首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concerns over fishing impacts on marine populations and ecosystems have intensified the need to improve ocean management. One increasingly popular market-based instrument for ecological stewardship is the use of certification and eco-labeling programs to highlight sustainable fisheries with low environmental impacts. The Marine Stewardship Council (MSC) is the most prominent of these programs. Despite widespread discussions about the rigor of the MSC standards, no comprehensive analysis of the performance of MSC-certified fish stocks has yet been conducted. We compared status and abundance trends of 45 certified stocks with those of 179 uncertified stocks, finding that 74% of certified fisheries were above biomass levels that would produce maximum sustainable yield, compared with only 44% of uncertified fisheries. On average, the biomass of certified stocks increased by 46% over the past 10 years, whereas uncertified fisheries increased by just 9%. As part of the MSC process, fisheries initially go through a confidential pre-assessment process. When certified fisheries are compared with those that decline to pursue full certification after pre-assessment, certified stocks had much lower mean exploitation rates (67% of the rate producing maximum sustainable yield vs. 92% for those declining to pursue certification), allowing for more sustainable harvesting and in many cases biomass rebuilding. From a consumer's point of view this means that MSC-certified seafood is 3-5 times less likely to be subject to harmful fishing than uncertified seafood. Thus, MSC-certification accurately identifies healthy fish stocks and conveys reliable information on stock status to seafood consumers.  相似文献   

2.
There is considerable variability in the status of fish populations around the world and a poor understanding of how specific management characteristics affect populations. Overfishing is a major problem in many fisheries, but in some regions the recent tendency has been to exploit stocks at levels below their maximum sustainable yield. In Western North American groundfish fisheries, the status of individual stocks and management systems among regions are highly variable. In this paper, we show the current status of groundfish stocks from Alaska, British Columbia, and the U.S. West Coast, and quantify the influence on stock status of six management tactics often hypothesized to affect groundfish. These tactics are: the use of harvest control rules with estimated biological reference points; seasonal closures; marine reserves; bycatch constraints; individual quotas (i.e., ‘catch shares’); and gear type. Despite the high commercial value of many groundfish and consequent incentives for maintaining stocks at their most productive levels, most stocks were managed extremely conservatively, with current exploitation rates at only 40% of management targets and biomass 33% above target biomass on average. Catches rarely exceeded TACs but on occasion were far below TACs (mean catch:TAC ratio of 57%); approximately $150 million of potential landed value was foregone annually by underutilizing TACs. The use of individual quotas, marine reserves, and harvest control rules with estimated limit reference points had little overall effect on stock status. More valuable fisheries were maintained closer to management targets and were less variable over time than stocks with lower catches or ex-vessel prices. Together these results suggest there is no single effective management measure for meeting conservation objectives; if scientifically established quotas are set and enforced, a variety of means can be used to ensure that exploitation rates and biomass levels are near to or more conservative than management targets.  相似文献   

3.
Summary Long-term management targets based on MSY, Fmax or F0.1 are inappropriate for small pelagic fish because of the possibility of stock collapse owing to a stock-recruit relationship at low biomasses. Better reference points such as Fmed and Fhigh that take account of stock and recruit data cannot be used in developing fishery situations because they are too demanding of data. A simple model was fitted to medium-term (about 10 year) periods in exploited small pelagic fisheries, relating change in stock biomass to exploitation rate. Data from 28 stocks and 11 species were used. The fitted model was used to estimate likelihood of stock decrease at different exploitation rates. The pelagic stocks included in the model appeared to be in equilibrium for an exploitation rate F/Z=0.4, which may be used as a guideline for the appropriate exploitation of pelagic stocks.  相似文献   

