首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
《Genomics》2023,115(3):110614
Skin cutaneous melanoma (SKCM) is the most life-threatening skin cancer and lacks early detection and effective treatment strategies. Many long noncoding RNAs are associated with the development of tumors and may serve as potential immunotherapeutic targets. In this study, microarray analysis was performed to screen for differentially expressed lncRNAs between SKCM and normal tissues, and SMG7-AS1 was identified as an upregulated lncRNA in SKCM. Subsequently, bioinformatic analysis revealed that dysregulation of SMG7-AS1 influences metastasis and immune infiltration. qRT-PCR of clinical samples demonstrated that the expression of SMG7-AS1 was higher in melanoma tissues. Flow cytometry showed that SMG7-AS1 plays a vital role in the cell cycle. Additionally, SMG7-AS1 was found to be associated with immunotherapy responses. To the best of our knowledge, this study is the first to report that SMG7-AS1 is associated with SKCM and may serve as a prognostic biomarker and predictor of immunotherapy responses in SKCM.  相似文献   

3.
Glioblastoma multiforme (GBM) is a devastating brain tumour without effective treatment. Recent studies have shown that autophagy is a promising therapeutic strategy for GBM. Therefore, it is necessary to identify novel biomarkers associated with autophagy in GBM. In this study, we downloaded autophagy-related genes from Human Autophagy Database (HADb) and Gene Set Enrichment Analysis (GSEA) website. Least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression analysis were performed to identify genes for constructing a risk signature. A nomogram was developed by integrating the risk signature with clinicopathological factors. Time-dependent receiver operating characteristic (ROC) curve and calibration plot were used to evaluate the efficiency of the prognostic model. Finally, four autophagy-related genes (DIRAS3, LGALS8, MAPK8 and STAM) were identified and were used for constructing a risk signature, which proved to be an independent risk factor for GBM patients. Furthermore, a nomogram was developed based on the risk signature and clinicopathological factors (IDH1 status, age and history of radiotherapy or chemotherapy). ROC curve and calibration plot suggested the nomogram could accurately predict 1-, 3- and 5-year survival rate of GBM patients. For function analysis, the risk signature was associated with apoptosis, necrosis, immunity, inflammation response and MAPK signalling pathway. In conclusion, the risk signature with 4 autophagy-related genes could serve as an independent prognostic factor for GBM patients. Moreover, we developed a nomogram based on the risk signature and clinical traits which was validated to perform better for predicting 1-, 3- and 5-year survival rate of GBM.  相似文献   

4.
5.
Lung cancer is one of the fatal tumors. The tumor microenvironment plays a key role in regulating tumor progression. To figure out the role of tumor microenvironment in lung adenocarcinoma (LUAD), ESTIMATE algorithm was used to evaluate the immune scores in LUAD. Patients with low immune scores had a worse overall survival (OS) compared with high immune scores. Using RNA-Seq data of 489 patients in The Cancer Genome Atlas (TCGA), differentially expressed genes (DEGs) were identified between high- and low-immune score groups. Based on the DEGs, nine-gene signature was constructed by the least absolute shrinkage and selection operator Cox regression model in TCGA set. The signature demonstrated significant prognostic value in both TCGA and Gene Expression Omnibus database. Multivariate Cox regression analyses indicated that nine-genes signature was an independent prognostic factor. Subgroup analysis also revealed a robust prognostic ability of nine-gene signature. A nomogram with a C-index of 0.722 had a favorable power for predicting 3-, 5-, and 10-year survival for clinical use by integrating nine-gene signature and other clinical features. Co-expression and functional enrichment analysis showed that nine-gene signature was significantly associated with immune response and provided potential profound molecules for revealing the mechanism of tumor initiation and progression. In conclusion, we revealed the significance of immune infiltration and built a novel nine-gene signature as a reliable prognostic factor for patients with LUAD.  相似文献   

6.
Increasing evidences have showed that autophagy played a significant role in oral squamous cell carcinoma (OSCC). Purpose of our study was to explore the prognostic value of autophagy-related genes (ATGs) and screen autophagy-related biomarkers for OSCC. RNA-seq and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database following extracting ATG expression profiles. Then, differentially expressed analysis was performed in R software and a risk score model according to ATGs was established. Moreover, comprehensive bioinformatics analyses were used to screen autophagy-related biomarkers which were later verified in OSCC tissues and cell lines. A total of 232 ATGs were extracted, and 37 genes were differentially expressed in OSCC. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that these genes were mainly located in autophagosome membrane and associated with autophagy. Furthermore, the risk score on basis of ATGs was identified as potential independent prognostic biomarker. Moreover, ATG12 and BID were identified as potential autophagy-related biomarkers of OSCC. This study successfully constructed a risk model, and the risk score could predict the prognosis of OSCC patients accurately. Moreover, ATG12 and BID were identified as two potential independent prognostic autophagy-related biomarkers and might provide new OSCC therapeutic targets.  相似文献   

