共查询到20条相似文献,搜索用时 15 毫秒
1.
Statistics provided by GLOBOCAN list gastric cancer as the sixth most common, with a mortality ranking of third highest for the year 2020. In China, a herb called Rabdosia rubescens (Hemsl.) H.Hara, has been used by local residents for the treatment of digestive tract cancer for hundreds of years. Oridonin, the main ingredient of the herb, has a curative effect for gastric cancer, but the mechanism has not been previously clarified. This study mainly aimed to investigate the role of TNF-alpha/Androgen receptor/TGF-beta signalling pathway axis in mediating the proliferation inhibition of oridonin on gastric cancer SGC-7901 cells. MTT assay, cell morphology observation assay and fluorescence assay were adopted to study the efficacy of oridonin on cell proliferation. The network pharmacology was used to predict the pathway axis regulated by oridonin. Western blot assay was adopted to verify the TNF-α/Androgen receptor/TGF-β signalling pathway axis regulation on gastric cancer by oridonin. The results showed Oridonin could inhibit the proliferation of gastric cancer cells, change cell morphology and cause cell nuclear fragmentation. A total of 11signaling pathways were annotated by the network pharmacology, among them, Tumour necrosis factor alpha (TNF-α) signalling pathway, androgen receptor (AR) signalling pathway and transforming growth factor (TGF-β) signalling pathway account for the largest proportion. Oridonin can regulate the protein expression of the three signalling pathways, which is consistent with the results predicted by network pharmacology. These findings indicated that oridonin can inhibit the proliferation of gastric cancer SGC-7901 cells by regulating the TNF-α /AR /TGF-β signalling pathway axis. 相似文献
2.
Lu Gao Yuan Liu Sen Guo Lili Xiao Cui Liang Xiaofang Wang 《Journal of cellular and molecular medicine》2019,23(1):328-339
Multiple organs express testin (TES), including the heart. Nevertheless, current understanding of the influence of TES on cardiovascular diseases, especially on cardiac hypertrophy and its etiology, is insufficient. This study investigated the influence of TES on cardiac hypertrophy and its etiology. Murine models with excessive TES expression specific to the heart were constructed with an adeno‐associated virus expression system. Cardiac hypertrophy was stimulated through aortic banding (AB). The severity of cardiac hypertrophy was evaluated through molecular, echocardiographic, pathological, and hemodynamic examination. The findings of our study revealed that TES expression was remarkably suppressed not only in failing human hearts but also in mouse hearts with cardiac hypertrophy. It was discovered that excessive TES expression driven by an adeno‐associated viral vector noticeably inhibited hypertrophy triggered by angiotensin II (Ang II) in cultivated cardiomyocytes from newborn rats. It was also revealed that TES knockdown via AdshTES caused the reverse phenotype in cardiomyocytes. Furthermore, it was proved that excessive TES expression attenuated the ventricular dilation, cardiac hypertrophy, dysfunction, and fibrosis triggered by AB in mice. It was discovered that TES directly interacted with calcineurin and suppressed its downstream signalling pathway. Moreover, the inactivation of calcineurin with cyclosporin A greatly offset the exacerbated hypertrophic response triggered by AB in TES knockdown mice. Overall, the findings of our study suggest that TES serves as a crucial regulator of the hypertrophic reaction by hindering the calcineurin‐dependent pathway in the heart. 相似文献
3.
Matthew R G Russell Krzysztof B Wicher Ian Rosewell Bradley Spencer‐Dene David Ish‐Horowicz Giampietro Schiavo 《The EMBO journal》2014,33(14):1582-1598
We have identified a new function for the dynein adaptor Bicaudal D homolog 1 (BICD1) by screening a siRNA library for genes affecting the dynamics of neurotrophin receptor‐containing endosomes in motor neurons (MNs). Depleting BICD1 increased the intracellular accumulation of brain‐derived neurotrophic factor (BDNF)‐activated TrkB and p75 neurotrophin receptor (p75NTR) by disrupting the endosomal sorting, reducing lysosomal degradation and increasing the co‐localisation of these neurotrophin receptors with retromer‐associated sorting nexin 1. The resulting re‐routing of active receptors increased their recycling to the plasma membrane and altered the repertoire of signalling‐competent TrkB isoforms and p75NTR available for ligand binding on the neuronal surface. This resulted in attenuated, but more sustained, AKT activation in response to BDNF stimulation. These data, together with our observation that Bicd1 expression is restricted to the developing nervous system when neurotrophin receptor expression peaks, indicate that BICD1 regulates neurotrophin signalling by modulating the endosomal sorting of internalised ligand‐activated receptors. 相似文献
4.
5.
6.
