行流式细胞仪、免疫细胞化学,免疫荧光鉴定和超微结构观察。通过BiostarH-40S表达谱芯片分析,选择两者的差异表达基因,导入hMSCs,经RT-PCR、ELISA鉴定该基因的转染和表达,并分析hMSCs的内皮分化程度。结果:hMSCs表达内皮细胞的多种特异性mRNA,经VEGFl65基因瞬时转染后RT-PCR有明显条带,ELISA定量检测VEGF165蛋白表达为(707.9±11.3)ng/L,同时CD44表达明显下调38.80%,CD31则明显上调达56.82%,FI-1,FVⅢAg和CD34的表达也有不同程度升高。结论:hMSCs具有内皮分化潜能,体外基因转染诱导hMSCs产生功能性内皮细胞和组织工程化血管具有广阔前景。 相似文献
8.
9.
Xun Liu Jie Tian Quanhao Bai Muhammad Aqeel Ashraf Maliha Sarfraz Bojun Zhao 《Saudi Journal of Biological Sciences》2016,23(1):S16-S21
To investigate the effect and action mechanism of resveratrol on the vascular endothelial cell by high glucose treatment. Primarily cultured human umbilical vein endothelial cells (HUVECs) were pretreated by resveratrol (0.2 μmol/L) and holding for 6 h, and then cultured in Dulbecco Modified Eagle Medium (DMEM) within 0.45 mmol/L of palmimte acid and 32.8 mmol/L of glucose, which is holding for 12 h. The cells were collected to analyze the expression of E-selected element. Supernatant of cultured cells, induced by 100 nmol/L insulin for 30 min, was used to analyze the nitric oxide content. Compared with normal control cells, the secretion of nitric oxide is stimulated by insulin decrease, however, the expression of E-selected element increased in HUVEC. Resveratrol treatment increased the secretion of nitric oxide stimulated by insulin and decreased the expression of E-selected element and partly counteracts the impairment of high glucose and palmitate acid on the function of endothelial cells. Resveratrol can improve and protect the function of high glucose and fatty acid cultured endothelial cell, and therefore may be a promising medicine in the prevention or therapy of diabetic macrovascular diseases. 相似文献
10.
11.
The lymphatic system was first described at around the same time as the blood circulation centuries ago, but the biological function elucidation of LECs (lymphatic endothelial cells) is far less than that of BVECs (blood vascular endothelial cells). Since the discovery of molecular markers for LECs and exploration of lymphatic role in tumour metastasis, more attention has been given to basic lymphatic research. Approx. 150 known genes were found to be expressed at the mRNA and protein levels by LECs. These molecules play an important role in lymphangiogenesis, signalling, tumour metastasis, immune function and fluid transport. This review provides a brief outline of gene expression profile of LECs and the molecular biological function, which will give the reader a better understanding about the mechanics of lymphatic function and some pathologies related to the lymphatic system such as lymphoedema, and facilitate advanced scientific research into lymphatic biology. 相似文献
12.
Elahe Mahdipour 《Biotechnology progress》2022,38(3):e3243
Menstrual blood is a rich source of mesenchymal stem/stromal cells (MenSCs) with a diverse potential to differentiate into various cell types. Similar to other cells, MenSCs produce extracellular vesicles from which, small extracellular vesicles have attracted much interest due to their therapeutic and regenerative capacities. Here using in vitro approaches, several properties of MenSC-derived small extracellular vesicles (MEX) have been investigated. HUVEC angiogenesis assay was used to evaluate the proangiogenic function of MEX. The immune regulatory property of MEX was assessed using a T cell proliferation assay. Proliferation, migration, and gene expression of primary fibroblasts were selected to determine the scar-related activity of MEX. Finally, the anti-cancer effect of MEX on the proliferation of cancerous cell lines was tested. Our results demonstrated that the small extracellular vesicles isolated from MenSCs have proangiogenic and immune-suppressive abilities. Moreover, these vesicles performed as an anti-proliferative agent for cancerous cell lines. MEX was also able to reduce the migration of primary fibroblasts. In summary, MEX has shown promising in vitro characteristics for regenerative applications. They may offer a great cell-free strategy with therapeutic potential for a diverse range of diseases. For future therapeutic applications and further clinical translation, more studies are needed to elucidate the involved mechanisms. 相似文献
13.
14.
Aswamenakul Kuneerat Klabklai Parin Pannengpetch Supitcha Tawonsawatruk Tulyapruek Isarankura-Na-Ayudhya Chartchalerm Roytrakul Sittiruk Nantasenamat Chanin Supokawej Aungkura 《Molecular biology reports》2020,47(10):7505-7516
Molecular Biology Reports - Patients with diabetes have been widely reported to be at an increased risk of secondary osteoporosis. Osteoporosis is caused by an imbalance in bone remodeling due to... 相似文献
15.
16.
骨髓间充质干细胞(mesenchymal stem cells,MSCs)是一种具有自我增殖和多向分化潜能的细胞,植入体内后对损伤组织具有一定的修复作用,研究发现MSCs在体内的分化效率极低(不足10%),故仅用其分化能力不能完全解释它良好的修复效能。新近研究表明,MSCs可通过旁分泌途径调节损伤局部的微环境,从而促进受损组织的修复,提示这种微环境的调节较其自身分化更具有临床意义。该文对MSCs在组织损伤局部微环境中的调节作用做一简要概述,为MSCs更广阔地应用于医学领域提供理论基础。 相似文献
17.