7.
Primary and metastatic melanoma tumors share the same cell origin, making it challenging to identify genomic biomarkers that can differentiate them. Primary tumors themselves can be heterogeneous, reflecting ongoing genomic changes as they progress toward metastasizing. We developed a computational method to explore this heterogeneity and to predict metastatic progression of the primary tumors. We applied our method separately to gene expression and to microRNA (miRNA) expression data from ~450 primary and metastatic skin cutaneous melanoma (SKCM) samples from the Cancer Genome Atlas (TCGA). Metastatic progression scores from RNA‐seq data were significantly associated with clinical staging of patients’ lymph nodes, whereas scores from miRNA‐seq data were significantly associated with Clark's level. The loss of expression of many characteristic epithelial lineage genes in primary SKCM tumor samples was highly correlated with predicted progression scores. We suggest that those genes/miRNAs might serve as putative biomarkers for SKCM metastatic progression.  相似文献   

8.
9.
10.
Ovarian cancer (OV) is the most common gynaecological cancer worldwide. Immunotherapy has recently been proven to be an effective treatment strategy. The work here attempts to produce a prognostic immune-related gene pair (IRGP) signature to estimate OV patient survival. The Gene Expression Omnibus (GEO) and Cancer Genome Atlas (TCGA) databases provided the genetic expression profiles and clinical data of OV patients. Based on the InnateDB database and the least absolute shrinkage and selection operator (LASSO) regression model, we first identified a 17-IRGP signature associated with survival. The average area under the curve (AUC) values of the training, validation, and all TCGA sets were 0.869, 0.712, and 0.778, respectively. The 17-IRGP signature noticeably split patients into high- and low-risk groups with different prognostic outcomes. As suggested by a functional study, some biological pathways, including the Toll-like receptor and chemokine signalling pathways, were significantly negatively correlated with risk scores; however, pathways such as the p53 and apoptosis signalling pathways had a positive correlation. Moreover, tumour stage III, IV, grade G1/G2, and G3/G4 samples had significant differences in risk scores. In conclusion, an effective 17-IRGP signature was produced to predict prognostic outcomes in OV, providing new insights into immunological biomarkers.  相似文献   

11.
Rectal cancer is a common malignant tumour and the progression is highly affected by the tumour microenvironment (TME). This study intended to assess the relationship between TME and prognosis, and explore prognostic genes of rectal cancer. The gene expression profile of rectal cancer was obtained from TCGA and immune/stromal scores were calculated by Estimation of Stromal and Immune cells in Malignant Tumors using Expression data (ESTIMATE) algorithm. The correlation between immune/stromal scores and survival time as well as clinical characteristics were evaluated. Differentially expressed genes (DEGs) were identified according to the stromal/immune scores, and the functional enrichment analyses were conducted to explore functions and pathways of DEGs. The survival analyses were conducted to clarify the DEGs with prognostic value, and the protein-protein interaction (PPI) network was performed to explore the interrelation of prognostic DEGs. Finally, we validated prognostic DEGs using data from the Gene Expression Omnibus (GEO) database by PrognoScan, and we verified these genes at the protein levels using the Human Protein Atlas (HPA) databases. We downloaded gene expression profiles of 83 rectal cancer patients from The Cancer Genome Atlas (TCGA) database. The Kaplan-Meier plot demonstrated that low-immune score was associated with worse clinical outcome (P = .034), metastasis (M1 vs. M0, P = .031) and lymphatic invasion (+ vs. -, P < .001). A total of 540 genes were screened as DEGs with 539 up-regulated genes and 1 down-regulated gene. In addition, 60 DEGs were identified associated with overall survival. Functional enrichment analyses and PPI networks showed that the DEGs are mainly participated in immune process, and cytokine-cytokine receptor interaction. Finally, 19 prognostic genes were verified by GSE17536 and GSE17537 from GEO, and five genes (ADAM23, ARHGAP20, ICOS, IRF4, MMRN1) were significantly different in tumour tissues compared with normal tissues at the protein level. In summary, our study demonstrated the associations between TME and prognosis as well as clinical characteristics of rectal cancer. Moreover, we explored and verified microenvironment-related genes, which may be the potential key prognostic genes of rectal cancer. Further clinical samples and functional studies are needed to validate this finding.  相似文献   