Jun Sheng Kun Liu Dawei Sun Piming Nie Zhiping Mu Hui Chen Zhengfeng Zhang 《Journal of cellular and molecular medicine》2021,25(16):8039-8046
RAD52 motif-containing 1 (RDM1), a key regulator of DNA double-strand break repair and recombination, has been reported to play an important role in the development of various human cancers, such as papillary thyroid carcinoma, neuroblastoma and lung cancer. However, the effect of RDM1 on osteosarcoma (OS) progression remains unclear. Here, this study mainly explored the connection between RDM1 and OS progression, as well as the underlying mechanism. It was found that RDM1 was highly expressed in OS cells compared with human osteoblast cells. Knockdown of RDM1 caused OS cell proliferation inhibition, cell apoptosis promotion and cell cycle arrest at G1 stage, whereas RDM1 overexpression resulted in the opposite phenotypes. Furthermore, RDM1 silencing leads to a significant decrease in tumour growth in xenograft mouse model. RDM1 also increased the protein levels of MEK 1/2 and ERK 1/2. All these findings suggest that RDM1 plays an oncogenic role in OS via stimulating cell cycle transition from G1 to S stage, and regulating MEK/ERK signalling pathway, providing a promising therapeutic factor for the treatment of OS. 相似文献
7.
Fu-Zheng Wei Ziyang Cao Xi Wang Hui Wang Mu-Yan Cai Tingting Li Naoko Hattori Donglai Wang Yipeng Du Boyan Song Lin-Lin Cao Changchun Shen Lina Wang Haiying Wang Yang Yang Dan Xie Fan Wang Toshikazu Ushijima Ying Zhao Wei-Guo Zhu 《Autophagy》2015,11(12):2309-2322
Macroautophagy is an evolutionarily conserved cellular process involved in the clearance of proteins and organelles. Although the autophagy regulation machinery has been widely studied, the key epigenetic control of autophagy process still remains unknown. Here we report that the methyltransferase EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) epigenetically represses several negative regulators of the MTOR (mechanistic target of rapamycin [serine/threonine kinase]) pathway, such as TSC2, RHOA, DEPTOR, FKBP11, RGS16 and GPI. EZH2 was recruited to these genes promoters via MTA2 (metastasis associated 1 family, member 2), a component of the nucleosome remodeling and histone deacetylase (NuRD) complex. MTA2 was identified as a new chromatin binding protein whose association with chromatin facilitated the subsequent recruitment of EZH2 to silenced targeted genes, especially TSC2. Downregulation of TSC2 (tuberous sclerosis 2) by EZH2 elicited MTOR activation, which in turn modulated subsequent MTOR pathway-related events, including inhibition of autophagy. In human colorectal carcinoma (CRC) tissues, the expression of MTA2 and EZH2 correlated negatively with expression of TSC2, which reveals a novel link among epigenetic regulation, the MTOR pathway, autophagy induction, and tumorigenesis. 相似文献
8.
Differential gene expression of the key signalling pathway in para‐carcinoma,carcinoma and relapse human pancreatic cancer 下载免费PDF全文
Zheng‐Yan Chang Ran Sun Yu‐Shui Ma Da Fu Xiao‐Long Lai Yu‐Sheng Li Xing‐Hong Wang Xiao‐Ping Zhang Zhong‐Wei Lv Xian‐Ling Cong Wen‐Ping Li 《Cell biochemistry and function》2014,32(3):258-267
Pancreatic cancer (PC) has a high rate of mortality and a poorly understood mechanism of progression. Investigation of the molecular mechanism of PC and exploration of the specific markers for early diagnosis and specific targets of therapy are key points to prevent and treat PC effectively and to improve their prognosis. In our study, expression profiles experiment of para‐carcinoma, carcinoma and relapse human PC was performed using Agilent human whole genomic oligonucleotide microarrays with 45 000 probes. Differentially expressed genes related with PC were screened and analysed further by Gene Ontology term analysis and Kyoto encyclopaedia of genes and genomes pathway analysis. Our results showed that there were 3853 differentially expressed genes associated with pancreatic carcinogenesis and relapse. In addition, our study found that PC was related to the Jak–STAT signalling pathway, PPAR signalling pathway and Calcium signalling pathway, indicating their potential roles in pancreatic carcinogenesis and progress. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
9.
B. S. Chapman I. D. Kuntz 《Protein science : a publication of the Protein Society》1995,4(9):1696-1707
Motifs in ligand-binding domains of the neurotrophin (NTR) and lymphotoxin (TNFR-I) receptors define a family of receptors that mediates programmed cell death. We have explored relationships of architecture and function in this family through a molecular model of NTR, also called p75NGFR or LANR. Modeling by homology took advantage of four modular subdomains in the crystal structure of TNFR-I that also occur in NTR. Hypothetical complexes between the model and a ligand structure (for nerve growth factor, NGF) were then examined using docking software. NTR appears to bind in the dimer interface of NGF, making two sets of contacts. NTR subdomains III and IV provide the ligand-contact surfaces, in contrast to TNFR, in which subdomains II and III contact TNF-beta. NTR subdomain II appears to have been evolutionarily modified, potentially contributing to an interface between receptor subunits. These and other specific predictions of the model will require experimental confirmation. 相似文献
10.