4.
Rebuilding depleted fish populations is a priority of modern fisheries management. In the U.S., strong statutory mandates extend to both the goals and process by which stocks are to be rebuilt. However, the National Standard Guidelines that govern the implementation of the Magnuson-Stevens Fishery Conservation and Management Act may change to increase flexibility in rebuilding requirements. In this study we evaluate performance of the status quo approach to fish stock rebuilding in the United States against 3 alternatives that have been proposed to improve rebuilding outcomes. These alternatives either simplify the analytical requirements of rebuilding analyses or apply ‘best practices’ in fisheries management, thereby avoiding the need for rebuilding analyses altogether. We use a Management Strategy Evaluation framework to evaluate rebuilding options across 6 fish life history types and 5 possible real-world fishery scenarios that include options for stock assessment quality, multiple fleets, and the degree to which the stocks are overfished at the start of the analysis. We show that the status quo rebuilding plan and a harvest control rule that reduces harvest rates at low stock size generally achieve the best rebuilding outcomes across all life-history types and fishery scenarios. Both approaches constrain fishing in the short term, but achieve high catches in the medium and long term as stocks rebuild to productive levels. These results support a growing body of literature that indicates that efforts to end overfishing early pay off in the medium- to long-term with higher cumulative catches than the alternative.  相似文献   

5.
Deep‐water fish in the tropical and sub‐tropical Pacific Ocean have supported important fisheries for many generations. Observations of localised depletions in some fisheries have raised concerns about the sustainability of current fishing rates. However, quantitative assessments of deep‐water stocks in the Pacific region have been limited by the lack of adequate biological and fisheries data. Estimates are provided of age‐based demographic parameters for two important deep‐water snapper species in the Pacific, Etelis carbunculus and E. coruscans. A spawner biomass‐per‐recruit (SPR) model was applied to determine fishing mortality rates for each species that would achieve specified biological targets (40% unexploited levels, SPR40) and limit (30% unexploited levels, SPR30) reference points, and examine the sensitivity of the model to variation in natural mortality and age at first capture. The maximum observed age, based on increment counts from sectioned otoliths, was 21 years for E. carbunculus and 18 years for E. coruscans. Total mortality (Z), estimated from the Hoenig regression, was 0.21 year?1 for E. carbunculus and 0.25 year?1 for E. coruscans. The best approximating growth models were the von Bertalanffy model (L = 896 mm fork length, = 0.28, t0 = 0.51) for E. carbunculus and the logistic model (L = 879 mm fork length, = 0.32 year?1, t0 = 3.42) for E. coruscans. The spawner biomass‐per‐recruit analysis demonstrated that lower rates of fishing mortality were required for E. coruscans than for E. carbunculus to maintain spawning biomass above estimated biological reference points. Estimates of spawner biomass‐per‐recruit were more sensitive to variation in natural mortality than in the age at first capture, suggesting that regulating fishing mortality rather than gear selectivity would be a more effective management measure for both species. Maintaining fishing mortality <0.1 for both species is recommended as a cautious approach to management, given the uncertainty in estimates of natural mortality and mixed fishery considerations.  相似文献   

6.
This paper comparatively reviews several commercially important fish stocks, their state and their management in various regions of the world including Japanese anchovy, Bay of Biscay anchovy, North Sea sandeel, North Sea herring, Icelandic cod, Barents Sea cod, South African cape hakes, sockeye salmon, chinook salmon, southern bluefin tuna, Pacific halibut, Greenland halibut and Patagonian toothfish. The reviewed fish stocks are systemized in three categories: (1) stock properties and status; (2) management structure and objectives; and (3) management advice. We gather evidence to outline qualities of management regimes that are recommended and highlight those that most often fail. Robust management, biological limits (reference points), implementation and consensus are critical points that separate successful and unsuccessful management regimes. We evaluate each fish stock’s management performance relative to its management objectives and current conservation issues. Furthermore, we point out the importance of stakeholder involvement in fisheries management as well as the problems that international fisheries commissions face through examples from the case studies. Management successes tended to be single-nation and single-stock fisheries with capacity control and clear stakeholder involvement. Fisheries with fleet overcapacity, unclear objectives and illegal activity characterized the case studies with management problems.  相似文献   

