首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dopamine and cyclic‐AMP activated phosphoprotein Mr32kDa (DARPP‐32) is a central signalling protein in neurotransmission. Following DARPP‐32 phosphorylation by protein kinase A (PKA), DARPP‐32 becomes a potent protein phosphatase 1 (PP1) inhibitor. DARPP‐32 can itself inhibit PKA following DARPP‐32 phosphorylation by cyclin‐dependent kinase 5 (Cdk5). Increasing evidence indicates a role for DARPP‐32 and its associated signalling pathways in cancer; however, its role in ovarian cancer remains unclear. Using immunohistochemistry, expression of DARPP‐32, PP1 and Cdk5 was determined in a large cohort of primary tumours from ovarian cancer patients (n = 428, 445 and 434 respectively) to evaluate associations between clinical outcome and clinicopathological criteria. Low cytoplasmic and nuclear DARPP‐32 expression was associated with shorter patient overall survival and progression‐free survival (P = .001, .001, .004 and .037 respectively). Low nuclear and cytoplasmic DARPP‐32 expression remained significantly associated with overall survival in multivariate Cox regression (P = .045, hazard ratio (HR) = 0.734, 95% confidence interval (CI) = 0.542‐0.993 and P = .001, HR = 0.494, 95% CI = 0.325‐0.749, respectively). High cytoplasmic and nuclear PP1 expression was associated with shorter patient overall survival and high cytoplasmic PP1 expression with shorter progression‐free survival (P = .005, .033, and .037, respectively). High Cdk5 expression was associated with shorter progression‐free survival (P = .006). These data suggest a role for DARPP‐32 and associated signalling kinases as prognostic markers with clinical utility in ovarian cancer.  相似文献   

2.
Cyclin-dependent kinase 5 (Cdk5) is an atypical member of the cyclin-dependent kinase family and functions as a serine/threonine kinase that can be activated by non-cyclin binding activators p35 or p39. Cdk5 expression and activity has been linked with the development and progression of cancer; however, its expression in breast cancer has not been fully described. Protein expression of Cdk5 was determined in a large cohort of early-stage invasive breast cancer tumours (n = 1110) with long-term follow-up data using immunohistochemistry. Expression of CDK5 mRNA was assessed in the METABRIC cohort (n = 1980). Low nuclear and cytoplasmic expression of Cdk5 expression was significantly associated with shorter breast cancer-specific survival (P = .004 and P = .001, respectively). Importantly, low nuclear and cytoplasmic expression of Cdk5 remained associated with survival in multivariate analysis, including potentially confounding factors (hazard ratio (HR) = 0.612, 95% confidence interval (CI) = 0.418-0.896, P = .011 and HR = 0.507, 95% CI = 0.318-0.809, P = .004, respectively). In addition, low nuclear and cytoplasmic expression of Cdk5 was significantly associated with clinicopathological criteria associated with adverse patient prognosis. Low CDK5 mRNA expression was associated with shorter patient survival (P = .005) in the METABRIC cohort; no associations between copy gain or loss and survival were observed. These data suggest that low Cdk5 expression is associated with poor clinical outcome of breast cancer patients and may be of clinical relevance.  相似文献   

