首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fan Y  Yu W  Ye P  Wang H  Wang Z  Meng Q  Duan Y  Liang X  An W 《DNA and cell biology》2011,30(4):241-245
Ovarian cancer is the leading cause of death among all gynecological cancers. This is mainly attributed to its frequent presentation at an advanced stage (International Federation of Gynecology and Obstetrics stage III-IV). Nuclear factor-kappaB (NF-κB) is critically involved in the carcinogenesis and development of ovarian cancer. A functional insertion/deletion polymorphism (-94 ins/del ATTG) in the promoter region of the NFKB1 gene, which encodes the p50 subunit of the NF-κB protein, has been recently identified and shown to increase the susceptibility to many diseases. The purpose of this study was to explore the association between this polymorphism and the risk of advanced ovarian cancer in a Chinese population. A total of 179 advanced ovarian cancer patients and 223 healthy controls were recruited into this study. Genotypes were determined using polymerase chain reaction-capillary electrophoresis method. The insertion increased the risk of advanced ovarian cancer (odds ratio?=?2.111, 95% confidence intervals?=?1.125-3.961, p?=?0.019 for heterozygote insertion, and odds ratio?=?2.656, 95% confidence intervals?=?1.397-5.051, p?=?0.002 for homozygote insertion) compared with homozygote deletion. Similar results were seen in age-adjusted analyses (p?相似文献   

2.
A polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) assay was used in a Turkish population to determine the frequency of polymorphisms of the nuclear factor-kappa (NF-κB1) and NF-κBIA genes, which have been shown to be related to several inflammatory diseases and cancer pathogenesis. Total genomic DNA was isolated from peripheral blood samples taken from 565 healthy volunteers living in Ayd?n Province. The genomic regions in question were amplified by PCR, and the polymorphisms in these regions were detected by a PCR–RFLP assay. The frequencies were 10.3% for the NF-κB1 ?94ins/delATTG del/del genotype, 49.1% for del/ins, and 40.6% for ins/ins. The genotype frequencies of the NF-κBIA 3′UTR A → G genotypes were A/A 19.2%, A/G 42.3%, and G/G 38.5%. Distribution of genotype frequencies was tested by Hardy–Weinberg; the NF-κB1 gene was in Hardy–Weinberg equilibrium (χ2 = 3.402, P > 0.05), the NF-κBIA gene was not (χ2 = 8.293, P < 0.05).  相似文献   

3.
Lung inflammation is the major pathogenetic feature for both chronic obstructive pulmonary disease (COPD) and lung cancer. The nuclear factor-kappa B (NFκB) and its inhibitor (IκB) play crucial roles in inflammatory. Here, we tested the hypothesis that single nucleotide polymorphisms (SNPs) in NFκB/IκB confer consistent risks for COPD and lung cancer. Four putative functional SNPs (NFκB1: ?94del>insATTG; NFκB2: ?2966G>A; IκBα: ?826C>T, 2758G>A) were analyzed in southern and validated in eastern Chineses to test their associations with COPD risk in 1,511 COPD patients and 1,677 normal lung function controls, as well as lung cancer risk in 1,559 lung cancer cases and 1,679 cancer-free controls. We found that the ?94ins ATTG variants (ins/del + ins/ins) in NFκB1 conferred an increased risk of COPD (OR 1.27, 95 % CI 1.06–1.52) and promoted COPD progression by accelerating annual FEV1 decline (P = 0.015). The 2758AA variant in IκBα had an increased risk of lung cancer (OR 1.53, 95 % CI 1.30–1.80) by decreasing IκBα expression due to the modulation of microRNA hsa-miR-449a but not hsa-miR-34b. Furthermore, both adverse genotypes exerted effect on increasing lung cancer risk in individuals with pre-existing COPD, while the ?94del>insATTG did not in those without pre-existing COPD. However, no significant association with COPD or lung cancer was observed for ?2966G>A and ?826C>T. Our data suggested a common susceptible mechanism of inflammation in lung induced by genetic variants in NFκB1 (?94del>ins ATTG) or IκBα (2758G>A) to predict risk of COPD or lung cancer.  相似文献   