7.
The population dynamics of fisheries stock enhancement, and its potential for generating benefits over and above those obtainable from optimal exploitation of wild stocks alone are poorly understood and highly controversial. I review pertinent knowledge of fish population biology, and extend the dynamic pool theory of fishing to stock enhancement by unpacking recruitment, incorporating regulation in the recruited stock, and accounting for biological differences between wild and hatchery fish. I then analyse the dynamics of stock enhancement and its potential role in fisheries management, using the candidate stock of North Sea sole as an example and considering economic as well as biological criteria. Enhancement through release of recruits or advanced juveniles is predicted to increase total yield and stock abundance, but reduce abundance of the naturally recruited stock component through compensatory responses or overfishing. Economic feasibility of enhancement is subject to strong constraints, including trade-offs between the costs of fishing and hatchery releases. Costs of hatchery fish strongly influence optimal policy, which may range from no enhancement at high cost to high levels of stocking and fishing effort at low cost. Release of genetically maladapted fish reduces the effectiveness of enhancement, and is most detrimental overall if fitness of hatchery fish is only moderately compromised. As a temporary measure for the rebuilding of depleted stocks, enhancement cannot substitute for effort limitation, and is advantageous as an auxiliary measure only if the population has been reduced to a very low proportion of its unexploited biomass. Quantitative analysis of population dynamics is central to the responsible use of stock enhancement in fisheries management, and the necessary tools are available.  相似文献   

8.
The concept of an optimum yield at intermediate levels of fishing (the so called maximum sustainable yield or MSY) has been with us since the 1930s and is now enshrined in legislation as a key objective of fisheries management. The concept seems intuitively reasonable and is readily applicable to a single stock treated in isolation and assuming a constant environment. However, translating this concept into a mixed and multispecies fishery, where there are complex trade-offs between fleets and stocks and in general no simple optimum solution, has been problematic. Here I introduce a framework for thinking about multispecies MSY in terms of an integrated risk of stock depletion and expected long-term yield. Within this framework I consider the performance of a set of simple harvest control rules based upon a single-limit fishing mortality rate (F) which is common to all stocks and a target biomass which is a set fraction of a stock's virgin biomass. Using a multispecies management strategy evaluation, I compare expected outcomes for a set of these harvest control rules with alternative scenarios, in which each stock has its own F based on the assessment process. I find that the simple framework can produce outcomes that are similar to those from the more sophisticated estimates of F. I therefore conclude that achieving multispecies MSY may depend more upon setting reasonable biomass targets and faithfully applying a harvest control rule approach rather than determining the best possible Fs for each stock.  相似文献   

9.
The United States is somewhat unique among major fishing nations in mandating the rebuilding of overfished stocks within a specified period of time, a requirement first enacted in 1996. This study is based primarily on a review of trends in the 2000–2010 period in fishing mortality and biomass levels of stocks in rebuilding programs, supplemented by recent U.S. and international scientific literature. The major objectives of this study are, first, to assess progress achieved to date in these rebuilding plans, and, second, to identify the most significant obstacles to successful rebuilding. Sufficient data exists to monitor trends in fishing mortality and biomass levels number for just 35 stocks, out of a total 59 stocks that are currently rebuilding or have recently completed the rebuilding process. Most stocks in rebuilding plans are finfish, and the majority of are managed in relatively few fishery management plans governing fisheries in the Atlantic, Gulf of Mexico and northwest Pacific portions of the U.S. 200-mile exclusive economic zone. Therefore, the findings of this report are tentative and do not necessarily reflect broader trends in U.S. federally managed fisheries. This report shows substantial progress in about two-thirds of the 35 rebuilding stocks included in this report. Progress is defined in two ways: either the rebuilding plan has reduced fishing mortality to an acceptably low level, or it has brought about stock recovery to a mandated target. Most significantly, the assessment of rebuilding plan case studies indicates that reductions in fishing mortality, especially when implemented early in the programs and maintained as long as necessary, lead to significant increases in stock abundance in roughly four of five stocks. At the same time, the case studies also show that, in about one-third of the rebuilding plans, recovery measures have not yet produced the desired outcomes. The two most common problems are failure to adequately control fishing mortality and low resilience (high susceptibility to fishing pressure) of certain categories of overfished stocks.  相似文献   

