首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acute myeloid leukaemia (AML) is the most common type of adult acute leukaemia and has a poor prognosis. Thus, optimal risk stratification is of greatest importance for reasonable choice of treatment and prognostic evaluation. For our study, a total of 1707 samples of AML patients from three public databases were divided into meta‐training, meta‐testing and validation sets. The meta‐training set was used to build risk prediction model, and the other four data sets were employed for validation. By log‐rank test and univariate COX regression analysis as well as LASSO‐COX, AML patients were divided into high‐risk and low‐risk groups based on AML risk score (AMLRS) which was constituted by 10 survival‐related genes. In meta‐training, meta‐testing and validation sets, the patient in the low‐risk group all had a significantly longer OS (overall survival) than those in the high‐risk group (P < .001), and the area under ROC curve (AUC) by time‐dependent ROC was 0.5854‐0.7905 for 1 year, 0.6652‐0.8066 for 3 years and 0.6622‐0.8034 for 5 years. Multivariate COX regression analysis indicated that AMLRS was an independent prognostic factor in four data sets. Nomogram combining the AMLRS and two clinical parameters performed well in predicting 1‐year, 3‐year and 5‐year OS. Finally, we created a web‐based prognostic model to predict the prognosis of AML patients ( https://tcgi.shinyapps.io/amlrs_nomogram/ ).  相似文献   

2.
Acute myeloid leukaemia (AML) is a heterogeneous disease with a difficult to predict prognosis. Ferroptosis, an iron-induced programmed cell death, is a promising target for cancer therapy. Nevertheless, not much is known about the relationship between ferroptosis-related genes and AML prognosis. Herein, we retrieved RNA profile and corresponding clinical data of AML patients from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Univariate Cox analysis was employed to identify ferroptosis-related genes significantly associated with AML prognosis. Next, the least absolute shrinkage and selection operator (LASSO) regression was employed to establish a prognostic ferroptosis-related gene profile. 12 ferroptosis-related genes were screened to generate a prognostic model, which stratified patients into a low- (LR) or high-risk (HR) group. Using Kaplan-Meier analysis, we demonstrated that the LR patients exhibited better prognosis than HR patients. Moreover, receiver operating characteristic (ROC) curve analysis confirmed that the prognostic model showed good predictability. Functional enrichment analysis indicated that the infiltration of regulatory T cells (Treg) differed vastly between the LR and HR groups. Our prognostic model can offer guidance into the accurate prediction of AML prognosis and selection of personalized therapy in clinical practice.  相似文献   

3.
4.
In the relatively short period of time since their discovery, microRNAs have been shown to control many important cellular functions such as cell differentiation, growth, proliferation and apoptosis. In addition, microRNAs have been demonstrated as key drivers of many malignancies and can function as either tumour suppressors or oncogenes. The haematopoietic system is not outside the realm of microRNA control with microRNAs controlling aspects of stem cell and progenitor self-renewal and differentiation, with many, if not all, haematological disorders associated with aberrant microRNA expression and function. In this review, we focus on the current understanding of microRNA control of haematopoiesis and detail the evidence for the contribution and clinical relevance of aberrant microRNA function to the characteristic block of differentiation in acute myeloid leukaemia.  相似文献   

5.
Human leukocyte antigen-G (HLA-G) molecule exerts multiple immunoregulatory functions that have been suggested to contribute to the immune evasion of tumour cells. Studies on HLA-G expression in malignant haematopoietic diseases are controversial, and the functions of HLA-G on this context are limited. In the current study, HLA-G expression was analysed in different types of patients: de novo acute myeloid leukaemia (AML, n = 54), B cell acute lymphoblastic leukaemia (B-ALL, n= 13), chronic myeloid leukaemia (CML, n= 9) and myelodysplastic syndrome (MDS, n= 11). HLA-G expression was observed in 18.5% cases of AML, 22.2% in CML and 18.2% in MDS, but not in B-ALL patients. In AML, HLA-G-positive patients had a significant higher bone marrow leukaemic blast cell percentage when compared with that of HLA-G-negative patients (P < 0.01). Total T-cell percentage was dramatically decreased in HLA-G-positive patients (P < 0.05). Cytogenetic karyotyping results showed that all HLA-G-positive AML patients (n= 5) were cytogenetically abnormal, which was markedly different from that of HLA-G-negative patients (P < 0.01). Ex vivo cytotoxicity analysis revealed that HLA-G expression in AML leukaemic cells could directly inhibit NK cell cytolysis (P < 0.01). These findings indicated that HLA-G expression in AML is of unfavourable clinical implications, and that HLA-G could be a potential target for therapy.  相似文献   

