首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autophagy is a catabolic cellular process involving self-digestion and turnover of macromolecules and entire organelles. Autophagy is primarily a protective process in response to cellular stress, but it can be associated with cell death. Genetic evidence also supports autophagy function as a tumor suppressor mechanism. To identify specific regulators to autophagy, we screened the Lopac 1280 and the Prestwick chemical libraries using a cell-based screening system with autophagy marker (green fluorescence protein conjugated LC3 protein (GFP-LC3)). We identified ARP101, a selective matrix metalloproteinase-2 (MMP-2) inhibitor as one of the most potent inducer of autophagy. ARP101 treatment was highly effective in inducing the formation of autophagosome and conversion of LC3I into LC3II. Moreover, ARP101-induced autophagy was completely blocked in mouse embryo fibroblasts that lacked autophagy related gene 5 (ATG5−/− MEF). Interestingly, cell death induced by ARP101 was not inhibited by zVAD, a pan caspase inhibitor, whereas, it was efficiently suppressed by addition of 3-methyladenine, an autophagy inhibitor. These results suggest that the selective MMP-2 inhibitor, ARP101, induces autophagy and autophagy-associated cell death.  相似文献   

2.
Oxidative mitochondrial damage is closely linked to inflammation and cell death, but low levels of reactive oxygen and nitrogen species serve as signals that involve mitochondrial repair and resolution of inflammation. More specifically, cytoprotection relies on the elimination of damaged mitochondria by selective autophagy (mitophagy) during mitochondrial quality control. This aim of this study was to identify and localize mitophagy in the mouse lung as a potentially upregulatable redox response to Staphylococcus aureus sepsis. Fibrin clots loaded with S. aureus (1×107 CFU) were implanted abdominally into anesthetized C57BL/6 and B6.129X1-Nfe2l2tm1Ywk/J (Nrf2−/−) mice. At the time of implantation, mice were given vancomycin (6 mg/kg) and fluid resuscitation. Mouse lungs were harvested at 0, 6, 24, and 48 h for bronchoalveolar lavage (BAL), Western blot analysis, and qRT-PCR. To localize mitochondria with autophagy protein LC3, we used lung immunofluorescence staining in LC3–GFP transgenic mice. In C57BL/6 mice, sepsis-induced pulmonary inflammation was detected by significant increases in mRNA for the inflammatory markers IL-1β and TNF-α at 6 and 24 h, respectively. BAL cell count and protein also increased. Sepsis suppressed lung Beclin-1 protein, but not mRNA, suggesting activation of canonical autophagy. Notably sepsis also increased the LC3-II autophagosome marker, as well as the lung׳s noncanonical autophagy pathway as evidenced by loss of p62, a redox-regulated scaffolding protein of the autophagosome. In LC3–GFP mouse lungs, immunofluorescence staining showed colocalization of LC3-II to mitochondria, mainly in type 2 epithelium and alveolar macrophages. In contrast, marked accumulation of p62, as well as attenuation of LC3-II in Nrf2-knockout mice supported an overall decrease in autophagic turnover. The downregulation of canonical autophagy during sepsis may contribute to lung inflammation, whereas the switch to noncanonical autophagy selectively removes damaged mitochondria and accompanies tissue repair and cell survival. Furthermore, mitophagy in the alveolar region appears to depend on activation of Nrf2. Thus, efforts to promote mitophagy may be a useful therapeutic adjunct for acute lung injury in sepsis.  相似文献   

3.
Graves’ orbitopathy (GO) is a disfiguring and sometimes blinding disease, characterised by inflammation and swelling of orbital tissues, with fibrosis and adipogenesis being predominant features. Little is known about the disease aetiology and the molecular mechanisms driving the phenotypic changes in orbital fibroblasts are unknown. Using fibroblasts isolated from the orbital fat of undiseased individuals or GO patients, we have established a novel in vitro model to evaluate the dual profile of GO cells in a three-dimensional collagen matrix; this pseudo-physiological 3D environment allows measurement of their contractile and adipogenic properties. GO cells contracted collagen matrices more efficiently than control cells following serum or TGFβ1 stimulation, and showed a slightly increased ability to proliferate in the 3D matrix, in accordance with a fibro-proliferative phenotype. GO cells, unlike controls, also spontaneously differentiated into adipocytes in 3D cultures - confirming an intrinsic adipogenic profile. However, both control and GO cells underwent adipogenesis when cultured under pathological pressure levels. We further demonstrate that a Thy-1-low population of GO cells underlies the adipogenic - but not the contractile - phenotype and, using inhibitors, confirm that the contractile and adipogenic phenotypes are regulated by separate pathways. In view of the current lack of suitable treatment for GO, we propose that this new model testing the duality of the GO phenotype could be useful as a preclinical evaluation for the efficacy of potential treatments.  相似文献   