12.
It is crucial to understand the differences across papillary thyroid cancer (PTC) stages, so as to provide a basis for individualized treatments. Here, comprehensive function characterization of PTC stage-related genes was performed and a new prognostic signature was developed for advanced patients. Two gene modules were confirmed to be closely associated with PTC stages and further six hub genes were identified that yield excellent diagnostic efficiency between tumour and normal tissues. Genetic alteration analysis indicates that they are much conservative since mutations in the DNA of them rarely occur, but changes of DNA methylation on these six genes show that 12 DNA methylation sites are significantly associated with their corresponding genes' expression. Validation data set testing also suggests that these six stage-related hub genes would be probably potential biomarkers for marking four stages. Subsequently, a 21-mRNA-based prognostic risk model was constructed for PTC stage III/IV patients and it could effectively predict the survival of patients with strong prognostic ability. Functional analysis shows that differential expression genes between high- and low-risk patients would promote the progress of PTC to some extent. Moreover, tumour microenvironment (TME) of high-risk patients may be more conducive to tumour growth by ESTIMATE analysis.  相似文献   

13.
BackgroundSpindle and Kinetochore Associated Complex Subunit 3 (SKA3) is a part of the SKA complex, which plays a key role in cell mitosis. Studies have shown that SKA3 was associated with cancer progression. However, its role in skin cutaneous melanoma (SKCM) remains unclear. Here, we investigated the expression level and prognostic value of SKA3 in SKCM.MethodsBased on public databases, univariate and multivariate Cox regression analyses were used to investigate the different expression of SKA3 between SKCM and normal tissues. Then, the relationship between SKA3 expression level and prognosis was assessed. PPI network and functional enrichment analysis were performed. ESTIMATE and CIBERSORT were expected to evaluate the SKA3 expression and immune status. CCK8, wound healing, transwell assays and tumor xenograft trial were performed to detect the SKA3 function in cell viability, migration and invasion of the cell lines.ResultsThe SKA3 was highly expressed in SKCM tissues. SKA3 overexpression was associated with poor survival and immune status. SKA3 knockdown inhibited cell viability, migration and invasion of SKCM cells.ConclusionSKA3 is involved in the progression of SKCM and may serve as a new prognostic biomarker and therapeutic target.  相似文献   

14.
Cutaneous malignant melanoma (hereafter called melanoma) is one of the most aggressive cancers with increasing incidence and mortality rates worldwide. In this study, we performed a systematic investigation of the tumor microenvironmental and genetic factors associated with melanoma to identify prognostic biomarkers for melanoma. We calculated the immune and stromal scores of melanoma patients from the Cancer Genome Atlas (TCGA) using the ESTIMATE algorithm and found that they were closely associated with patients’ prognosis. Then the differentially expressed genes were obtained based on the immune and stromal scores, and prognostic immune-related genes further identified. Functional analysis and the protein–protein interaction network further revealed that these genes enriched in many immune-related biological processes. In addition, the abundance of six infiltrating immune cells was analyzed using prognostic immune-related genes by TIMER algorithm. The unsupervised clustering analysis using immune-cell proportions revealed eight clusters with distinct survival patterns, suggesting that dendritic cells were most abundant in the microenvironment and CD8+ T cells and neutrophils were significantly related to patients’ prognosis. Finally, we validated these genes in three independent cohorts from the Gene Expression Omnibus database. In conclusion, this study comprehensively analyzed the tumor microenvironment and identified prognostic immune-related biomarkers for melanoma.  相似文献   

15.
16.
Adrenocortical carcinoma (ACC) is a rare but highly aggressive malignancy. Nearly half of ACC tumours overproduce and secrete adrenal steroids. Excess cortisol secretion, in particular, has been associated with poor prognosis among ACC patients. Furthermore, recent immunotherapy clinical trials have demonstrated significant immunoresistance among cortisol-secreting ACC (CS-ACC) patients when compared to their non-cortisol-secreting (nonCS-ACC) counterparts. The immunosuppressive role of excess glucocorticoid therapies and hypersecretion is known; however, the impact of the cortisol hypersecretion on ACC tumour microenvironment (TME), immune expression profiles and immune cell responses remain largely undefined. In this study, we characterized the TME of ACC patients and compared the immunogenomic profiles of nonCS-ACC and CS-ACC tumours to assess the impact of differentially expressed genes (DEGs) by utilizing The Cancer Genome Atlas (TCGA) database. Immunogenomic comparison (CS- vs. nonCS-ACC tumour TMEs) demonstrated an immunosuppressive expression profile with a direct impact on patient survival. We identified several primary prognostic indicators and potential targets within ACC tumour immune landscape. Differentially expressed immune genes with prognostic significance provide additional insight into the understanding of potential contributory mechanisms underlying failure of initial immunotherapeutic trials and poor prognosis of patients with CS-ACC.  相似文献   