3.
Integration of neurotransmitter and neuromodulator signals in the striatum plays a central role in the functions and dysfunctions of the basal ganglia. DARPP-32 is a key actor of this integration in the GABAergic medium-size spiny neurons, in particular in response to dopamine and glutamate. When phosphorylated by cAMP-dependent protein kinase (PKA), DARPP-32 inhibits protein phosphatase-1 (PP1), whereas when phosphorylated by cyclin-dependent kinase 5 (CDK5) it inhibits PKA. DARPP-32 is also regulated by casein kinases and by several protein phosphatases. These complex and intricate regulations make simple predictions of DARPP-32 dynamic behaviour virtually impossible. We used detailed quantitative modelling of the regulation of DARPP-32 phosphorylation to improve our understanding of its function. The models included all the combinations of the three best-characterized phosphorylation sites of DARPP-32, their regulation by kinases and phosphatases, and the regulation of those enzymes by cAMP and Ca2+ signals. Dynamic simulations allowed us to observe the temporal relationships between cAMP and Ca2+ signals. We confirmed that the proposed regulation of protein phosphatase-2A (PP2A) by calcium can account for the observed decrease of Threonine 75 phosphorylation upon glutamate receptor activation. DARPP-32 is not simply a switch between PP1-inhibiting and PKA-inhibiting states. Sensitivity analysis showed that CDK5 activity is a major regulator of the response, as previously suggested. Conversely, the strength of the regulation of PP2A by PKA or by calcium had little effect on the PP1-inhibiting function of DARPP-32 in these conditions. The simulations showed that DARPP-32 is not only a robust signal integrator, but that its response also depends on the delay between cAMP and calcium signals affecting the response to the latter. This integration did not depend on the concentration of DARPP-32, while the absolute effect on PP1 varied linearly. In silico mutants showed that Ser137 phosphorylation affects the influence of the delay between dopamine and glutamate, and that constitutive phosphorylation in Ser137 transforms DARPP-32 in a quasi-irreversible switch. This work is a first attempt to better understand the complex interactions between cAMP and Ca2+ regulation of DARPP-32. Progressive inclusion of additional components should lead to a realistic model of signalling networks underlying the function of striatal neurons.  相似文献   

4.
Tumor cell migration plays a central role in the process of cancer metastasis. We recently identified dopamine and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) as an antimigratory phosphoprotein in breast cancer cells. Here we link this effect of DARPP-32 to Wnt-5a signaling by demonstrating that recombinant Wnt-5a triggers cAMP elevation at the plasma membrane and Thr34-DARPP-32 phosphorylation in MCF-7 cells. In agreement, both protein kinase A (PKA) inhibitors and siRNA-mediated knockdown of Frizzled-3 receptor or Gαs expression abolished Wnt-5a-induced phosphorylation of DARPP-32. Furthermore, Wnt-5a induced DARPP-32-dependent inhibition of MCF-7 cell migration. Phospho-Thr-34-DARPP-32 interacted with protein phosphatase-1 (PP1) and potentiated the Wnt-5a-mediated phosphorylation of CREB, a well-known PP1 substrate, but had no effect on CREB phosphorylation by itself. Moreover, inhibition of the Wnt-5a/DARPP-32/CREB pathway, by expression of dominant negative CREB (DN-CREB), diminished the antimigratory effect of Wnt-5a-induced phospho-Thr-34-DARPP-32. Phalloidin-staining revealed that that the presence of phospho-Thr-34-DARPP-32 in MCF-7 cells results in reduced filopodia formation. In accordance, the activity of the Rho GTPase Cdc42, known to be crucial for filopodia formation, was reduced in MCF-7 cells expressing phospho-Thr-34-DARPP-32. The effects of DARPP-32 on cell migration and filopodia formation could be reversed in T47D breast cancer cells that were depleted of their endogenous DARPP-32 by siRNA targeting. Consequently, Wnt-5a activates a Frizzled-3/Gαs/cAMP/PKA signaling pathway that triggers a DARPP-32- and CREB-dependent antimigratory response in breast cancer cells, representing a novel mechanism whereby Wnt-5a can inhibit breast cancer cell migration.Breast cancer is the most common form of cancer in women. Whereas the prognosis for breast cancer patients without local or distal dissemination is relatively favorable, the prognosis is considerably worse once distal metastasis has been established. It is therefore imperative to identify molecular targets and develop novel antimetastatic therapies that will stop, reduce, or delay the dissemination and growth of breast cancer metastasis.We recently isolated the dopamine and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32),2 from a human breast expression library, as a DDR1-binding partner (1). Introduction of DARPP-32 in breast cancer cells lacking endogenous expression of this protein inhibited cell migration in a phospho-Thr-34-DARPP-32-dependent manner (1). DARPP-32 was originally identified 25 years ago as a dopamine and cAMP target enriched in dopaminoceptive neurones (2). Since then, a large body of work has shown that DARPP-32 is crucial for signal transmission by a wide array of neurotransmitters and drugs of abuse. DARPP-32 can act as either a phosphatase inhibitor or a kinase inhibitor depending on its phosphorylation state. Phosphorylation of Thr-34 by protein kinase A (PKA) converts DARPP-32 into a potent inhibitor of protein phosphatase-1 (PP1) (3), whereas phosphorylation at Thr-75 by Cdk5 turns DARPP-32 into an inhibitor of PKA (4). Downstream of DARPP-32 it has been shown that the activity of CREB and c-fos are strongly attenuated in DARPP-32 knockout mice (5). Despite the substantial amount of work done on DARPP-32 over the past 25 years, the role of this phosphoprotein outside the neuronal system has only recently started to be explored.Regarding the role of DARPP-32 in cancer, overexpression of DARPP-32 has been reported in gastric, colon, and prostate cancer (6, 7). In contrast, patients with esophageal squamous cell carcinoma that lacks DARPP-32 expression have reduced survival when compared with patients with DARPP-32-expressing esophageal squamous cell carcinomas (8, 9). Furthermore, DARPP-32 is needed to get a fully differentiated thyroid cell phenotype, and transformation of thyroid cells by constitutively activated Ras resulted in a loss of DARPP-32 expression (10). Thus, the role of DARPP-32 in cancer is somewhat uncertain, and little is known about the cell signaling mechanisms behind a possible suppressor or promotor role of DARPP-32 in cancer.Wnt-5a is a non-canonical member of the Wnt family of secreted glycoproteins that acts through the family of Frizzled G-protein-coupled receptor, Ror2, and co-receptors such as, LRP5/6, to mediate important events during development and cancer (1115). In the breast, the non-transforming Wnt-5a has been shown to inhibit epithelial cell migration (16), and in breast cancer, expression of Wnt-5a has been shown to be a predictor of longer disease-free survival (17). Wnt-5a expression has been shown to increase activation of the receptor tyrosine kinase DDR1 in breast epithelial cells upon plating on collagen (18). As DDR1 is a collagen-binding adhesion receptor important for cell migration (19), and its binding partner DARPP-32 is a phospho-dependent antimigratory molecule (1), we wanted to test whether the functional overlaps between DARPP-32 and Wnt-5a, could be a result of Wnt-5a acting upstream in the signaling process leading to DARPP-32 phosphorylation.Here we demonstrate that Wnt-5a can trigger a Frizzled-3/Gαs/cAMP signal that results in PKA-dependent phosphorylation of DARPP-32. Furthermore, we show that phospho-DARPP-32 potentiates Wnt-5a-mediated CREB activity and suppresses filopodia formation.  相似文献   