4.
Autophagy is a major innate immune defense pathway in both plants and animals. In mammals, this cascade can be elicited by cytokines (IFN-γ) or pattern recognition receptors (TLRs and nucleotide-binding oligomerization domain-like receptors). Many signaling components in TLR- and nucleotide-binding oligomerization domain-like receptor-induced autophagy are now known; however, those involved in activating autophagy via IFN-γ remain to be elucidated. In this study, we engineered macrophages encoding a tandem fluorescently tagged LC3b (tfLC3) autophagosome reporter along with stably integrated short hairpin RNAs to demonstrate IFN-γ-induced autophagy required JAK 1/2, PI3K, and p38 MAPK but not STAT1. Moreover, the autophagy-related guanosine triphosphatase Irgm1 proved dispensable in both stable tfLC3-expressing RAW 264.7 and tfLC3-transduced Irgm1(-/-) primary macrophages, revealing a novel p38 MAPK-dependent, STAT1-independent autophagy pathway that bypasses Irgm1. These unexpected findings have implications for understanding how IFN-γ-induced autophagy is mobilized within macrophages for inflammation and host defense.  相似文献   

5.
6.
Yoon JS  Lee HJ  Choi SH  Chang EJ  Lee SY  Lee EJ 《PloS one》2011,6(10):e26261
Management of Graves' orbitopathy (GO) is challenging, as no reliable, specific, and safe medical therapeutic agents have yet been developed. We investigated the effect of quercetin in primary cultured orbital fibroblasts from GO, targeting pathways of inflammation, aberrant accumulation of extracellular matrix macromolecules, and adipose tissue expansion. Quercetin significantly attenuated intercellular adhesion molecule-1 (ICAM-1), interleukin (IL) -6, IL-8, and cyclooxygenase (COX) -2 mRNA expression, and inhibited IL-1β-induced increases in ICAM-1, IL-6, and IL-8 mRNA. Increased hyaluronan production induced by IL-1β or tumor necrosis factor-α was suppressed by quercetin in a dose- and time-dependent manner. Treatment with noncytotoxic doses of quercetin inhibited accumulation of intracytoplasmic lipid droplets and resulted in a dose-dependent decrease in expression of peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein (C/EBP) α, and C/EBPβ proteins. In conclusion, inhibition of inflammation, hyaluronan production, and adipogenesis by the natural plant product quercetin in vitro provides the basis for further study of its potential use in the treatment of GO.  相似文献   

7.
Autophagy is a conserved cellular degradative pathway that is now established to be a vital part of the host immune response to microbial infection. Autophagy can directly eliminate intracellular pathogens by mediating their delivery to lysosomes. Canonical autophagy is characterized by the formation of a double-membrane autophagosome and the involvement of over 35 autophagy-related proteins (Atgs), including a commonly used autophagosome marker in mammalian cells, LC3. Recent studies have shown that a subset of autophagy components can lead to LC3 conjugation onto phagosomes. This process of LC3-associated phagocytosis (LAP) results in the degradation of the cargo by promoting phagosome fusion with lysosomes. Other components of the autophagy machinery also play roles in immunity that are distinct from the canonical autophagy and LAP pathways. This minireview highlights the complicated relationship between autophagy components and intracellular bacteria, including bacterial targeting mechanisms and the interaction between autophagy and effectors/toxins secreted by bacteria.  相似文献   

