首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Breast cancer is common worldwide, and the estrogen receptor-positive subtype accounts for approximately 70% of breast cancer in women. Tamoxifen and fulvestrant are drugs currently used for endocrinal therapy. Breast cancer exhibiting endocrine resistance can undergo metastasis and lead to the death of breast cancer patients. Drug repurposing is an active area of research in clinical medicine. We found that nafamostat mesylate, clinically used for patients with pancreatitis and disseminated intravascular coagulation, acts as an anti-cancer drug for endocrine-resistant estrogen receptor-positive breast cancer (ERPBC). Epigenetic repression of CDK4 and CDK6 by nafamostat mesylate induced apoptosis and suppressed the metastasis of ERPBC through the deacetylation of Histone 3 Lysine 27. A combination of nafamostat mesylate and CDK4/6 inhibitor synergistically overcame endocrine resistance in ERPBC. Nafamostat mesylate might be an essential adjuvant or alternative drug for the treatment of endocrine-resistant ERPBC due to the low cost-efficiency of the CDK4/6 inhibitor.  相似文献   

3.
Enhanced aerobic glycolysis constitutes an additional source of energy for tumor proliferation and metastasis. Human papillomavirus (HPV) infection is the main cause of cervical cancer (CC); however, the associated molecular mechanisms remain poorly defined, as does the relationship between CC and aerobic glycolysis. To investigate whether HPV 16/18 E6/E7 can enhance aerobic glycolysis in CC, E6/E7 expression was knocked down in SiHa and HeLa cells using small interfering RNA (siRNA). Then, glucose uptake, lactate production, ATP levels, reactive oxygen species (ROS) content, extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) were evaluated. RNA-seq was used to probe the molecular mechanism involved in E6/E7-driven aerobic glycolysis, and identified IGF2BP2 as a target of E6/E7. The regulatory effect of IGF2BP2 was confirmed by qRT-PCR, western blot, and RIP assay. The biological roles and mechanisms underlying how HPV E6/E7 and IGF2BP2 promote CC progression were confirmed in vitro and in vivo. Human CC tissue microarrays were used to analyze IGF2BP2 expression in CC. The knockdown of E6/E7 and IGF2BP2 attenuated the aerobic glycolytic capacity and growth of CC cells, while IGF2BP2 overexpression rescued this effect in vitro and in vivo. IGF2BP2 expression was higher in CC tissues than in adjacent tissues and was positively correlated with tumor stage. Mechanistically, E6/E7 proteins promoted aerobic glycolysis, proliferation, and metastasis in CC cells by regulating MYC mRNA m6A modifications through IGF2BP2. We found that E6/E7 promote CC by regulating MYC methylation sites via activating IGF2BP2 and established a link between E6/E7 and the promotion of aerobic glycolysis and CC progression. Blocking the HPV E6/E7-related metabolic pathway represents a potential strategy for the treatment of CC.  相似文献   

4.
EphA2、E-钙黏素在肿瘤中的研究   总被引:1,自引:0,他引:1  
Eph受体激酶是受体酪氨酸激酶(RTKs)家族中最大的一个亚族.EphA2是Eph受体中的一员,可以调节细胞生长、迁移和血管生成.EphA2受体广泛过表达于上皮来源的肿瘤细胞,导致正常细胞恶性转化,增强肿瘤细胞的侵袭性、浸润性和转移性.E-cadherin是一种常见的上皮黏附分子,可以介导细胞之间的黏附,细胞向正常及肿瘤组织的移动并定位,同时可以影响其它蛋白的定位和转化,进一步促进肿瘤的恶型性.研究证明:许多上皮性肿瘤中,包括食管癌、宫颈癌、乳腺癌、结肠癌等都发现EphA2和E-cadherin均有异常表达,且与肿瘤的恶性程度和疾病的预后有密切的关系.本文从EphA2、E-cadherin的结构、功能、相互关系以及在肿瘤中的研究加以综述.  相似文献   

5.
刘子齐  左涛  徐锋  徐平 《生物工程学报》2021,37(7):2232-2239
多数癌症的发生发展都具有细胞周期高度活化的特性.细胞周期蛋白依赖性激酶4/6(CDK4/6)不仅在细胞有丝分裂中发挥了巨大作用,而且参与了衰老、凋亡和组蛋白调节等诸多生物学过程,并在多种癌症的发生发展中被异常激活.FDA批准了 Palbociclib、Ribociclib和Abemaciclib等3种靶向CDK4/6的...  相似文献   