5.
About 70% of human breast cancers express and are dependent for growth on estrogen receptor α (ERα), and therefore are sensitive to antiestrogen therapies. However, progression to an advanced, more aggressive phenotype is associated with acquisition of resistance to antiestrogens and/or invasive potential. In this study, we highlight the role of the serine/threonine‐protein kinase D1 (PKD1) in ERα‐positive breast cancers. Growth of ERα‐positive MCF‐7 and MDA‐MB‐415 human breast cancer cells was assayed in adherent or anchorage‐independent conditions in cells overexpressing or depleted for PKD1. PKD1 induces cell growth through both an ERα‐dependent manner, by increasing ERα expression and cell sensitivity to 17β‐estradiol, and an ERα‐independent manner, by reducing cell dependence to estrogens and conferring partial resistance to antiestrogen ICI 182,780. PKD1 knockdown in MDA‐MB‐415 cells strongly reduced estrogen‐dependent and independent invasion. Quantification of PKD1 mRNA levels in 38 cancerous and non‐cancerous breast cell lines and in 152 ERα‐positive breast tumours from patients treated with adjuvant tamoxifen showed an association between PKD1 and ERα expression in 76.3% (29/38) of the breast cell lines tested and a strong correlation between PKD1 expression and invasiveness (P < 0.0001). In tamoxifen‐treated patients, tumours with high PKD1 mRNA levels (n = 77, 50.66%) were significantly associated with less metastasis‐free survival than tumours with low PKD1 mRNA expression (n = 75, 49.34%; P = 0.031). Moreover, PKD1 mRNA levels are strongly positively associated with EGFR and vimentin levels (P < 0.0000001). Thus, our study defines PKD1 as a novel attractive prognostic factor and a potential therapeutic target in breast cancer.  相似文献   