10.
Joint Australia–Indonesia scientific workshops on the fisheries of the Arafura Sea, held in 1992 and 1994, concluded that the two countries might share stocks of the red snappers Lutjanus malabaricus and L. erythropterus and the gold-band snapper Pristipomoides multidens. At that time, no information concerning stock structure, distribution and movements of these species was available. Moreover, data on the population biology and on commercial catches were inadequate. Such data are crucial for stock assessment and for managing the stocks. Clearly, if the stocks being fished were shared, joint management would be appropriate. In order to answer the questions related to managing shared stocks, a collaborative research project was initiated by Australia (CSIRO as the lead agency) and Indonesia in 1999. The objectives were firstly, to describe the population dynamics, stock structure and biology of snappers relevant to the management of stocks shared between Australian and Indonesian fisheries; secondly, to characterize the social and financial structures of the Indonesian fishery so they could be taken into account in the development of management strategies; and thirdly, to explore ways of developing complementary management for the long term sustainability of the snapper fisheries. This project finished in 2003 and in this paper we bring together the results of the biological, genetic, population dynamics and socioeconomic research in relation to managing shared stocks in the context of managed versus unmanaged fisheries, small scale and industrial fisheries, and in both developed and developing country regulatory environments. Severe data limitations necessitated an innovative approach making use of comparative analyses, often data-poor values, and the drawing together of fishery dependent and independent data to evaluate the status of the stocks.  相似文献   

11.
Modern resource management faces trade-offs in the provision of various ecosystem goods and services to humanity. For fisheries management to develop into an ecosystem-based approach, the goal is not only to maximize economic profits, but to consider equally important conservation and social equity goals. We introduce such a triple-bottom line approach to the management of multi-species fisheries using the Baltic Sea as a case study. We apply a coupled ecological-economic optimization model to address the actual fisheries management challenge of trading-off the recovery of collapsed cod stocks versus the health of ecologically important forage fish populations. Management strategies based on profit maximization would rebuild the cod stock to high levels but may cause the risk of stock collapse for forage species with low market value, such as Baltic sprat (Fig. 1A). Economically efficient conservation efforts to protect sprat would be borne almost exclusively by the forage fishery as sprat fishing effort and profits would strongly be reduced. Unless compensation is paid, this would challenge equity between fishing sectors (Fig. 1B). Optimizing equity while respecting sprat biomass precautionary levels would reduce potential profits of the overall Baltic fishery, but may offer an acceptable balance between overall profits, species conservation and social equity (Fig. 1C). Our case study shows a practical example of how an ecosystem-based fisheries management will be able to offer society options to solve common conflicts between different resource uses. Adding equity considerations to the traditional trade-off between economy and ecology will greatly enhance credibility and hence compliance to management decisions, a further footstep towards healthy fish stocks and sustainable fisheries in the world ocean.Open in a separate windowFigure 1Summary of multispecies management options in the Baltic.(A) Profit maximum. (B) Economic optimum while respecting sprat BPA. (C) Equitable optimum while respecting sprat BPA. Central numbers indicate total profits (million €/year) as well as an equity measure (in brackets). Area of each pie slice is relative to status quo values 2008-2010 (black circle), with error bars from sensitivity analysis.  相似文献   

12.
The current state of many freshwater fish stocks worldwide is largely unknown but suspected to be vulnerable to exploitation from recreational fisheries and habitat degradation. Both these factors, combined with complex ecological dynamics and the diffuse nature of inland fisheries could lead to an invisible collapse: the drastic decline in fish stocks without great public or management awareness. In this study we provide a method to address the pervasive knowledge gaps in regional rates of exploitation and habitat degradation, and demonstrate its use in one of North America’s largest and most diffuse recreational freshwater fisheries (Ontario, Canada). We estimated that 1) fish stocks were highly exploited and in apparent danger of collapse in management zones close to large population centres, and 2) fish habitat was under a low but constant threat of degradation at rates comparable to deforestation in Ontario and throughout Canada. These findings confirm some commonly held, but difficult to quantify, beliefs in inland fisheries management but also provide some further insights including 1) large anthropogenic projects greater than one hectare could contribute much more to fish habitat loss on an area basis than the cumulative effect of smaller projects within one year, 2) hooking mortality from catch-and-release fisheries is likely a greater source of mortality than the harvest itself, and 3) in most northern management zones over 50% of the fisheries resources are not yet accessible to anglers. While this model primarily provides a framework to prioritize management decisions and further targeted stock assessments, we note that our regional estimates of fisheries productivity and exploitation were similar to broadscale monitoring efforts by the Province of Ontario. We discuss the policy implications from our results and extending the model to other jurisdictions and countries.  相似文献   