6.
Generating accurate prognoses is extremely important for treating patients with cancer. Prognostic prediction based on messenger RNA (mRNA) expression has shown superior clinical value to other markers for some cancers but is not currently used for acute myeloid leukemia (AML). Lipid metabolism is associated with biological aspects of cancer progression, including massive proliferation, and abnormal signaling. Moreover, abnormalities in lipid metabolism have prognostic significance. Patients with AML display abnormalities in sphingolipid metabolism and fatty acid oxidation. TPD52 is a regulator of lipid metabolism and plays a role in the formation of lipid droplets and fatty acid storage. Although the prognostic significance of TPD52 expression has been reported for many types of cancer, it has not yet been assessed in patients with AML. Therefore, the aim of the current study was to assess the prognostic significance of TPD52 in AML using three independent AML cohorts: one from The Cancer Genome Atlas (TGCA; n = 142) and two from the National Center for Biotechnology Information: GSE12417 (GPL96-97; n = 162) and GSE12417 (GPL570; n = 78). TPD52 was found to be overexpressed in patients with AML (GSE84881; n = 23). The Kaplan-Meier curve revealed that TPD52 overexpression was associated with a poor prognosis for patients with AML with good discrimination ( P = 0.013, P = 0.005, and P = 0.032 for the TGCA, GSE12417, and GSE12417, respectively). Analysis of C-indices and area under the receiver operating characteristic curve values further supported this discriminative ability. Moreover, multivariate analysis confirmed the prognostic significance of TPD52 expression levels ( P = 0.0196). These results suggest that the TPD52 mRNA level is a potential biomarker for AML.  相似文献   

7.
Perturbations in autophagy, apoptosis and differentiation have greatly affected the progression and therapy of acute myeloid leukaemia (AML). The role of X-linked inhibitor of apoptosis (XIAP)-related autophagy remains unclear in AML therapeutics. Here, we found that XIAP was highly expressed and associated with poor overall survival in patients with AML. Furthermore, pharmacologic inhibition of XIAP using birinapant or XIAP knockdown via siRNA impaired the proliferation and clonogenic capacity by inducing autophagy and apoptosis in AML cells. Intriguingly, birinapant-induced cell death was aggravated in combination with ATG5 siRNA or an autophagy inhibitor spautin-1, suggesting that autophagy may be a pro-survival signalling. Spautin-1 further enhanced the ROS level and myeloid differentiation in THP-1 cells treated with birinapant. The mechanism analysis showed that XIAP interacted with MDM2 and p53, and XIAP inhibition notably downregulated p53, substantially increased the AMPKα1 phosphorylation and downregulated the mTOR phosphorylation. Combined treatment using birinapant and chloroquine significantly retarded AML progression in both a subcutaneous xenograft model injected with HEL cells and an orthotopic xenograft model injected intravenously with C1498 cells. Collectively, our data suggested that XIAP inhibition can induce autophagy, apoptosis and differentiation, and combined inhibition of XIAP and autophagy may be a promising therapeutic strategy for AML.  相似文献   