6.
Neurotensin modulates dopaminergic transmission in the nigrostriatal system. DARPP-32, a dopamine- and cAMP-regulated phosphoprotein of Mr 32 kDa, is phosphorylated on Thr34 by cAMP-dependent protein kinase, resulting in its conversion into a potent inhibitor of protein phosphatase-1 (PP 1). Here, we examined the effect of neurotensin on DARPP-32 Thr34 phosphorylation using mouse neostriatal slices. Neurotensin stimulated DARPP-32 Thr34 phosphorylation by 4-7-fold with a K(0.5) of approximately 50 nM. The effect of neurotensin was antagonized by a combined neurotensin receptor type-1 (NTR1)/type-2 (NTR2) antagonist, SR142948. It was not antagonized by a NTR1 antagonist, SR48692 or by a NTR2 antagonist, levocabastine; neither was it antagonized by the two combined. Pretreatment with TTX or cobalt abolished the effect of neurotensin. The effect of neurotensin was antagonized by a dopamine D1 antagonist, SCH23390, and by ionotropic glutamate receptor antagonists, MK801 and CNQX. These results indicate that neurotensin stimulates the release of dopamine from nigrostriatal presynaptic terminals in an NMDA receptor- and AMPA receptor-dependent manner, leading to the increase in DARPP-32 Thr34 phosphorylation. Neurotensin stimulated the phosphorylation of Ser845 of the AMPA receptor GluR1 subunit in wild-type mice but not in DARPP-32 knockout mice. Thus, neurotensin, by stimulating the release of dopamine, activates the dopamine D1-receptor/cAMP/PKA/DARPP-32/PP 1 cascade.  相似文献   

7.
Arpin (Arp2/3 complex inhibitor), a novel protein found in 2013, plays a pivotal role in cell motility and migration. However, the precise role of Arpin in cancer is unclear. This study investigated the expression of Arpin in breast cancer and evaluated its correlation with the characteristics of clinical pathology and prognosis of breast cancer patients. Immunohistochemistry (IHC) for Arpin protein was performed on formalin‐fixed, paraffin‐embedded 176 breast cancer tissues and 43 normal breast tissues while qRT‐PCR for Arpin mRNA with 104 paired tumour and paratumoural tissues from breast cancer patients respectively. The association of Arpin expression with clinical pathological features and survival was assessed in a retrospective cohort analysis of patients. The results showed that the expression of Arpin protein in cancer tissues was lower compared to that in normal breast and the expression of Arpin mRNA was also lower in cancer tissues than that in the matched paratumoural tissues. Among the 176 breast cancer patients, the lower expression of Arpin was significantly associated with advanced tumour, nodes and metastasis system stage, and the reduced Arpin expression was strongly associated with axillary lymph node metastasis using univariate and multivariate logistic regression analysis [odds ratio: 3.242; 95% confidence interval (CI): 1.526, 6.888; P < 0.05]. Furthermore, Arpin expression was an independent risk factor for recurrence‐free survival (HR: 0.373; 95% CI: 0.171, 0.813; P < 0.05). As Arpin expression was first examined in human breast cancer tissues with qRT‐PCR and IHC, our results suggest that Arpin downregulation may contribute to the initiation and development of breast cancer metastasis. Therefore, as a potential predictive marker, Arpin deserves future studies.  相似文献   

8.
9.
Metastasis‐related mRNAs have showed great promise as prognostic biomarkers in various types of cancers. Therefore, we attempted to develop a metastasis‐associated gene signature to enhance prognostic prediction of breast cancer (BC) based on gene expression profiling. We firstly screened and identified 56 differentially expressed mRNAs by analysing BC tumour tissues with and without metastasis in the discovery cohort (GSE102484, n = 683). We then found 26 of these differentially expressed genes were associated with metastasis‐free survival (MFS) in the training set (GSE20685, n = 319). A metastasis‐associated gene signature built using a LASSO Cox regression model, which consisted of four mRNAs, can classify patients into high‐ and low‐risk groups in the training cohort. Patients with high‐risk scores in the training cohort had shorter MFS (hazard ratio [HR] 3.89, 95% CI 2.53‐5.98; P < 0.001), disease‐free survival (DFS) (HR 4.69, 2.93‐7.50; P < 0.001) and overall survival (HR 4.06, 2.56‐6.45; P < 0.001) than patients with low‐risk scores. The prognostic accuracy of mRNAs signature was validated in the two independent validation cohorts (GSE21653, n = 248; GSE31448, n = 246). We then developed a nomogram based on the mRNAs signature and clinical‐related risk factors (T stage and N stage) that predicted an individual's risk of disease, which can be assessed by calibration curves. Our study demonstrated that this 4‐mRNA signature might be a reliable and useful prognostic tool for DFS evaluation and will facilitate tailored therapy for BC patients at different risk of disease.  相似文献   