6.
Ephrin type-A receptor 2(EphA2), a receptor tyrosine kinase, is overexpressed in human breast cancers often linked to poor patient prognosis. Accumulating evidence demonstrates that EphA2 plays important roles in several critical processes associated with malignant breast progression, such as proliferation,survival, migration, invasion, drug resistance, metastasis, and angiogenesis. As its inhibition through multiple approaches can inhibit the growth of breast cancer and restore drug sensitivity, EphA2 has become a promising therapeutic target for breast cancer treatment. Here, we summarize the expression,functions, mechanisms of action, and regulation of EphA2 in breast cancer. We also list the potential therapeutic strategies targeting EphA2. Furthermore, we discuss the future directions of studying EphA2 in breast cancer.  相似文献   

7.
Recently, increasing evidence has indicated lncRNAs are powerful regulators in the progression of multiple tumors. Dysregulation of lncRNA NEAT1 has been recognized in many cancer types. Meanwhile, the studies on NEAT1 function have suggested that NEAT1 can serve as a crucial oncogene. Nevertheless, the investigation of NEAT1 in colon cancer is still few. In our study, the function of NEAT1 was studied in colon cancer. As we observed, NEAT1 level was obviously elevated in colon cancer cells. Then, HCT-116 and SW620 cells were stably infected with shRNA-NEAT1 for 48 hr. As exhibited, silence of NEAT1 could greatly repress colon cancer cell progression. Apoptosis of colon cancer cells was triggered and the cell cycle progression was remarkably inhibited by downregulation of NEAT1. Interestingly, as exhibited, miR-495-3p was obviously decreased in colon cancer cells and it significantly suppressed colon cancer progression. Subsequently, miR-495-3p was predicted as a target of NEAT1. CDK6 was speculated as the target of miR-495-3p and miR-495-3p modulated its expression negatively. Finally, it was indicated that NEAT1 promoted colon cancer development through modulating miR-495-3p and CDK6 in vivo. Taken these together, we reported that NEAT1 could sponge miR-495-3p to contribute to colon cancer progression through activating CDK6.  相似文献   

8.
9.
Cyclin-dependent kinase 6 (Cdk6) is a D-Cyclin-activated kinase that is directly involved in driving the cell cycle through inactivation of pRB in G1 phase. Increasingly, evidence suggests that CDK6, while directly driving the cell cycle, may only be essential for proliferation of specialized cell types, agreeing with the notion that CDK6 also plays an important role in differentiation. Here, evidence is presented that CDK6 binds to and promotes degradation of the EYA2 protein. The EYA proteins are a family of proteins that activate genes essential for the development of multiple organs, regulate cell proliferation, and are misregulated in several types of cancer. This interaction suggests that CDK6 regulates EYA2 activity, a mechanism that could be important in development and in cancer.  相似文献   

10.
Inhibitors of CDK4 and CDK6 have emerged as important FDA-approved treatment options for breast cancer patients. The properties and pharmacology of CDK4/6 inhibitor medicines have been extensively profiled, and investigations into the degradation of these targets via a PROTAC strategy have also been reported. PROTACs are a novel class of small-molecules that offer the potential for differentiated pharmacology compared to traditional inhibitors by redirecting the cellular ubiquitin–proteasome system to degrade target proteins of interest. We report here the preparation of palbociclib-based PROTACs that incorporate binders for three different E3 ligases, including a novel IAP-binder, which effectively degrade CDK4 and CDK6 in cells. In addition, we show that the palbociclib-based PROTACs in this study that recruit different E3 ligases all exhibit preferential CDK6 vs. CDK4 degradation selectivity despite employing a selection of linkers between the target binder and the E3 ligase binder.  相似文献   

11.
Lung cancer (LC) is a devastating malignancy with no effective treatments, due to its complex genomic profile. Using bioinformatics analysis and immunohistochemical of lung carcinoma tissues, we show that TRIM59 as a critical oncoprotein relating to LC proliferation and metastasis. In this study, high TRIM59 expression was significantly correlated with lymph node metastasis, distant metastasis, and tumour stage. Furthermore, up‐regulation of TRIM59 expression correlated with poorer outcomes in LC patients. Mechanistically, TRIM59 play a key role in promoting LC growth and metastasis through regulation of extracellular‐signal regulated protein kinase (ERK) signalling pathway and epithelial‐to‐mesenchymal transition (EMT)‐markers, as validated by loss‐of‐function studies. In‐depth bioinformatics analysis showed that there is preliminary evidence of co‐expression of TRIM59 and cyclin dependent kinase 6 (CDK6) in LC. Notably, CDK6 expression significantly decreased when TRIM59 was knocked down in the LC cells. In contrast, exogenous up‐regulation of TRIM59 expression also induced significant increases in the expression of CDK6. Moreover, the expression of CDK6 was also inhibited by the ERK signalling inhibitor, U0126. The results of both loss‐ and gain‐of‐function studies showed that TRIM59 could regulate the expression of CDK6. Collectively, these data provide evidence that TRIM59 is involved in lung carcinoma growth and progression possibly through the induction of CDK6 expression and EMT process by activation of ERK pathway.  相似文献   