8.
Acute myeloid leukaemia (AML) is a malignant disorder of the myeloid blood lineage characterized by impaired differentiation and increased proliferation of hematopoietic precursor cells. Recent technological advances have led to an improved understanding of AML biology but also uncovered the enormous cytogenetic and molecular heterogeneity of the disease. Despite this heterogeneity, AML is mostly managed by a ‘one‐size‐fits‐all’ approach consisting of intensive, highly toxic induction and consolidation chemotherapy. These treatment protocols have remained largely unchanged for the past several decades and only lead to a cure in approximately 30–35% of cases. The advent of targeted therapies in chronic myeloid leukaemia and other malignancies has sparked hope to improve patient outcome in AML. However, the implementation of targeted agents in AML therapy has been unexpectedly cumbersome and remains a difficult task due to a variety of disease‐ and patient‐specific factors. In this review, we describe current standard and investigational therapeutic strategies with a focus on targeted agents and highlight potential tools that might facilitate the development of targeted therapies for this fatal disease. The classes of agents described in this review include constitutively activated signalling pathway inhibitors, surface receptor targets, epigenetic modifiers, drugs targeting the interaction of the hematopoietic progenitor cell with the stroma and drugs that target the apoptotic machinery. The clinical context and outcome with these agents will be examined to gain insight about their optimal utilization.  相似文献   

9.
10.
Acute myeloid leukaemia (AML) is a biologically heterogeneous disease with an overall poor prognosis; thus, novel therapeutic approaches are needed. Our previous studies showed that 4‐amino‐2‐trifluoromethyl‐phenyl retinate (ATPR), a new derivative of all‐trans retinoic acid (ATRA), could induce AML cell differentiation and cycle arrest. The current study aimed to determine the potential pharmacological mechanisms of ATPR therapies against AML. Our findings showed that E2A was overexpressed in AML specimens and cell lines, and mediate AML development by inactivating the P53 pathway. The findings indicated that E2A expression and activity decreased with ATPR treatment. Furthermore, we determined that E2A inhibition could enhance the effect of ATPR‐induced AML cell differentiation and cycle arrest, whereas E2A overexpression could reverse this effect, suggesting that the E2A gene plays a crucial role in AML. We identified P53 and c‐Myc were downstream pathways and targets for silencing E2A cells using RNA sequencing, which are involved in the progression of AML. Taken together, these results confirmed that ATPR inhibited the expression of E2A/c‐Myc, which led to the activation of the P53 pathway, and induced cell differentiation and cycle arrest in AML.  相似文献   

11.
12.
Despite significant advances in deciphering the molecular landscape of acute myeloid leukaemia (AML), therapeutic outcomes of this haematological malignancy have only modestly improved over the past decades. Drug resistance and disease recurrence almost invariably occur, highlighting the need for a deeper understanding of these processes. While low O2 compartments, such as bone marrow (BM) niches, are well‐recognized hosts of drug‐resistant leukaemic cells, standard in vitro studies are routinely performed under supra‐physiologic (21% O2, ambient air) conditions, which limits clinical translatability. We hereby identify molecular pathways enriched in AML cells that survive acute challenges with classic or targeted therapeutic agents. Experiments took into account variations in O2 tension encountered by leukaemic cells in clinical settings. Integrated RNA and protein profiles revealed that lipid biosynthesis, and particularly the cholesterol biogenesis branch, is a particularly therapy‐induced vulnerability in AML cells under low O2 states. We also demonstrate that the impact of the cytotoxic agent cytarabine is selectively enhanced by a high‐potency statin. The cholesterol biosynthesis programme is amenable to additional translational opportunities within the expanding AML therapeutic landscape. Our findings support the further investigation of higher‐potency statin (eg rosuvastatin)–based combination therapies to enhance targeting residual AML cells that reside in low O2 environments.  相似文献   