8.
Microglial inflammation plays an essential role in the pathogenesis of HIV-associated neurocognitive disorders. A previous study indicated that curcumin relieved microglial inflammatory responses. However, the mechanism of this process remained unclear. Autophagy is a lysosome-mediated cell content-dependent degradation pathway, and uncontrolled autophagy leads to enhanced inflammation. The role of autophagy in curcumin-attenuating BV2 cell inflammation caused by gp120 was investigated with or without pretreatment with the autophagy inhibitor 3-MA and blockers of NF-κB, IKK, AKT, and PI3K, and we then detected the production of the inflammatory mediators monocyte chemoattractant protein-1 (MCP-1) and IL17 using ELISA, and autophagy markers ATG5 and LC3 II by Western Blot. The autophagic flux was observed by transuding mRFP-GFP-LC3 adenovirus. The effect of the blockers on gp120-induced BV2 cells was examined by the expression of p-AKT, p-IKK, NF-κB, and p65 in the nuclei and LC3 II and ATG5. gp120 promoted the expression of MCP-1 and IL-17, enhanced autophagic flux, and up-regulated the expression of LC3 II and ATG5, while the autophagy inhibitor 3-MA down-regulated the phenomena above. Curcumin has similar effects with 3-MA, in which curcumin inhibited NF-κB by preventing the translocation of NF-κB p65. Curcumin also inhibited the phosphorylation of p-PI3K, p-AKT, and p-IKK, which leads to down-regulation of NF-κB. Curcumin reduced autophagy via PI3K/AKT/IKK/NF-κB, thereby reducing BV2 cellular inflammation induced by gp120.  相似文献   

9.
c-myc induces autophagy in rat 3Y1 fibroblast cells   总被引:3,自引:0,他引:3  
The proto-oncogene c-myc is a multifunctional gene that regulates cell division, cell growth, and apoptosis. Here we report a new function of c-myc: induction of autophagy. Autophagy is a bulk degradation system for intracellular proteins. Autophagy proceeds with characteristic morphologies, which begins with the formation of a double-membrane structure called the autophagosome surrounding a portion of the cytoplasm, after which its outer membrane then fuses with the lysosomal membrane to become an autolysosome. Autophagosomes and autolysosomes are generally called autophagic vacuoles. When c-Myc protein was overexpressed in rat 3Y1 fibroblasts or when the chimeric protein c-MycER was activated by estrogen, the number of autophagic vacuoles in cells increased significantly. The formation of autophagic vacuoles induced by c-Myc was completely blocked by a specific inhibitor of autophagosome formation, 3-methyladenine. A c-Myc mutant lacking Myc Box II induced neither apoptosis nor oncogenic transformation, but still stimulated autophagy. An inhibitor of caspases suppressed apoptosis but not autophagy. These results suggest that the autophagy caused by c-myc is not due to the apoptosis or tumorigenesis induced by c-myc. Taken together, our results suggest that the induction of autophagy is a novel function of c-myc.  相似文献   

10.
Autophagic (type II) cell death, characterized by the massive accumulation of autophagic vacuoles in the cytoplasm of cells, has been suggested to play pathogenetic roles in cerebral ischemia, brain trauma, and neurodegenerative disorders. 3,4-Methylenedioxymethamphetamine (MDMA or ecstasy) is an illicit drug causing long-term neurotoxicity in the brain. Apoptotic (type I) and necrotic (type III) cell death have been implicated in MDMA-induced neurotoxicity, while the role of autophagy in MDMA-elicited neurotoxicity has not been investigated. The present study aimed to evaluate the occurrence and contribution of autophagy to neurotoxicity in cultured rat cortical neurons challenged with MDMA. Autophagy activation was monitored by expression of microtubule-associated protein 1 light chain 3 (LC3; an autophagic marker) using immunofluorescence and western blot analysis. Here, we demonstrate that MDMA exposure induced monodansylcadaverine (MDC)- and LC3B-densely stained autophagosome formation and increased conversion of LC3B-I to LC3B-II, coinciding with the neurodegenerative phase of MDMA challenge. Autophagy inhibitor 3-methyladenine (3-MA) pretreatment significantly attenuated MDMA-induced autophagosome accumulation, LC3B-II expression, and ameliorated MDMA-triggered neurite damage and neuronal death. In contrast, enhanced autophagy flux by rapamycin or impaired autophagosome clearance by bafilomycin A1 led to more autophagosome accumulation in neurons and aggravated neurite degeneration, indicating that excessive autophagosome accumulation contributes to MDMA-induced neurotoxicity. Furthermore, MDMA induced phosphorylation of AMP-activated protein kinase (AMPK) and its downstream unc-51-like kinase 1 (ULK1), suggesting the AMPK/ULK1 signaling pathway might be involved in MDMA-induced autophagy activation.  相似文献   