12.
13.
Mounting evidence showed that microRNAs involve in development and chemoresistance of various human cancers. We explored the roles and mechanisms of miR-144 in resistance to cisplatin (CDDP) of cervical cancer cells. miR-144 and LIM homeobox 2 (LHX2) expression in CDDP-resistant and the parental cells was determined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis, respectively. The functions of miR-144 overexpression on cell viability, the incidence of apoptosis, the activity of caspase-3/7, the cleaved-caspase-3 expression, cell migration, and invasion were determined in Hela cells and Hela/CDDP cells. Overexpression of miR-144 reduced cell viability, induced cell apoptosis, and inhibited cell migration and invasion after CDDP treatment. Besides, a luciferase reporter system demonstrated that miR-144 could directly bind to the 3′ untranslated region (3′-UTR) of LHX2 messenger RNA (mRNA). Gain expression of miR-144 decreased the expression of LHX2 both in mRNA and protein levels. Furthermore, restoration of LHX2 partly abolished the biological functions of miR-144 in resistance of cervical cancer cells. Taken together, miR-144 overcomes resistance to CDDP via promoting cell apoptosis and inhibiting invasion through targeting LHX2 in cervical cancer cells.  相似文献   

14.
The therapeutic effects of abemaciclib (ABE), an inhibitor of cyclin- dependent kinases (CDK) 4/6, on the proliferation of two types of prostate cancer (PC) cells were revealed. In this study, in vitro cytotoxic and apoptotic effects of ABE on metastatic castration-resistant prostate cancer (mCRPC) androgen receptor (AR) negative PC-3 and AR mutant LNCaP PC cells were analyzed with WST-1, Annexin V, cell cycle, reactive oxygen species (ROS), mitochondrial membrane potential, RT-PCR, western blot, and apoptosis protein array. ABE considerably inhibited the growth of PC cells in a dose-dependent manner (p<0.01) and caused significant apoptotic cell death through the suppression of CDK4/6-Cyclin D complex, ROS generation and depolarization of mitochondria membrane potential. However, PC-3 cells were more sensitive to ABE than LNCaP cells. Furthermore, the expression levels of several pro-apoptotic and cell cycle regulatory proteins were upregulated by ABE in especially PC-3 cells with the downregulation of apoptotic inhibitor proteins. Our results suggest that ABE inhibits PC cell growth and promotes apoptosis and thus ABE treatment may be a promising treatment strategy in especially mCRPC. Further preclinical and clinical studies should be performed to clarify the clinical use of ABE for the treatment of PC.  相似文献   

15.
Long noncoding RNAs (lncRNAs) have been proved to play important roles in carcinogenesis and development of numerous cancers, but their biological functions in bladder cancer remain largely unknown. In this study, a novel lncRNA termed GAS6‐AS2 were primary identified, and its roles as well as mechanisms in regulating proliferation and metastasis of bladder cancer cells were investigated. Clinically, GAS6‐AS2 was significantly up‐regulated in bladder cancer tissues and positively correlated with tumour stages and poor prognosis. Moreover, expression of GAS6‐AS2 was also increased in bladder cancer cells compared with normal bladder cells. Further investigating the roles of GAS6‐AS2, we found GAS6‐AS2 regulated proliferation and proliferative activity of bladder cancer cells via inducing G1 phase arrest. What's more, we found that GAS6‐AS2 contributed to metastatic abilities of cells. In mechanism, GAS6‐AS2 could function as a competitive endogenous RNA (ceRNA) via direct sponging miR‐298, which further regulating the expression of CDK9. Finally, we also proved that GAS6‐AS2 knockdown suppressed tumour growth and metastasis in vivo. In conclusion, our study proved that GAS6‐AS2 could function as a ceRNA and promote the proliferation and metastasis of bladder cancer cells, which provided a novel prognostic marker for bladder cancer patients in clinic.  相似文献   