13.
Acute myeloid leukemia (AML) is a heterogeneous disease with unfavorable outcomes. MicroRNAs (miRNAs) are important regulators and prognostic factors involved in AML. To determine the clinical role of miR-338 in AML, a total of 164 adults with de novo AML were collected. These patients were classified into a chemotherapy group and an allogeneic hematopoietic stem cell transplantation (allo-HSCT) group according to the clinical treatment, and then each group was divided into two subgroups based on the median miR-338 expression values. We found that upregulated miR-338 positively correlates with higher frequencies of complex karyotype, RUNX1 mutation, and poor risk status. In the chemotherapy group, high expression of miR-338 was independently associated with shorter EFS and OS. However, no significant differences were observed between the two subgroups within the allo-HSCT group. We also divided all patients into two groups according to the median miR-338 expression values of the whole cohort. In the miR-338 high expression group, patients receiving allo-HSCT had longer OS and EFS than those receiving chemotherapy only. In contrast, patients receiving different therapies had similar OS and EFS in the miR-338 low expression group. Our study suggests that high expression of miR-338 is an adverse prognostic biomarker in patients with AML undergoing chemotherapy and may guide treatment decisions for AML. Furthermore, allo-HSCT could significantly overcome the negative effect of high miR-338 expression, but it seemed to be unbeneficial and unnecessary for low miR-338 expressions.  相似文献   

14.
Pharmacological modulation of autophagy has been referred to as a promising therapeutic strategy for cancer. Matrine, a main alkaloid extracted from Sophora flavescens Ait, has antitumour activity against acute myelocytic leukaemia (AML). Whether autophagy is involved in antileukaemia activity of matrine remains unobvious. In this study, we demonstrated that matrine inhibited cell viability and colony formation via inducing apoptosis and autophagy in AML cell lines HL‐60, THP‐1 and C1498 as well as primary AML cells. Matrine promoted caspase‐3 and PARP cleavage dose‐dependently. Matrine up‐regulated the level of LC3‐II and down‐regulated the level of SQSTM1/p62 in a dose‐dependent way, indicating that autophagy should be implicated in anti‐AML effect of matrine. Furthermore, the autophagy inhibitor bafilomycin A1 relieved the cytotoxicity of matrine by blocking the autophagic flux, while the autophagy promoter rapamycin enhanced the cytotoxicity of matrine. Additionally, matrine inhibited the phosphorylation of Akt, mTOR and their downstream substrates p70S6K and 4EBP1, which led to the occurrence of autophagy. In vivo study demonstrated that autophagy was involved in antileukaemia effect of matrine in C57BL/6 mice bearing murine AML cell line C1498, and the survival curves showed that mice did benefit from treatment with matrine. Collectively, our findings indicate that matrine exerts antitumour effect through apoptosis and autophagy, and the latter one might be a potential therapeutic strategy for AML.  相似文献   

15.
Acute myeloid leukaemia (AML) comprises a heterogeneous group of hematologic neoplasms characterized by diverse combinations of genetic, phenotypic and clinical features representing a major challenge for the development of targeted therapies. Metabolic reprogramming, mainly driven by deregulation of the nutrient‐sensing pathways as AMPK, mTOR and PI3K/AKT, has been associated with cancer cells, including AML cells, survival and proliferation. Nevertheless, the role of these metabolic adaptations on the AML pathogenesis is still controversial. In this work, the metabolic status and the respective metabolic networks operating in different AML cells (NB‐4, HL‐60 and KG‐1) and their impact on autophagy and survival was characterized. Data show that whereas KG‐1 cells exhibited preferential mitochondrial oxidative phosphorylation metabolism with constitutive co‐activation of AMPK and mTORC1 associated with increased autophagy, NB‐4 and HL‐60 cells displayed a dependent glycolytic profile mainly associated with AKT/mTORC1 activation and low autophagy flux. Inhibition of AKT is disclosed as a promising therapeutical target in some scenarios while inhibition of AMPK and mTORC1 has no major impact on KG‐1 cells’ survival. The results highlight an exclusive metabolic profile for each tested AML cells and its impact on determination of the anti‐leukaemia efficacy and on personalized combinatory therapy with conventional and targeted agents.  相似文献   