10.
Step-down inhibitory avoidance (IA) is usually acquired in one single trial, which makes it ideal for studying processes initiated by training, uncontaminated by prior or further trials, rehearsals, or retrievals. Biochemical events in the hippocampus related to long-term memory (LTM) formation have been extensively studied in rats using a one trial step-down IA task. DARPP-32 (dopamine and cAMP regulated phosphoprotein of Mr 32 kDa) is a cytosolic protein that is selectively enriched in medium spiny neurons in the neostriatum. It has been shown that activation of DARPP-32 and the resultant inhibition of PP-1 activity is critical for the expression of two opposing forms of brain synaptic plasticity, striatal LTD and LTP. Both forms of plasticity are also critically linked to the activation of DA receptors. It has been shown with studies in DARPP-32 KO mice an important role of this protein in mediating the effects of DA on long term changes in neuronal excitability and to our knowledge, no studies have examined the effect of IA task on DARPP-32 expression. In order to demonstrate changes in the protein expression profile we analyzed DARPP-32 levels in the striatum, prefrontal cortex (PFC), hippocampus and entorhinal cortex of Wistar rats after step-down IA learning. Our results showed that IA induced changes on DARPP-32 expression in striatum and hippocampus. DARPP-32 expression changes corroborate with changes in expression and phosphorylation of CREB, NMDA, AMPA after IA that has been reported. These changes suggest that DARPP-32 might play a central role in the IA, as previously described as an integrator of the dopaminergic signal.  相似文献   

11.
Cell migration plays a central role in processes such as development, wound healing and cancer metastasis. Here we describe a novel interaction between DDR1, a receptor tyrosine kinase activated by collagen, and the phosphoprotein DARPP-32 in mammary epithelial cells. DARPP-32 expression was readily detected in non-transformed mammary cell lines, but was strongly reduced or even absent in breast tumor cell lines, such as MCF7. Transfection of MCF7 cells with DARPP-32 resulted in severely impaired cell migration, while DARPP-32 transfection into the DDR1-deficient breast cancer cell line MDA-MB-231 did not alter migration. Co-expression of both DDR1 and DARPP-32 in MDA-MB-231 cells inhibited migration, thereby supporting a critical role of the DDR1/DARPP-32 complex in motility. Mutational substitution of the phosphorylation sites Thr-34 or Thr-75 on DARPP-32 revealed that phosphorylation of Thr-34 is necessary for the ability of DARPP-32 to impair breast tumor cell migration. Thus, DARPP-32 signaling downstream of DDR1 is a potential new target for effective anti-metastatic breast cancer therapy.  相似文献   

12.
This study reports some of the modifications in dopaminergic signalling that accompany cocaine and morphine behavioural sensitization. Cocaine-sensitized rats showed increased phosphorylation of dopamine- and cyclic AMP-regulated phosphoprotein Mr 32 kDa (DARPP-32) at threonine-75 (Thr75) and decreased DARPP-32 phosphorylation at Thr34, in the caudate-putamen (CPu) and nucleus accumbens (NAc) 7 days after sensitization assessment. Conversely, in morphine-sensitized rats, no apparent modifications in DARPP-32 phosphorylation pattern were observed. Morphine-sensitized rats have increased binding and coupling of micro -opioid receptors and increased dopaminergic transmission in striatal areas and, upon morphine challenge, exhibit dopamine D1 receptor-dependent stereotypies. Thus, the DARPP-32 phosphorylation pattern was studied in morphine-sensitized rats at different times after morphine challenge. Morphine challenge increased levels of phospho-Thr75 DARPP-32 and decreased levels of phospho-Thr34 DARPP-32 in a time-dependent manner in the CPu and NAc. In order to assess whether these modifications were related to modified cyclic AMP-dependent protein kinase (PKA) activity, the phosphorylation levels of two other PKA substrates were examined, the GluR1 and NR1 subunits of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate and NMDA receptors respectively. The phosphorylation levels of GluR1 and NR1 subunits decreased in parallel with those of phospho-Thr-34 DARPP-32, supporting the hypothesis that morphine challenge elicited a decrease in PKA activity in morphine-sensitized rats.  相似文献   