4.
5.
Saikosaponin-D (SSD), an active ingredient in Bupleurum chinense, exerts anticancer effects in various cancers by inhibiting cancer proliferation and inducing apoptosis. However, whether SSD can induce other forms of cell death is unknown. The current study aims to demonstrate that SSD can induce pyroptosis in non-small-cell lung cancer. In this study, HCC827 and A549 non-small-cell lung cancer cells were treated with different concentrations of SSD for 1.5 h. HE and TUNEL staining were used to verify cell damage caused by SSD. Immunofluorescence and western blotting were performed to verify the effect of SSD on the NF-κB/NLRP3/caspase-1/gasdermin D (GSDMD) pathway. Changes in inflammatory factors were detected by ELISAs. Finally, the reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) was introduced to verify that SSD induces pyroptosis through the ROS/NF-κB pathway. The results of the HE and TUNEL staining showed that SSD resulted in balloon-like swelling of NSCLC cells accompanied by increased DNA damage. Immunofluorescence and western blot assays confirmed that SSD treatment activated the NLRP3/caspase-1/GSDMD pathway, stimulated an increase in ROS levels and activated NF-κB in lung cancer cells. The ROS scavenger N-acetylcysteine significantly attenuated SSD-induced NF-κB/NLRP3/caspase-1/GSDMD pathway activation and inhibited the release of the inflammatory cytokines IL-1β and IL-18. In conclusion, SSD induced lung cancer cell pyroptosis by inducing ROS accumulation and activating the NF-κB/NLRP3/caspase-1/GSDMD pathway. These experiments lay the foundation for the application of SSD in the treatment of non-small-cell lung cancer and regulation of the lung cancer immune microenvironment.  相似文献   

6.
7.

Background

Graves Disease (GD) is an autoimmune disorder affected by an interaction of multiple genes such as Nuclear Factor-κB (NF-κB), Nuclear Factor-κB Inhibitor (NF-κBIA), Poly (ADP-ribose) polymerase-1 (PARP-1) and cytokines like Interleukin-1β (IL-1β), Interleukin-6 (IL-6) and Tumor Necrosis Factor-α (TNF-α) and mostly accompanied by an ocular disorder, Graves Ophthalmopathy (GO). We hypothesize that there is a relationship between GD, GO, polymorphisms of inflammatory related genes and their association with cytokines, which may play important roles in autoimmune and inflammatory processes.

Subjects and methods

To confirm our hypothesis, we studied the polymorphisms and cytokine levels of 120 patients with GD and GO using PCR-RFLP and ELISA methods, respectively.

Results

We found that patients with GG genotype and carriers of G allele of PARP-1 G1672A polymorphism are at risk in the group having GD (p = 0.0007) while having GA genotype may be protective against the disease. PARP-1 C410T polymorphism was found to be associated with GO by increasing the risk by 1.7 times (p = 0.004). Another risk factor for development of GO was the polymorphism of del/ins of NFkB1 gene (p = 0.032) that increases the risk by 39%. Levels of cytokines were also elevated in patients with GD, but no association was found between levels of cytokines and the development of GO as there was no change in levels of cytokines.

Conclusions

We suggest that, PARP-1 and NFkB1 gene polymorphisms may be risk factors for developing Graves Disease and Ophthalmopathy.  相似文献   