11.
Autophagy is a key degradative pathway coordinated by external cues, including starvation, oxidative stress, or pathogen detection. Rare are the molecules known to contribute mechanistically to the regulation of autophagy and expressed specifically in particular environmental contexts or in distinct cell types. Here, we unravel the role of RUN and FYVE domain–containing protein 4 (RUFY4) as a positive molecular regulator of macroautophagy in primary dendritic cells (DCs). We show that exposure to interleukin-4 (IL-4) during DC differentiation enhances autophagy flux through mTORC1 regulation and RUFY4 induction, which in turn actively promote LC3 degradation, Syntaxin 17–positive autophagosome formation, and lysosome tethering. Enhanced autophagy boosts endogenous antigen presentation by MHC II and allows host control of Brucella abortus replication in IL-4–treated DCs and in RUFY4-expressing cells. RUFY4 is therefore the first molecule characterized to date that promotes autophagy and influences endosome dynamics in a subset of immune cells.  相似文献   

12.
AS Patel  L Lin  A Geyer  JA Haspel  CH An  J Cao  IO Rosas  D Morse 《PloS one》2012,7(7):e41394

Background

Autophagy is a basic cellular homeostatic process important to cell fate decisions under conditions of stress. Dysregulation of autophagy impacts numerous human diseases including cancer and chronic obstructive lung disease. This study investigates the role of autophagy in idiopathic pulmonary fibrosis.

Methods

Human lung tissues from patients with IPF were analyzed for autophagy markers and modulating proteins using western blotting, confocal microscopy and transmission electron microscopy. To study the effects of TGF-β1 on autophagy, human lung fibroblasts were monitored by fluorescence microscopy and western blotting. In vivo experiments were done using the bleomycin-induced fibrosis mouse model.

Results

Lung tissues from IPF patients demonstrate evidence of decreased autophagic activity as assessed by LC3, p62 protein expression and immunofluorescence, and numbers of autophagosomes. TGF-β1 inhibits autophagy in fibroblasts in vitro at least in part via activation of mTORC1; expression of TIGAR is also increased in response to TGF-β1. In the bleomycin model of pulmonary fibrosis, rapamycin treatment is antifibrotic, and rapamycin also decreases expression of á-smooth muscle actin and fibronectin by fibroblasts in vitro. Inhibition of key regulators of autophagy, LC3 and beclin-1, leads to the opposite effect on fibroblast expression of á-smooth muscle actin and fibronectin.

Conclusion

Autophagy is not induced in pulmonary fibrosis despite activation of pathways known to promote autophagy. Impairment of autophagy by TGF-β1 may represent a mechanism for the promotion of fibrogenesis in IPF.  相似文献   

13.
《Autophagy》2013,9(8):1190-1193
Autophagy is a highly conserved housekeeping pathway that plays a critical role in the removal of aged or damaged intracellular organelles and their delivery to lysosomes for degradation.1,2 Autophagy begins with the formation of membranes arising in part from the endoplasmic reticulum, that elongate and fuse engulfing cytoplasmic constituents into a classic double-membrane bound nascent autophagosome. These early autophagosomes undergo a stepwise maturation process to form the late autophagosome or amphisome that ultimately fuses with a lysosome. Efficient autophagy is dependent on an equilibrium between the formation and elimination of autophagosomes; thus, a deficit in any part of this pathway will cause autophagic dysfunction. Autophagy plays a role in aging and age-related diseases. 1,2,7 However, few studies of autophagy in retinal disease have been reported.

Recent studies show that autophagy and changes in lysosomal activity are associated with both retinal aging and age-related macular degeneration (AMD).3,4 This article describes methods which employ the target protein LC3 to monitor autophagic flux in retinal pigment epithelial cells. During autophagy, the cytosolic form of LC3 (LC3-I) is processed and recruited to the phagophore where it undergoes site specific proteolysis and lipidation near the C terminus to form LC3-II.5 Monitoring the formation of cellular autophagosome puncta containing LC3 and measuring the ratio of LC3-II to LC3-I provides the ability to monitor autophagy flux in the retina.  相似文献   

14.
Mycobacterium tuberculosis is an intracellular pathogen persisting within phagosomes through interference with phagolysosome biogenesis. Here we show that stimulation of autophagic pathways in macrophages causes mycobacterial phagosomes to mature into phagolysosomes. Physiological induction of autophagy or its pharmacological stimulation by rapamycin resulted in mycobacterial phagosome colocalization with the autophagy effector LC3, an elongation factor in autophagosome formation. Autophagy stimulation increased phagosomal colocalization with Beclin-1, a subunit of the phosphatidylinositol 3-kinase hVPS34, necessary for autophagy and a target for mycobacterial phagosome maturation arrest. Induction of autophagy suppressed intracellular survival of mycobacteria. IFN-gamma induced autophagy in macrophages, and so did transfection with LRG-47, an effector of IFN-gamma required for antimycobacterial action. These findings demonstrate that autophagic pathways can overcome the trafficking block imposed by M. tuberculosis. Autophagy, which is a hormonally, developmentally, and, as shown here, immunologically regulated process, represents an underappreciated innate defense mechanism for control of intracellular pathogens.  相似文献   