11.
12.
目的探讨肿瘤转移相关因子RhoGDI2与PI3K/Akt/mTOR信号通路在肺癌侵袭转移过程中的作用及相关机制。方法利用PI3K/Akt/mTOR信号通路上特异性的抑制剂,采用MTT法,伤口愈合实验及侵袭实验观察不同浓度药物对肺癌95D细胞生长侵袭转移能力的影响,通过Western Blot方法观察RhoGDI2蛋白水平的变化。结果PI3K抑制剂LY294002及mTOR抑制剂Rapamycin都能抑制肺癌细胞95D的侵袭转移能力,联合应用抑制作用更强。PI3K抑制剂LY294002处理组RhoGDI2蛋白的表达量增加,且随浓度增加RhoGDI2蛋白表达也增加。mTOR抑制剂Rapamycin组,在低浓度时增加RhoGDI2蛋白的表达,但增大Rapamycin的浓度,RhoGDI2蛋白的表达反而降低。低浓度LY294002组和Rapa-mycin组联合应用可以明显增加RhoGDI2蛋白的表达。结论PI3K/Akt/mTOR信号通路中Akt的活化与RhoGDI2密切相关,RhoGDI2可能直接或间接通过与Akt的相互作用参与调节肺癌的侵袭转移的过程。 相似文献
13.
Cailian Fan Sui Liang Mengnan Ye Wanjun Cai Miao Chen Yunlong Hou Jun Guo Yi Dai 《Journal of cellular and molecular medicine》2022,26(9):2607
Pathological cardiac hypertrophy is the most important risk factor for developing chronic heart failure. Therefore, the discovery of novel agents for treating pathological cardiac hypertrophy remains urgent. In the present study, we examined the therapeutic effect and mechanism of periplocymarin (PM)‐mediated protection against pathological cardiac hypertrophy using angiotensinII (AngII)‐stimulated cardiac hypertrophy in H9c2 cells and transverse aortic constriction (TAC)‐induced cardiac hypertrophy in mice. In vitro, PM treatment significantly reduced the surface area of H9c2 cells and expressions of hypertrophy‐related proteins. Meanwhile, PM markedly down‐regulated AngII‐induced translocation of p‐STAT3 into the nuclei and enhanced the phosphorylation levels of JAK2 and STAT3 proteins. The STAT3 specific inhibitor S3I‐201 or siRNA‐mediated depleted expression could alleviate AngII‐induced cardiac hypertrophy in H9c2 cells following PM treatment; however, PM failed to reduce the expressions of hypertrophy‐related proteins and phosphorylated STAT3 in STAT3‐overexpressing cells, indicating that PM protected against AngII‐induced cardiac hypertrophy by modulating STAT3 signalling. In vivo, PM reversed TAC‐induced cardiac hypertrophy, as determined by down‐regulating ratios of heart weight to body weight (HW/BW), heart weight to tibial length (HW/TL) and expressions of hypertrophy‐related proteins accompanied by the inhibition of the JAK2/STAT3 pathway. These results revealed that PM could effectively protect the cardiac structure and function in experimental models of pathological cardiac hypertrophy by inhibiting the JAK2/STAT3 signalling pathway. PM is expected to be a potential lead compound of the novel agents for treating pathological cardiac hypertrophy. 相似文献
14.
Gliomas are one of the most aggressive primary tumours, accounting for 81% of malignant brain tumours, and are associated with a significant mortality. Therefore, the elucidation of the molecular mechanism underlying glioma progression and identification of promising treatment targets are necessary. Here, the expression of prefoldin (PFDN) 6 in human glioma tissues and cell lines was evaluated using immunohistochemistry and quantitative polymerase chain reaction. Celigo and CCK-8 assays were performed for assessing cell viability. Flow cytometry was used to analyse apoptosis and cell cycle distribution. Wound-healing and transwell assays were performed to observe cell migration. Lastly, xenograft models were developed for the in vivo validation of the results, and a human phospho-kinase array was used to explore the downstream signalling pathways. PFDN6 was upregulated in gliomas, and PFDN6 overexpression was significantly correlated with a low survival rate, estimated glomerular filtration rate (EGFR) expression, and tumour grade and recurrence. Moreover, PFDN6 knockdown significantly attenuated cell proliferation and migration, induced apoptosis, and blocked cell cycle progression in the G2 phase, which was further confirmed in the in vivo experiments. Mechanistically, the effects of PFDN6 may be mediated via the AKT signalling pathway. In conclusion, we showed that PFDN6 promotes glioma development by activating AKT signalling and emphasised the potential of PFDN6 as a crucial target in glioma therapy. 相似文献
15.