13.
The management of marine fisheries needs to undergo dramatic change in the new millennium, in response to the well-documented evidence of global overfishing and the general depletion of commercial fish stocks. The axioms of sustainable development and equilibrium productivity of wild ecosystems are identified as misleading concepts, which nonetheless underlie current approaches to the management of living marine resources. Current trends in marine fisheries landings worldwide provide little evidence of sustainability of marine resources under current management paradigms, where biological, economic and social aspects of fisheries are usually treated as different disciplines. While open-access conditions are less widespread than formerly, except for many straddling and highly migratory resources, fishers usually have access to the resource year-round throughout its range. Despite quotas, the nominal control of capacity and technical measures protecting juveniles, top-down management has generally been unable to prevent stock depletion, particularly of the older spawners that for demersal stocks often support recruitment. An integrated solution to the complexity of managing wild resources seems not to have been achieved. Any new paradigm should assert the basic unpredictability of fisheries at the system level and require a broader range of performance indicators to be incorporated into the decisional framework. This must reflect the non-equilibrium nature of marine systems, and give greater importance to resource (as opposed to harvest) continuity in the face of regime shifts, and promote habitat restoration and conservation of genetic resources.The new management framework requires co-management and collective decision-making to be incorporated within a precautionary and pre-negotiated management framework. This must explicitly recognize that decision-making occurs in conditions of model-based uncertainty and precautionary approaches should be incorporated at all levels, not least of which is to avoid the assumption that all resources can be harvested in a sustainable fashion through time. Redundancy in data inputs to management are needed to avoid the surprises that model-based sampling occasionally leads to, for example, when regime changes reduce productivity in response to climatic fluctuations. Emergency frameworks imposing non-discretionary rules must be invoked when overfishing and/or regime change trigger reference points indicating stock depletion. Non-discretionary recovery plans should then override rights-based systems and persist until fish populations recover to pre-established healthy levels, which may in turn need to await the return of a favourable regime.In fact, some stocks may require periodic rebuilding after regime-induced collapses or because of a combination of ecological or economic impacts, hence a constant harvest policy may not always be possible. It will probably also be necessary to discard the axiom that a stock should be available to harvesting throughout its range and seasonal cycle. Technological advances mean that time- and area-specific access rights are now practical options, through satellite monitoring of vessel operations, even offshore. More fundamentally, the basic axiom of "enlightened self interest" underlying current methods of management will need to be tempered by an increased ethical concern for the fragility of natural ecosystems.  相似文献   

14.
Identifying fish stock structure is fundamental to pinpoint stocks that might contribute colonizers to overfished stocks. However, a stock's potential to contribute to rebuilding hinges on demographic connectivity, a challenging parameter to measure. With genomics as a new tool, fisheries managers can detect signatures of natural selection and thus identify fishing areas likely to contribute evolutionarily compatible colonizers to an overfished area (i.e. colonizers that are not at a fitness disadvantage in the overfished area and able to reproduce at optimal rates). Identifying evolutionarily compatible stocks would help narrow the focus on establishing demographic connectivity where it matters. Here, we genotype 4723 SNPs in 616 orange roughy (Hoplostethus atlanticus) across five fishing areas off the Tasmanian coast in Australia. We ask whether these areas form a single genetic unit, and test for signatures of local adaptation. Results from amova , structure , discriminant analysis of principal components, bayesass and isolation by distance suggest that sampled locations are subjected to geneflow amounts that are above what is needed to establish ‘drift connectivity’. However, it remains unclear whether there is a single panmictic population or several highly connected populations. Most importantly, we did not find any evidence of local adaptation, suggesting that the examined orange roughy stocks are evolutionarily compatible. The data have helped test an assumption of the orange roughy management programme and to formulate hypotheses regarding stock demographic connectivity. Overall, our results demonstrate the potential of genomics to inform fisheries management, even when evidence for stock structure is sparse.  相似文献   