16.
17.
EphA3, a member of the Eph family of receptor tyrosine kinases, has been reported to be overexpressed in some human cancers including glioblastoma. Here, we found that expression of EphA3 is up-regulated in response to epidermal growth factor (EGF) stimulation and promotes formation of cell aggregates in suspension culture of glioblastoma cells. Suppression of EphA3 expression by short hairpin RNA-mediated knockdown or CRISPR/Cas9-mediated gene deletion inhibited EGF-induced promotion of cell aggregate formation, whereas overexpression of EphA3 promoted formation of cell aggregates in suspension culture. EGF-induced EphA3 expression and promotion of cell aggregate formation required Akt activity. Furthermore, N-cadherin, whose expression was regulated by EGF and EphA3, contributed to the formation of cell aggregates in suspension culture. These results suggest that the regulation of EphA3 expression plays a critical role in glioblastoma cell growth in non-adherent conditions.  相似文献   

18.
MicroRNAs (miRNAs) are a class of non-coding small RNAs that act as negative regulators of gene expression by binding to the 31-untranslated region (3'UTR) of target mRNAs. In order to investigate the physiological role of miR-124 in bladder cancer, target genes of miR-124 were predicted by the TargetScan software, and cyclin-depend- ent kinase (CDK4), which has been implicated as a regula- tor of cell cycle, was chosen for further study. MiR-124 could significantly repress CDK4 expression by targeting its binding site in the 31UTR of CDK4 in vitro. In both bladder cancer cell lines and tissues, the expression of miR- 124 was significantly down-regulated, while CDK4 expres- sion was up-regulated. Ectopic expression of miR-124 in transplanted HTl197 cells resulted in the retardation of tumor growth in mouse tumor xenografts. And the expres- sion of miR-124 and CDK4 showed an obvious inverse cor- relation in these xenograft tissues, which was also observed in human bladder cancer tissue samples. Taken together, our results strongly suggest that miR-124 can arrest cell cycle and restrain the growth of bladder cancer by targeting CDK4 directly.  相似文献   

19.
N6-methyladenosine (m6A) is a well-known modification of RNA. However, as a key m6A methyltransferase, METTL16 has not been thoroughly studied in gastric cancer (GC). Here, the biological role of METTL16 in GC and its underlying mechanism was studied. Immunohistochemistry was used to detect the expression of METTL16 and relationship between METTL16 level and prognosis of GC was analysed. CCK8, colony formation assay, EdU assay and xenograft mouse model were used to study the effect of METTL16. Regulatory mechanism of METTL16 in the progression of GC was studied through flow cytometry analysis, RNA degradation assay, methyltransferase inhibition assay, RT-qPCR and Western blotting. METTL16 was highly expressed in GC cells and tissues and was associated with prognosis. In vitro and in vivo experiments confirmed that METTL16 promoted proliferation of GC cells and tumour growth. Furthermore, down-regulation of METTL16 inhibited proliferation by G1/S blocking. Significantly, we identified cyclin D1 as a downstream effector of METTL16. Knock-down METTL16 decreased the overall level of m6A and the stability of cyclin D1 mRNA in GC cells. Meanwhile, inhibition of methyltransferase activity reduced the level of cyclin D1. METTL16-mediated m6A methylation promotes proliferation of GC cells through enhancing cyclin D1 expression.  相似文献   

20.
Persistent infection with high-risk human papillomavirus (HPV) is the main risk factor for cervical cancer. Our mass spectrometry data showed that the Ras-associated binding protein Rab31 was upregulated by HPV; however, little is known regarding the role of Rab31 in the metastasis of cervical cancer cells. In this study, we showed that Rab31 was highly expressed in cervical cancer tissues and cells, and both HPV E6 and E7 promoted the expression of Rab31. Rab31 knockdown inhibited while Rab31 overexpression promoted the migration and invasion capabilities of cervical cancer cells. Additionally, Rab31 knockdown inhibited the epithelial-mesenchymal transition (EMT) and cytoskeletal rearrangement in cervical cancer cells. Furthermore, Rab31 interacted with mitogen-activated protein kinase 6 (MAPK6), and Rab31 knockdown inhibited the expression of MAPK6, which was mainly localized in the cytoplasm. More importantly, Rab31 knockdown promoted and Rab31 overexpression inhibited MAPK6 degradation. Accordingly, MAPK6 overexpression restored the decreased migration potential caused by Rab31 knockdown. Finally, a xenograft mouse model showed that Rab31 knockdown in cervical cancer cells led to reduced tumor growth and impaired lung and liver metastasis in vivo. In conclusion, Rab31 plays a crucial role in cervical cancer metastasis by inhibiting MAPK6 degradation. Thus, Rab31 may serve as a novel therapeutic target to manage cervical cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号