8.
9.
10.
《Genomics》2022,114(3):110341
ObjectiveThis study intends to conquer the mystery of microRNA-16-5p/erythropoietin-producing hepatocellular A1/nuclear factor-κB signaling (miR-16-5p/EPHA1/NF-κB signaling) in breast cancer.MethodsExpression of miR-16-5p, EPHA1 and NF-κB signaling-related proteins were detected. Gene overexpression or silencing was used to examine the biological roles of bone marrow mesenchymal stem cells (BMSCs)-derived exo-miR-16-5p in breast cancer. The effect of exo-miR-16-5p on tumorigenesis of breast cancer was confirmed by the xenograft nude mouse model.ResultsLow miR-16-5p and high EPHA1 expression were examined in breast cancer. BMSCs-derived exosomes, up-regulated miR-16-5p or down-regulated EPHA1 restrained epithelial-mesenchymal transition (EMT) of breast cancer cells and tumor growth in nude mice. Down-regulated miR-16-5p or up-regulated EPHA1 activated NF-κB signaling. Knockdown of EPHA1 or inhibition of NF-κB signaling reversed the effects of down-regulated miR-16-5p on breast cancer cells.ConclusionBMSCs-derived exosomal miR-16-5p hinders breast cancer cells progression via EPHA1/NF-κB signaling axis.  相似文献   

11.

Background

Receptor for advanced glycation end-product (RAGE) gene polymorphism 2245G/A is associated with diabetic retinopathy (DR). However, the mechanism on how it affects the disease development is still unclear.

Aim

This study aims to investigate the relationship between 2245G/A RAGE gene polymorphism and selected pro-inflammatory, oxidative-glycation markers in DR patients.

Methods

A total of 371 unrelated type 2 diabetic patients [200 with retinopathy, 171 without retinopathy (DNR)] and 235 healthy subjects were recruited. Genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism method followed by DNA sequencing. The nuclear and cytosolic extracts from peripheral blood mononuclear cells were used for nuclear factor kappa B (NF-κB) p65 and superoxide dismutase activity measurement respectively. Plasma was used for glutathione peroxidase activity, advanced oxidation protein product (AOPP), monocyte chemoattractant protein (MCP)-1, pentosidine and soluble RAGE (sRAGE) measurements.

Results

DR patients with 2245GA genotype had significantly elevated levels of activated NF-κB p65, plasma MCP-1, AOPP and pentosidine but lower level of sRAGE when compared to DR patients with wild-type 2245GG.

Conclusion

The RAGE gene polymorphism 2245G/A is associated with pro-inflammatory, oxidative-glycation markers and circulating sRAGE in DR patients. Patients with 2245GA RAGE genotype could aggravate DR possibly via NF-κB mediated inflammatory pathway.  相似文献   

12.
Previous studies have demonstrated expression of Toll-like receptors (TLRs) in the surface epithelium of normal ovaries (OSE) and in epithelial ovarian tumors. Most notably, OSE-derived cancers express TLR4, which activates the nuclear factor-kappa B (NF-κB) signaling cascade as a mediator of inflammatory response. Currently, there is considerable interest in elucidating the role of TLR-mediated signaling in cancers. Nevertheless, the expression of TLRs in granulosa cell tumors (GCTs) of the ovary, and the extent to which GCT expression of TLRs may influence cell-signaling pathways and/or modulate the efficacy of chemotherapeutics, has yet to be determined. In the present study, human GCT lines (COV434 and KGN) were utilized to evaluate expression of functional TLR4. TLR4 is expressed in GCT cell lines and ligation of TLR4 with bacterial lipopolysaccharide (LPS) led to IκB degradation and activation of NF-κB. NF-κB activation was confirmed by nuclear localization of NF-κB p65 following treatment with LPS and the naturally occurring ligand, HSP60. Notably, immunoneutralization of TLR4 blocked nuclear localization, and inhibition of NF-κB signaling attenuated LPS-induced TNFα plus increased doubling time in both cell lines. Contradictory to reports using human OSE cell lines, inhibition of NF-κB signaling failed to sensitize GCT lines to TRAIL or cisplatin. In summary, findings herein are the first to demonstrate a functional TLR-signaling pathway specifically in GCTs, and indicate that in contrast to OSE-derived cancers, inhibition of NF-κB does not sensitize GCTs to TRAIL or cisplatin.  相似文献   