15.
Management of fish resources in the Western Indian Ocean is complicated due to the lack of data on the basic biology and landing statistics for exploited fish species. In this paper, a database including biological parameters, length frequency distributions and catches of Epinephelus gabriellae in Oman according to fleet components has been established to develop a management plan for its sustainable exploitation. Length cohort analyses and yield per recruit were examined by simulating changes in fishing effort in length at first capture and by introducing a seasonal ban for trawlers. The results showed a high sensitivity to the applied value of natural mortality (M). (i) With M = 0.40, a healthy status of the stock is observed; however, with M values of 0.20 and 0.15 the stock appears slightly overexploited, and actual F exceeds 10 and 30% of the F01 level, respectively. (ii) A moderate increase of length at first capture would not significantly affect the long‐term yield or stock spawning biomass; however, a substantial length increase would in the long‐term lead to a decrease in yields for the artisanal fleet using traps. (iii) A seasonal ban regulation for trawlers would not have a significant effect on the sustainable yield, but if the fishing effort were to increase considerably, a significant long‐term gain in yield would be obtained with a closed season from April‐September.  相似文献   

16.
To limit climate warming to 2°C above preindustrial levels, most economic sectors will need a rapid transformation toward a net zero emission of CO2. Tuna fisheries is a key food production sector that burns fossil fuel to operate but also reduces the deadfall of large-bodied fish so the capacity of this natural carbon pump to deep sea. Yet, the carbon balance of tuna populations, so the net difference between CO2 emission due to industrial exploitation and CO2 sequestration by fish deadfall after natural mortality, is still unknown. Here, by considering the dynamics of two main contrasting tuna species (Katsuwonus pelamis and Thunnus obesus) across the Pacific since the 1980s, we show that most tuna populations became CO2 sources instead of remaining natural sinks. Without considering the supply chain, the main factors associated with this shift are exploitation rate, transshipment intensity, fuel consumption, and climate change. Our study urges for a better global ocean stewardship, by curbing subsidies and limiting transshipment in remote international waters, to quickly rebuild most pelagic fish stocks above their target management reference points and reactivate a neglected carbon pump toward the deep sea as an additional Nature Climate Solution in our portfolio. Even if this potential carbon sequestration by surface unit may appear low compared to that of coastal ecosystems or tropical forests, the ocean covers a vast area and the sinking biomass of dead vertebrates can sequester carbon for around 1000 years in the deep sea. We also highlight the multiple co-benefits and trade-offs from engaging the industrial fisheries sector with carbon neutrality.  相似文献   

17.
Harpadon nehereus, commonly known as ‘Bombay duck’, is a fish with a discontinuous distribution along the Indian peninsula. The fisheries are dominant on the north‐east and north‐west coast but are absent in commercial landings below 15° north latitude. Heretofore stock assessment studies had not considered the various spawning stock components that replenish this fishery, therefore the present study. Fish samples were collected from four locations: two each from the northeast and the northwest coasts. Twenty‐four morphometric variables were measured using a box‐truss network method. Factor analysis of these variables differentiated the east and the west coast fish populations. Multiple comparisons on the factor scores indicated two independent stocks on the east coast, whereas the fishery on the west coast is replenished by a single stock. The important morphometric traits that accounted for most of the stock variations were related to swimming adaptations of the fish. Future stock assessments can consider the population on the west coast as a single stock when formulating management plans. To harvest the resource in a sustainable manner, the maritime states on the west coast should adopt collaborative efforts towards managing this fishery.  相似文献   