13.
HTRA1 is a highly conserved serine protease which has been implicated in suppression of epithelial-to-mesenchymal-transition (EMT) and cell motility in breast cancer. Its prognostic relevance for breast cancer is unclear so far. Therefore, we evaluated the impact of HTRA1 mRNA expression on patient outcome using a cohort of 131 breast cancer patients as well as a validation cohort including 2809 publically available data sets. Additionally, we aimed at investigating for the presence of promoter hypermethylation as a mechanism for silencing the HTRA1 gene in breast tumors. HTRA1 downregulation was detected in more than 50% of the breast cancer specimens and was associated with higher tumor stage (p = 0.025). By applying Cox proportional hazard models, we observed favorable overall (OS) and disease-free survival (DFS) related to high HTRA1 expression (HR = 0.45 [CI 0.23–0.90], p = 0.023; HR = 0.55 [CI 0.32–0.94], p = 0.028, respectively), with even more pronounced impact in node-positive patients (HR = 0.21 [CI 0.07–0.63], p = 0.006; HR = 0.29 [CI 0.13–0.65], p = 0.002, respectively). Moreover, HTRA1 remained a statistically significant factor predicting DFS among established clinical parameters in the multivariable analysis. Its impact on patient outcome was independently confirmed in the validation set (for relapse-free survival (n = 2809): HR = 0.79 [CI 0.7–0.9], log-rank p = 0.0003; for OS (n = 971): HR = 0.63 [CI 0.48–0.83], log-rank p = 0.0009). In promoter analyses, we in fact detected methylation of HTRA1 in a small subset of breast cancer specimens (two out of a series of 12), and in MCF-7 breast cancer cells which exhibited 22-fold lower HTRA1 mRNA expression levels compared to unmethylated MDA-MB-231 cells. In conclusion, we show that downregulation of HTRA1 is associated with shorter patient survival, particularly in node-positive breast cancer. Since HTRA1 loss was demonstrated to induce EMT and cancer cell invasion, these patients might benefit from demethylating agents or histone deacetylase inhibitors previously reported to lead to HTRA1 upregulation, or from novel small-molecule inhibitors targeting EMT-related processes.  相似文献   

14.
15.
It is well known that dopamine imbalances are associated with many psychiatric disorders and that the dopaminergic receptor D2 is the main target of antipsychotics. Recently it was shown that levels of two proteins implicated in dopaminergic signaling, Neuronal calcium sensor-1 (NCS-1) and DARPP-32, are altered in the prefrontal cortex (PFC) of both schizophrenic and bipolar disorder patients. NCS-1, which inhibits D2 internalization, is upregulated in the PFC of both patients. DARPP-32, which is a downstream effector of dopamine signaling, integrates the pathways of several neurotransmitters and is downregulated in the PFC of both patients. Here, we used PC12 cells stably overexpressing NCS-1 (PC12-NCS-1 cells) to address the function of this protein in DARPP-32 signaling pathway in vitro. PC12-NCS-1 cells displayed downregulation of the cAMP/PKA pathway, with decreased levels of cAMP and phosphorylation of CREB at Ser133. We also observed decreased levels of total and phosphorylated DARPP-32 at Thr34. However, these cells did not show alterations in the levels of D2 and phosphorylation of DARPP-32 at Thr75. These results indicate that NCS-1 modulates PKA/cAMP signaling pathway. Identification of the cellular mechanisms linking NCS-1 and DARPP-32 may help in the understanding the signaling machinery with potential to be turned into targets for the treatment of schizophrenia and other debilitating psychiatric disorders.  相似文献   