Girolamo Di Maio Nicola Alessio Alessia Ambrosino Sura H. A. Al Sammarraie Marcellino Monda Giovanni Di Bernardo 《Journal of cellular biochemistry》2024,125(5):e30565
Mammals exhibit two distinct types of adipose depots: white adipose tissue (WAT) and brown adipose tissue (BAT). While WAT primarily functions as a site for energy storage, BAT serves as a thermogenic tissue that utilizes energy and glucose consumption to regulate core body temperature. Under specific stimuli such as exercise, cold exposure, and drug treatment, white adipocytes possess a remarkable ability to undergo transdifferentiation into brown-like cells known as beige adipocytes. This transformation process, known as the “browning of WAT,” leads to the acquisition of new morphological and physiological characteristics by white adipocytes. We investigated the potential role of Irisin, a 12 kDa myokine that is secreted in mice and humans by skeletal muscle after physical activity, in inducing the browning process in mesenchymal stromal cells (MSCs). A subset of the MSCs possesses the remarkable capability to differentiate into different cell types such as adipocytes, osteocytes, and chondrocytes. Consequently, comprehending the effects of Irisin on MSC biology becomes a crucial factor in investigating antiobesity medications. In our study, the primary objective is to evaluate the impact of Irisin on various cell types engaged in distinct stages of the differentiation process, including stem cells, committed precursors, and preadipocytes. By analyzing the effects of Irisin on these specific cell populations, our aim is to gain a comprehensive understanding of its influence throughout the entire differentiation process, rather than solely concentrating on the final differentiated cells. This approach enables us to obtain insights into the broader effects of Irisin on the cellular dynamics and mechanisms involved in adipogenesis. 相似文献
18.
Dimicoli-Salazar S Bulle F Yacia A Massé JM Fichelson S Vigon I 《Biology of the cell / under the auspices of the European Cell Biology Organization》2011,103(11):531-542
Background information. The identification of a source of stem cells able to regenerate skeletal muscle was the goal of numerous studies with the aim to develop new therapeutic approaches for genetic muscle diseases or muscle injuries. A series of studies have demonstrated that stem cells derived from various tissues may have a role in the regeneration of damaged muscles, but this contribution is always very weak. Thus we established a project aiming to reprogramme non‐muscle cells into the skeletal striated differentiation pathway. Results. We transduced several human primary adult stem or progenitor cells using a recombinant lentivirus containing the coding sequence of the Myf5 gene considered as a master gene for the determination of skeletal striated muscle. These original results are the first demonstration of a myogenic conversion of human mesenchymal and endothelial cells by Myf5. Conclusions. The procedure described in the present paper could be used to develop new research protocols with the prospect of using these cells as therapeutic agents. 相似文献
19.
Shosuke Satake Masafumi Kuzuya Hisayuki Miura Toshinobu Asai Miguel A. Ramos Masahiro Muraguchi Yasukazu Ohmoto Akihisa Iguchi 《Biology of the cell / under the auspices of the European Cell Biology Organization》1998,90(2):161-168
Vascular endothelial growth factor (VEGF), also known as a vascular permeability factor (VPF), is an endothelial specific mitogen and is a potent inducer of angiogenesis. Recently it has been reported that hypoxia induces VEGF mRNA expression in various cells. Since both oxygen and glucose are required for efficient production of energy, we examined the effect of glucose deprivation on VEGF mRNA expression and VEGF protein production in U-937 (a human monocytic cell line) cells. Both the mRNA expression and secretion of VEGF increased after exposure to low glucose. Addition of L-glucose, the L-stereoisomer of D-glucose, did not prevent the up-regulation of VEGF expression. The conditioned medium from glucose-deprived cells, followed by supplementation with glucose, did not up-regulate VEGF mRNA expression in U-937 cells. The low glucose-induced VEGF mRNA expression returned to the control level after supplementation with D-glucose. Furthermore, oligomycin, a mitochondrial ATP synthase inhibitor, increased VEGF protein production. The results suggest that the up-regulation of VEGF mRNA in U-937 cells in response to glucose deprivation is not mediated by autocrine factors from the cells nor is the osmotic change of the medium mediated by the deficiency of glucose metabolism in the cells. Our results also suggest that the intracellular ATP depletion due to glucose deprivation may be one of the causes for increased VEGF mRNA expression. We speculate that local hypoglycemia may act as an essential trigger for angiogenesis through the VEGF gene expression. 相似文献
20.
Patrick C Baer 《World journal of stem cells》2014,6(3):256-265
Adipose tissue is a rich, ubiquitous and easily acces-sible source for multipotent stromal/stem cells and has, therefore, several advantages compared to other sourc-es of mesenchymal stromal/stem cells. Several studies have tried to identify the origin of the stromal/stem cell population within adipose tissue in situ. This is a complicated attempt because no marker has currently been described which unambiguously identifies native adipose-derived stromal/stem cells(ASCs). Isolated and cultured ASCs are a non-uniform preparation consisting of several subsets of stem and precursor cells. Cultured ASCs are characterized by their expression of a panel of markers(and the absence of others), whereas their in vitro phenotype is dynamic. Some markers were ex-pressed de novo during culture, the expression of some markers is lost. For a long time, CD34 expression was solely used to characterize haematopoietic stem and progenitor cells, but now it has become evident that it is also a potential marker to identify an ASC subpopula-tion in situ and after a short culture time. Nevertheless, long-term cultured ASCs do not express CD34, perhaps due to the artificial environment. This review gives an update of the recently published data on the origin and phenotype of ASCs both in vivo and in vitro. In addition, the composition of ASCs(or their subpopula-tions) seems to vary between different laboratories andpreparations. This heterogeneity of ASC preparationsmay result from different reasons. One of the main problems in comparing results from different laborato-ries is the lack of a standardized isolation and culture protocol for ASCs. Since many aspects of ASCs, suchas the differential potential or the current use in clinical trials, are fully described in other recent reviews, this review further updates the more basic research issues concerning ASCs' subpopulations, heterogeneity andculture standardization. 相似文献