13.
To investigate whether mutant stem cells participate in inflammation-related carcinogenesis, we performed immunohistochemical analysis to examine nitrative and oxidative DNA lesions (8-nitroguanine and 8-oxodG) and a stem cell marker Oct3/4 in bladder tissues obtained from cystitis and bladder cancer patients infected with Schistosomahaematobium (S. haematobium). We also detected the expression of nuclear factor-κB (NF-κB) and inducible nitric oxide synthase (iNOS), which lead to 8-nitroguanine formation. The staining intensity of 8-nitroguanine and 8-oxodG was significantly higher in bladder cancer and cystitis tissues than in normal tissues. iNOS expression was colocalized with NF-κB in 8-nitroguanine-positive tumor cells from bladder cancer patients. Oct3/4 expression was significantly increased in cells from S. haematobium-associated bladder cancer tissues in comparison to normal bladder and cancer tissues without infection. Oct3/4 was also expressed in epithelial cells of cystitis patients. Moreover, 8-nitroguanine was formed in Oct3/4-positive stem cells in S. haematobium-associated cystitis and cancer tissues. In conclusion, inflammation by S.haematobium infection may increase the number of mutant stem cells, in which iNOS-dependent DNA damage occurs via NF-κB activation, leading to tumor development.  相似文献   

14.
Colorectal cancer (CRC) is one of the most common malignant gastrointestinal cancers worldwide. RING finger protein 186 (RNF186) is a member of the RING finger protein family. RNF186 has been reported to be involved in the regulation of the intestinal homeostasis through the regulation of endoplasmic reticulum (ER) stress in colonic epithelial cells. However, its role in CRC remains unclear. In this study, we found that colorectal tumours from human patients had decreased levels of RNF186. We demonstrated that overexpression of RNF186 suppressed the growth and migration of CRC-derived cell lines in vitro and inhibited tumour proliferation in vivo. Further, our findings indicated that forced expression of RNF186 inhibited nuclear factor-κB (NF-κB) activation by reducing the phosphorylation of NF-κB. In addition, our results showed that RNF186−/− mice exhibited significantly increased tumour burden compared to the wild type (WT) mice following treatment with azoxymethane/dextran sulfate sodium (AOM/DSS). Compared to WT mice, the percentage of Ki67 positive cells was increased in the RNF186−/− mice, indicating that RNF186 is crucial for intestinal cell proliferation during tumorigenesis. Taken together, our data suggest that RNF186 inhibits the development of CRC, and that this effect is mediated through the suppression of NF-κB activity.  相似文献   

15.

Background

Chronic inflammation is causally linked to the carcinogenesis and progression of most solid tumors. LPTS is a well-identified tumor suppressor by inhibiting telomerase activity and cancer cell growth. However, whether and how LPTS is regulated by inflammation signaling is still incompletely elucidated.

Methods

Real-time PCR and western blotting were used to determine the expression of p65 and LPTS. Reporter gene assay, electrophoretic mobility shift assay and chromatin immunoprecipitation were performed to decipher the regulatory mechanism between p65 and LPTS. Cell counting kit-8 assays and xenograt models were used to detect p65-LPTS-regulated cancer cell growth in vitro and in vivo, respectively.

Results

Here we for the first time demonstrated that NF-κB could inhibit LPTS expression in the mRNA and protein levels in multiple cancer cells (e.g. cervical cancer and colon cancer cells). Mechanistically, NF-κB p65 could bind to two consensus response elements locating at ?1143/?1136 and ?888/?881 in the promoter region of human LPTS gene according to EMSA and ChIP assays. Mutation of those two binding sites rescued p65-suppressed LPTS promoter activity. Functionally, NF-κB regulated LPTS-dependent cell growth of cervical and colon cancers in vitro and in xenograft models. In translation studies, we verified that increased p65 expression was associated with decreased LPTS level in multiple solid cancers.