16.
17.
The serological analysis of recombinant cDNA expression libraries (SEREX) technique was used to immunoscreen a testes cDNA expression library with sera from newly diagnosed acute myeloid leukaemia (AML) patients. We used a testis cDNA library to aid our identification of cancer-testis (CT) antigens. We identified 44 antigens which we further immunoscreened with sera from AML, chronic myeloid leukaemia (CML), and normal donors. Eight antigens were solely recognised by patient sera including the recently described CT antigen, PASD1, and the cancer-related SSX2 interacting protein, SSX2IP. RT-PCR analysis indicated that we had identified three antigens which were expressed in patient bone marrow (BM) and peripheral blood (PB) but not in normal donor samples (PASD1, SSX2IP, and GRINL1A). Real-time PCR (RQ-PCR) confirmed the restricted expression of PASD1 in normal donor organs. Antigen presentation assays using monocyte-derived dendritic cells (mo-DCs) showed that PASD1 could stimulate autologous T-cell responses, suggesting that PASD1 could be a promising target for future immunotherapy clinical trials.  相似文献   

18.
Acute myeloid leukaemia (AML) comprises a range of disparate genetic subtypes, involving complex gene mutations and specific molecular alterations. Post‐translational modifications of specific proteins influence their translocation, stability, aggregation and even leading disease progression. Therapies that target to post‐translational modification of specific proteins in cancer cells represent a novel treatment strategy. Non‐homogenous subcellular distribution of PLSCR1 is involved in the primary AML cell differentiation. However, the nuclear translocation mechanism of PLSCR1 remains poorly understood. Here, we leveraged the observation that nuclear translocation of PLSCR1 could be induced during wogonoside treatment in some primary AML cells, despite their genetic heterogeneity that contributed to the depalmitoylation of PLSCR1 via acyl protein thioesterase 1 (APT‐1), an enzyme catalysing protein depalmitoylation. Besides, we found a similar phenomenon on another AML‐related protein, N‐RAS. Wogonoside inhibited the palmitoylation of small GTPase N‐RAS and enhanced its trafficking into Golgi complex, leading to the inactivation of N‐RAS/RAF1 pathway in some primary AML cells. Taken together, our findings provide new insight into the mechanism of wogonoside‐induced nuclear translocation of PLSCR1 and illuminate the influence of N‐RAS depalmitoylation on its Golgi trafficking and RAF1 signalling inactivation in AML.  相似文献   

19.
Doxorubicin (DOX) and idarubicin (IDA) are anthracycline antibiotics, widely used in human cancer treatment. The present study addressed the effects of these two drugs on lipid bilayer fluidity, protein conformation and microviscosity in erythrocytes from acute myeloid leukaemia patients, using electron spin resonance (ESR) spectroscopy and fluorescence measurements. Only DOX caused statistically significant changes in the parameters examined. Within 30 min of drug injection, changes were observed in the fluidity of the hydrophobic parts of the lipid bilayer and erythrocyte membrane protein conformation. These changes persisted for up to 24h. Analysis of the EPR Tempamine spectrum also showed that the microviscosity of the erythrocyte interior increased during the early stages of the drug effect. Idarubicin, in contrast, caused no identifiable change in any of the parameters studied and therefore seems to be safe for erythrocytes. We conclude that IDA is markedly less toxic than DOX to erythrocytes from acute myeloid leukaemia patients.  相似文献   

20.
Acute myeloid leukaemia (AML) is a difficult to treat disease, especially for those patients who have no eligible haematopoietic stem cell (HSC) donor. One of the most promising treatment options for these patients is immunotherapy. To investigate the expression of known tumour antigens in AML, we analysed microarray data from 124 presentation AML patient samples and investigated the present/absent calls of 82 tumour-specific or -associated antigens. We found 11 antigens which were expressed in AML patient samples but not normal donors. Nine of these were cancer-testis (CT) antigens, previously shown to be expressed in tumour cells and immunologically protected sites and at very low levels, if at all, in normal tissues. Expression was confirmed using real-time PCR. We have identified a number of CT antigens with expression in presentation AML samples but not normal donor samples, which may provide effective targets for future immunotherapy treatments early in disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号