Ling Zhou Hui Guo Quan Liao Jianping Zou Yi Le Ziling Fang Jianping Xiong Shanshan Huang Jun Deng Xiaojun Xiang 《Journal of cellular and molecular medicine》2023,27(20):3090-3106
Background
Malignant cell growth and chemoresistance, the main obstacles in treating gastrointestinal cancer (GIC), rely on the Hippo and p53 signalling pathways. However, the upstream regulatory mechanisms of these pathways remain complex and poorly understood.Methods
Immunohistochemistry (IHC), western blot and RT-qPCR were used to analyse the expression of RNF146, miR-3133 and key components of Hippo and p53 pathway. CCK-8, colony formation, drug sensitivity assays and murine xenograft models were used to investigate the effect of RNF146 and miR-3133 in GIC. Further exploration of the upstream regulatory mechanism was performed using bioinformatics analysis, dual-luciferase reporter gene, immunoprecipitation assays and bisulfite sequencing PCR (BSP).Results
Clinical samples, in vitro and in vivo experiments demonstrated that RNF146 exerts oncogenic effects in GIC by regulating the Hippo pathway. Bioinformatics analysis identified a novel miRNA, miR-3133, as an upstream regulatory factor of RNF146. fluorescence in situ hybridization and RT-qPCR assays revealed that miR-3133 was less expressed in gastrointestinal tumour tissues and was associated with adverse pathological features. Functional assays and animal models showed that miR-3133 promoted the proliferation and chemotherapy sensitivity of GIC cells. miR-3133 affected YAP1 protein expression by targeting RNF146, AGK and CUL4A, thus activating the Hippo pathway. miR-3133 inhibited p53 protein degradation and extended p53's half-life by targeting USP15, SPIN1. BSP experiments confirmed that miR-3133 promoter methylation is an important reason for its low expression.Conclusion
miR-3133 inhibits GIC progression by activating the Hippo and p53 signalling pathways via multi-targets, including RNF146, thereby providing prognostic factors and valuable potential therapeutic targets for GIC. 相似文献16.
17.
Irmina Diala Nicole Wagner Frédérique Magdinier Marina Shkreli Serge Bauwens Caroline Schluth‐Bolard Thomas Simonet Valérie M Renault Jing Ye Abdelnnadir Djerbi Pascal Pineau Jinkuk Choi Steven Artandi Anne Dejean Eric Gilson 《EMBO reports》2013,14(4):356-363
The DNA‐binding protein TRF2 is essential for telomere protection and chromosome stability in mammals. We show here that TRF2 expression is activated by the Wnt/β‐catenin signalling pathway in human cancer and normal cells as well as in mouse intestinal tissues. Furthermore, β‐catenin binds to TRF2 gene regulatory regions that are functional in a luciferase transactivating assay. Reduced β‐catenin expression in cancer cells triggers a marked increase in telomere dysfunction, which can be reversed by TRF2 overexpression. We conclude that the Wnt/β‐catenin signalling pathway maintains a level of TRF2 critical for telomere protection. This is expected to have an important role during development, adult stem cell function and oncogenesis. 相似文献
18.
19.
Dental follicle stem cells (DFSCs) have been considered as promising candidate cells for periodontal tissue regeneration. Understanding the signalling pathways underlying the apoptosis of DFSCs will facilitate its biomedical application. Here we showed that Notch1 signalling could inhibit DFSCs apoptosis because the constitutive overexpression of the intracellular domain of Notch1 (ICN1) promoted proliferation and suppressed apoptosis by inhibiting cytoplasmic mitochondrial membrane depolarization, cytochrome c release and activation of caspase-9 and caspase-3. The survival-promoting effect of Notch1 was also accomplished by up-regulation of the anti-apoptotic proteins Bcl-2 and Mcl-1, down-regulation of the pro-apoptotic proteins Bax and Bad, and blockade of Bax multimerization. Moreover, p-Akt (S473) was significantly increased after ectopic Notch 1 activation. The expression of p53 was also inhibited in Notch1-overexpressing DFSCs, while the ectopic expression of p53 promoted apoptosis even when Notch1 was overexpressed. Meanwhile, all of the opposite phenomena were observed in Notch1 shRNA-silenced DFSCs. Our data strongly suggested that Notch1 signalling inhibited the apoptosis of DFSCs via the cytoplasmic mitochondrial pathway and ICN-Akt signalling pathway, together with nuclear gene expression regulation. These findings would provide molecular cues for the further medical application of DFSCs. 相似文献