Conclusions

Taken together, we revealed that NF-κB p65 potentiated tumor growth via suppressing a novel target LPTS. Modulation of NF-κB-LPTS axis represented a potential strategy for treatment of those inflammation-associated malignancies.
  相似文献   

16.
17.
Growing evidence has shown that nuclear factor-κB (NF-κB) plays a key role in the initiation and progression of systemic lupus erythematosus (SLE) pathogenesis. A common polymorphism (-94 insertion/deletion ATTG, rs28362491) in the promoter region of NFKB1 gene was identified as functional. The -94del ATTG allele exhibited loss of binding to nuclear proteins and resulted in reduced promoter activity. We investigated the association between NFKB1 -94 insertion/deletion ATTG polymorphism and risk of SLE. A total of 224 SLE patients and 256 control subjects were genotyped using a polymerase chain reaction-polyacrylamide gel electrophoresis strategy and DNA sequencing. We found that the ATTG(1)/ATTG(2) genotype was associated with a significantly decreased risk of SLE (odds ratio=0.52, 95% confidence interval: 0.32-0.87, p=0.012). This finding indicates that the -94 insertion/deletion ATTG polymorphism may play pivotal roles in the development of SLE in the Chinese population. Further studies with larger sample size are warranted to confirm this finding, especially in different populations.  相似文献   

18.
Background: Human β-defensin 2 (hBD2) gene expression is dependent on nuclear factor kappa B (NF-κB) activity. We have previously demonstrated that electrolytically generated acid functional water (FW) induces the expression of hBD2 in the human oral squamous cell carcinoma (OSCC) cell line Ca9-22. However, the induction was not dependent on NF-κB activity; in fact, FW inhibited NF-κB activity. Therefore, we hypothesized that FW might reduce spontaneous interleukin 8 (IL-8) secretion by Ca9-22 cells, which is heavily dependent on NF-κB activity. This study aimed at demonstrating the inhibitory effect of FW on NF-κB activity. Methods: Ca9-22 cells were incubated with FW, and spontaneous IL-8 secretion was observed by enzyme-linked immunosorbent assay. Luciferase assay was performed using the 5′-untranslated region of the IL-8 gene. The steps of NF-κB activation blocked by FW were evaluated by localization of the NF-κB subunits p65 and p50 by immunofluorescence staining. Western blotting was further performed to confirm the changes in NF-κB subunit localization. Results: The Ca9-22 cells spontaneously secreted IL-8, which was rapidly and drastically inhibited by FW treatment. The luciferase assay demonstrated the inhibitory action of FW, which was diminished by deletion of the NF-κB binding site from this construct. FW treatment altered the distribution of both the p65 and p50 subunits. P65, which was localized in the nucleus during the resting state, moved to the cytoplasm after FW treatment, whereas, p50, localized in the cytoplasm during the resting state, moved to the nucleus subsequent to FW treatment. Conclusions: The results from this study indicate that FW might inhibit spontaneous IL-8 secretion by redistribution of the NF-κB subunits within the cells.  相似文献   

19.
Mutations in PKHD1 (polycystic kidney and hepatic disease gene 1) gene cause the autosomal recessive polycystic kidney disease (ARPKD). Fibrocystin/polyductin (FPC), encoded by PKHD1, is a membrane-associated receptor-like protein. Although it is widely accepted that cystogenesis is mostly due to aberrant cell proliferation and apoptosis, it is still unclear how apoptosis is regulated. The aim of this study is to analyze the relationship among apoptosis, phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor κB (NF-κB) in FPC knockdown kidney cells. We show that PKHD1-silenced HEK293 cells demonstrate a higher PI3K/Akt activity. Selective inhibition of PI3K/Akt using LY294002 or wortmannin in these cells increases serum starvation-induced HEK293 cell apoptosis with a concomitant decrease in cell proliferation and higher caspase-3 activity. PI3K/Akt inhibition also leads to increased NF-κB activity in these cells. We conclude that the PI3K/Akt pathway is involved in apoptotic function in PKHD1-silenced cells, and PI3K/Akt inhibition correlates with upregulation of NF-κB activity. These observations provide a potential platform for determining FPC function and therapeutic investigation of ARPKD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号