17.
There is growing evidence that alternative splicing (AS) plays an important role in cancer development. However, a comprehensive analysis of AS signatures in kidney renal clear cell carcinoma (KIRC) is lacking and urgently needed. It remains unclear whether AS acts as diagnostic biomarkers in predicting the prognosis of KIRC patients. In the work, gene expression and clinical data of KIRC were obtained from The Cancer Genome Atlas (TCGA), and profiles of AS events were downloaded from the SpliceSeq database. The RNA sequence/AS data and clinical information were integrated, and we conducted the Cox regression analysis to screen survival-related AS events and messenger RNAs (mRNAs). Correlation between prognostic AS events and gene expression were analyzed using the Pearson correlation coefficient. Protein-protein interaction analysis was conducted for the prognostic AS-related genes, and a potential regulatory network was built using Cytoscape (version 3.6.1). Meanwhile, functional enrichment analysis was conducted. A prognostic risk score model is then established based on seven hub genes (KRT222, LENG8, APOB, SLC3A1, SCD5, AQP1, and ADRA1A) that have high performance in the risk classification of KIRC patients. A total 46,415 AS events including 10,601 genes in 537 patients with KIRC were identified. In univariate Cox regression analysis, 13,362 survival associated AS events and 8,694 survival-specific mRNAs were detected. Common 3,105 genes were screen by overlapping 13,362 survival associated AS events and 8,694 survival-specific mRNAs. The Pearson correlation analysis suggested that 13 genes were significantly correlated with AS events (Pearson correlation coefficient >0.8 or <−0.8). Then, We conducted multivariate Cox regression analyses to select the potential prognostic AS genes. Seven genes were identified to be significantly related to OS. A prognostic model based on seven genes was constructed. The area under the ROC curve was 0.767. In the current study, a robust prognostic prediction model was constructed for KIRC patients, and the findings revealed that the AS events could act as potential prognostic biomarkers for KIRC.  相似文献   

18.
DNA methylation is an early event in tumorigenesis. Here, by integrative analysis of DNA methylation and gene expression and utilizing machine learning approaches, we introduced potential diagnostic and prognostic methylation signatures for stomach cancer. Differentially-methylated positions (DMPs) and differentially-expressed genes (DEGs) were identified using The Cancer Genome Atlas (TCGA) stomach adenocarcinoma (STAD) data. A total of 256 DMPs consisting of 140 and 116 hyper- and hypomethylated positions were identified between 443 tumour and 27 nontumour STAD samples. Gene expression analysis revealed a total of 2821 DEGs with 1247 upregulated and 1574 downregulated genes. By analysing the impact of cis and trans regulation of methylation on gene expression, a dominant negative correlation between methylation and expression was observed, while for trans regulation, in hypermethylated and hypomethylated genes, there was mainly a negative and positive correlation with gene expression, respectively. To find diagnostic biomarkers, we used 28 hypermethylated probes locating in the promoter of 27 downregulated genes. By implementing a feature selection approach, eight probes were selected and then used to build a support vector machine diagnostic model, which had an area under the curve of 0.99 and 0.97 in the training and validation (GSE30601 with 203 tumour and 94 nontumour samples) cohorts, respectively. Using 412 TCGA-STAD samples with both methylation and clinical data, we also identified four prognostic probes by implementing univariate and multivariate Cox regression analysis. In summary, our study introduced potential diagnostic and prognostic biomarkers for STAD, which demands further validation.  相似文献   

19.
20.
《Genomics》2020,112(5):3117-3134
In this study, we devoted to investigate immune-related genes and tumor microenvironment (TME) in EC based on The Cancer Genome Atlas (TCGA) database. In total 799 up-regulated and 139 down-regulated immune-related and differentially expressed genes in EC were investigated for functional annotations and prognosis. By a conjoint Cox regression analysis, we built two risk models for OS and DFS, as well as the consistent nomograms. Immune-related pathways were revealed mostly enriched in the low-risk group. By further analyzing TME based on the risk signatures, the higher immune cell infiltration and activation, lower tumor purity and higher tumor mutational burden were found in low-risk group, which presented a better prognosis. Both the expression and immunophenoscore of immune checkpoints PD-1, CTLA4, PD-L1 and PD-L2 increased significantly in low-risk group. These findings may provide new ideas for novel biomarkers and immunotherapy targets in EC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号