15.
Autophagy is originally named as a process of protein recycling. It begins with sequestering cytoplasmic organelles in a membrane vacuole called autophagosome. Autophagosomes then fuse with lysosomes, where the materials inside are degraded and recycled. To date, however, little is known about the role of autophagy in cancer therapy. In this study, we present that temozolomide (TMZ), a new alkylating agent, inhibited the viability of malignant glioma cells in a dose-dependent manner and induced G2/M arrest. At a clinically achievable dose (100 microM), TMZ induced autophagy, but not apoptosis in malignant glioma cells. After the treatment with TMZ, microtubule-associated protein light-chain 3 (LC3), a mammalian homologue of Apg8p/Aut7p essential for amino-acid starvation-induced autophagy in yeast, was recruited on autophagosome membranes. When autophagy was prevented at an early stage by 3-methyladenine, a phosphatidylinositol 3-phosphate kinase inhibitor, not only the characteristic pattern of LC3 localization, but also the antitumor effect of TMZ was suppressed. On the other hand, bafilomycin A1, a specific inhibitor of vacuolar type H(+)-ATPase, that prevents autophagy at a late stage by inhibiting fusion between autophagosomes and lysosomes, sensitized tumor cells to TMZ by inducing apoptosis through activation of caspase-3 with mitochondrial and lysosomal membrane permeabilization, while LC3 localization pattern stayed the same. These results indicate that TMZ induces autophagy in malignant glioma cells. Application of an autophagy inhibitor that works after the association of LC3 with autophagosome membrane, such as bafilomycin A1, is expected to enhance the cytotoxicity of TMZ for malignant gliomas.  相似文献   

16.
Autophagy is postulated to be required by cancer cells to survive periods of metabolic and/or hypoxic stress. ATG7 is the E1 enzyme that is required for activation of Ubl conjugation pathways involved in autophagosome formation. This article describes the design and optimization of pyrazolopyrimidine sulfamate compounds as potent and selective inhibitors of ATG7. Cellular levels of the autophagy markers, LC3B and NBR1, are regulated following treatment with these compounds.  相似文献   

17.
The current study demonstrated curcumin intervention against AFB1-indeuced hepatotoxicity. The hallmarks of autophagy and inflammation were assessed by transmission electron microscopy, RT-PCR and western blot. Besides, normal cellular morphology, autophagosomes were found in control and curcumin control group. In contrast, fragmented and swollen mitochondria, irregular shaped nuclei and fat droplets were visible but autophagosomes disappear in AFB1-treated group. The mRNA and protein expression levels of autophagy-related genes indicated that AFB1 significantly inhibited autophagy and induced inflammation. In addition, Nrf2 and HO-1 mRNA and protein level was significantly (p?<?0.05) reduced in AFB1-fed group. Intriguingly, dietary curcumin supplementation modulated autophagy through the activation of beclin-1, ATG5, Dynein, LC3a, LC3b-I/II and downregulation of p53 & mTOR expression level. Curcumin significantly ameliorated AFB1-induced inflammation. Moreover, curcumin treatment significantly (p?<?0.05) elevated AFB1-induced decrease in Nrf2 and HO-1 mRNA and protein expression level. In summary, curcumin activated autophagy and ameliorated inflammation involving Nrf2 signaling pathway which may become a new targeted therapy to prevent AFB1-induced hepatotoxicity.  相似文献   