16.
17.
Abundant evidence points to a key role of dopamine in motor skill learning, although the underlying cellular and molecular mechanisms are still poorly understood. Here, we used a skilled-reaching paradigm to first examine changes in the expression of the plasticity-related gene Arc to map activity in cortico-striatal circuitry during different phases of motor skill learning in young animals. In the early phase, Arc mRNA was significantly induced in the medial prefrontal cortex (mPFC), cingulate cortex, primary motor cortex, and striatum. In the late phase, expression of Arc did not change in most regions, except in the mPFC and dorsal striatum. In the second series of experiments, we studied the learning-induced changes in the phosphorylation state of dopamine and cAMP-regulated phosphoprotein, 32k Da (DARPP-32). Western blot analysis of the phosphorylation state of DARPP-32 and its downstream target cAMP response element-binding protein (CREB) in the striatum revealed that the early, but not late, phase of motor skill learning was associated with increased levels of phospho-Thr34-DARPP-32 and phospho-Ser133-CREB. Finally, we used the DARPP-32 knock-in mice with a point mutation in the Thr34 regulatory site (i.e., protein kinase A site) to test the significance of this pathway in motor skill learning. In accordance with our hypothesis, inhibition of DARPP-32 activity at the Thr34 regulatory site strongly attenuated the motor learning rate and skilled reaching performance of mice. These findings suggest that the cAMP/PKA/DARPP-32 signaling pathway is critically involved in the acquisition of novel motor skills, and also demonstrate a dynamic shift in the contribution of cortico-striatal circuitry during different phases of motor skill learning.  相似文献   

18.
Defect in cell cycle control is a hallmark character of cancer. We have investigated the association of Ki67 labeling index, cyclin E and CDC25A expressions with clinical follow-up data in breast carcinomas. Flow cytometry was used to detect gene amplification of cyclins in 44 tumor tissue with invasive breast carcinomas. Multivariate Cox proportional hazard ratio test was used to show the correlations. Cyclin E or CDC25A were upregulated in 34% of the tumors. Among the whole total material, expression of cyclin E and of CDC25A were found upregulated in 31.9% and 39.4% of cells, respectively. Both CDC25A and cyclin E protein expression levels were correlated with Ki67 expression level (p < 0.001). In addition, the expression of CDC25A was associated significantly with poor survival (P = 0.028), whereas no correlation was found with cyclin E. These findings suggest a possible prognostic value for CDC25A as a cell cycle marker and may imply in characteristic of high risk breast cancer patients.  相似文献   

19.
DARPP-32 (dopamine and adenosine 3′,5′-monophosphate-regulated phosphoprotein of 32 kDa), which belongs to PPP1R1 gene family, is known to act as an important integrator in dopamine-mediated neurotransmission via the inhibition of protein phosphatase-1 (PP1). Besides its neuronal roles, this protein also behaves as a key player in pathological and pharmacological aspects. Use of bioinformatics and phylogenetics approaches to further characterize the molecular features of DARPP-32 can guide future works. Predicted phosphorylation sites on DARPP-32 show conservation across vertebrates. Phylogenetics analysis indicates evolutionary strata of phosphorylation site acquisition at the C-terminus, suggesting functional expansion of DARPP-32, where more diverse signalling cues may involve in regulating DARPP-32 in inhibiting PP1 activity. Moreover, both phylogenetics and synteny analyses suggest de novo origination of PPP1R1 gene family via chromosomal rearrangement and exonization.  相似文献   

20.
Background  The FOXP3 mRNA expression and the other regulatory T cell-related molecules were investigated and compared with clinicopathological parameters in human primary breast cancer. Method  This study included 136 breast cancer patients operated in our department from 2003 to 2006. Total RNA was extracted from frozen normal breast and breast cancer tissues, and the expression of FOXP3, IL-10, TGFβ1 and CCL22 mRNA was evaluated using quantitative real-time RT-PCR. Result   FOXP3, IL-10, TGFβ1 and CCL22 mRNA expressions were significantly higher in cancer tissue than in normal tissue, not only at pT1, 2, and 3 stages but also at the DCIS stage. There were positive correlations between FOXP3 and IL-10, FOXP3 and TGFβ1, as well as FOXP3 and CCL22 mRNA expressions, respectively. FOXP3 and IL-10 mRNA expressions were significantly upregulated in PgR-negative or HER2-positive tumors. Conclusion  These results suggest that regulatory T cells are involved in tumor onset and progression in human primary breast cancer, possibly contributing to poor prognosis of patients with breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号