18.
Fish biomass is a primary driver of coral reef ecosystem services and has high sensitivity to human disturbances, particularly fishing. Estimates of fish biomass, their spatial distribution, and recovery potential are important for evaluating reef status and crucial for setting management targets. Here we modeled fish biomass estimates across all reefs of the western Indian Ocean using key variables that predicted the empirical data collected from 337 sites. These variables were used to create biomass and recovery time maps to prioritize spatially explicit conservation actions. The resultant fish biomass map showed high variability ranging from ~15 to 2900 kg/ha, primarily driven by human populations, distance to markets, and fisheries management restrictions. Lastly, we assembled data based on the age of fisheries closures and showed that biomass takes ~ 25 years to recover to typical equilibrium values of ~1200 kg/ha. The recovery times to biomass levels for sustainable fishing yields, maximum diversity, and ecosystem stability or conservation targets once fishing is suspended was modeled to estimate temporal costs of restrictions. The mean time to recovery for the whole region to the conservation target was 8.1(± 3SD) years, while recovery to sustainable fishing thresholds was between 0.5 and 4 years, but with high spatial variation. Recovery prioritization scenario models included one where local governance prioritized recovery of degraded reefs and two that prioritized minimizing recovery time, where countries either operated independently or collaborated. The regional collaboration scenario selected remote areas for conservation with uneven national responsibilities and spatial coverage, which could undermine collaboration. There is the potential to achieve sustainable fisheries within a decade by promoting these pathways according to their social-ecological suitability.  相似文献   

19.

Purpose

Overfishing is a relevant issue to include in all life cycle assessments (LCAs) involving wild caught fish, as overfishing of fish stocks clearly targets the LCA safeguard objects of natural resources and natural ecosystems. Yet no robust method for assessing overfishing has been available. We propose lost potential yield (LPY) as a midpoint impact category to quantify overfishing, comparing the outcome of current with target fisheries management. This category primarily reflects the impact on biotic resource availability, but also serves as a proxy for ecosystem impacts within each stock.

Methods

LPY represents average lost catches owing to ongoing overfishing, assessed by simplified biomass projections covering different fishing mortality scenarios. It is based on the maximum sustainable yield concept and complemented by two alternative methods, overfishing though fishing mortality (OF) and overfishedness of biomass (OB), that are less data-demanding.

Results and discussion

Characterization factors are provided for 31 European commercial fish stocks in 2010, representing 74 % of European and 7 % of global landings. However, large spatial and temporal variations were observed, requiring novel approaches for the LCA practitioner. The methodology is considered compliant with the International Reference Life Cycle Data System (ILCD) standard in most relevant aspects, although harmonization through normalization and endpoint characterization is only briefly discussed.

Conclusions

Seafood LCAs including any of the three approaches can be a powerful communicative tool for the food industry, seafood certification programmes, and for fisheries management.  相似文献   

20.
Otoliths of king threadfin, Polydactylus macrochir were collected from 2007 to 2009 at nine locations across northern Australia representing most of their distributional range and areas where fisheries are active. Measurement of the stable isotope ratios of δ18O and δ13C in the sagittal otolith carbonate from assemblages of P. macrochir revealed location-specific signatures and indicated that adult fish sampled from representative sites across their range were significantly different. The significant differences in the isotopic signatures of P. macrochir demonstrated that population subdivision is evident and there is unlikely to be substantial movement of fish among these distinct adult assemblages. The stable isotopic signatures for the fish from the different locations were persistent through time, and therefore it could be concluded that they comprise separate stocks for many of the purposes of fisheries management. The spatial separation of these populations indicates a complex stock structure across northern Australia with stocks of P. macrochir associated with large coastal beaches and embayments on a fine spatial scale. These results indicate that in order to achieve optimal fisheries management, the current spatial management arrangements need to be reviewed, particularly the potential for localised depletion of stocks on small spatial scales. This study has provided further evidence that measurement of the stable isotopes ratios in teleost sagittal otolith carbonate can be a valuable tool in the delineation of fishable stocks or fishery management units of adult fish and that widely distributed fish can nonetheless show strong localised population structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号