18.
Idiopathic pulmonary fibrosis (IPF) is a chronic, lethal interstitial lung disease in which the aberrant PTEN/Akt axis plays a major role in conferring a survival phenotype in response to the cell death inducing properties of type I collagen matrix. The underlying mechanism by which IPF fibroblasts become desensitized to polymerized collagen, thereby eluding collagen matrix-induced cell death has not been fully elucidated. We hypothesized that the pathologically altered PTEN/Akt axis suppresses autophagy via high mTOR kinase activity, which subsequently desensitizes IPF fibroblasts to collagen matrix induced cell death. We found that the autophagosome marker LC3-2 expression is suppressed, while mTOR activity remains high when IPF fibroblasts are cultured on collagen. However, LC3-2 expression increased in response to IPF fibroblast attachment to collagen in the presence of rapamycin. In addition, PTEN over-expression or Akt inhibition suppressed mTOR activity, thereby increasing LC3-2 expression in IPF fibroblasts. Furthermore, the treatment of IPF fibroblasts over-expressing PTEN or dominant negative Akt with autophagy inhibitors increased IPF fibroblast cell death. Enhanced p-mTOR expression along with low LC3-2 expression was also found in myofibroblasts within the fibroblastic foci from IPF patients. Our data show that the aberrant PTEN/Akt/mTOR axis desensitizes IPF fibroblasts from polymerized collagen driven stress by suppressing autophagic activity, which produces a viable IPF fibroblast phenotype on collagen. This suggests that the aberrantly regulated autophagic pathway may play an important role in maintaining a pathological IPF fibroblast phenotype in response to collagen rich environment.  相似文献   

19.
Accumulation of profibrotic myofibroblasts is involved in the process of fibrosis development during idiopathic pulmonary fibrosis (IPF) pathogenesis. TGFB (transforming growth factor β) is one of the major profibrotic cytokines for myofibroblast differentiation and NOX4 (NADPH oxidase 4) has an essential role in TGFB-mediated cell signaling. Azithromycin (AZM), a second-generation antibacterial macrolide, has a pleiotropic effect on cellular processes including proteostasis. Hence, we hypothesized that AZM may regulate NOX4 levels by modulating proteostasis machineries, resulting in inhibition of TGFB-associated lung fibrosis development. Human lung fibroblasts (LF) were used to evaluate TGFB-induced myofibroblast differentiation. With respect to NOX4 regulation via proteostasis, assays for macroautophagy/autophagy, the unfolded protein response (UPR), and proteasome activity were performed. The potential anti-fibrotic property of AZM was examined by using bleomycin (BLM)-induced lung fibrosis mouse models. TGFB-induced NOX4 and myofibroblast differentiation were clearly inhibited by AZM treatment in LF. AZM-mediated NOX4 reduction was restored by treatment with MG132, a proteasome inhibitor. AZM inhibited autophagy and enhanced the UPR. Autophagy inhibition by AZM was linked to ubiquitination of NOX4 via increased protein levels of STUB1 (STIP1 homology and U-box containing protein 1), an E3 ubiquitin ligase. An increased UPR by AZM was associated with enhanced proteasome activity. AZM suppressed lung fibrosis development induced by BLM with concomitantly reduced NOX4 protein levels and enhanced proteasome activation. These results suggest that AZM suppresses NOX4 by promoting proteasomal degradation, resulting in inhibition of TGFB-induced myofibroblast differentiation and lung fibrosis development. AZM may be a candidate for the treatment of the fibrotic lung disease IPF.  相似文献   

20.
Autophagy is one of the major degradation pathways for cytoplasmic components. The autophagic isolation membrane is a unique membrane whose content of unsaturated fatty acids is very high. However, the molecular mechanisms underlying formation of this membrane, including the roles of unsaturated fatty acids, remain to be elucidated. From a chemical library consisting of structurally diverse compounds, we screened for novel inhibitors of starvation-induced autophagy by measuring LC3 puncta formation in mouse embryonic fibroblasts stably expressing GFP-LC3. One of the inhibitors we identified, 2,5-pyridinedicarboxamide, N2,N5-bis[5-[(dimethylamino)carbonyl]-4-methyl-2-thiazolyl], has a molecular structure similar to that of a known stearoyl-CoA desaturase (SCD) 1 inhibitor. To determine whether SCD1 inhibition influences autophagy, we examined the effects of the SCD1 inhibitor 28c. This compound strongly inhibited starvation-induced autophagy, as determined by LC3 puncta formation, immunoblot analyses of LC3, electron microscopic observations, and p62/SQSTM1 accumulation. Overexpression of SCD1 or supplementation with oleic acid, which is a catalytic product of SCD1 abolished the inhibition of autophagy by 28c. Furthermore, 28c suppressed starvation-induced autophagy without affecting mammalian target of rapamycin activity, and also inhibited rapamycin-induced autophagy. In addition to inhibiting formation of LC3 puncta, 28c also inhibited formation of ULK1, WIPI1, Atg16L, and p62/SQSTM1 puncta. These results suggest that SCD1 activity is required for the earliest step of autophagosome formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号