首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In chemotherapy for childhood acute lymphoblastic leukaemia (ALL), maintenance therapy consisting of oral daily mercaptopurine and weekly methotrexate is important. NUDT15 variant genotype is reportedly highly associated with severe myelosuppression during maintenance therapy, particularly in Asian and Hispanic populations. It has also been demonstrated that acquired somatic mutations of the NT5C2 and PRPS1 genes, which are involved in thiopurine metabolism, are detectable in a portion of relapsed childhood ALL. To directly confirm the significance of the NUDT15 variant genotype and NT5C2 and PRPS1 mutations in thiopurine sensitivity of leukaemia cells in the intrinsic genes, we investigated 84 B-cell precursor-ALL (BCP-ALL) cell lines. Three and 14 cell lines had homozygous and heterozygous variant diplotypes of the NUDT15 gene, respectively, while 4 and 2 cell lines that were exclusively established from the samples at relapse had the NT5C2 and PRPS1 mutations, respectively. Both NUDT15 variant genotype and NT5C2 and PRPS1 mutations were significantly associated with DNA-incorporated thioguanine levels after exposure to thioguanine at therapeutic concentration. Considering the continuous exposure during the maintenance therapy, we evaluated in vitro mercaptopurine sensitivity after 7-day exposure. Mercaptopurine concentrations lethal to 50% of the leukaemia cells were comparable to therapeutic serum concentration of mercaptopurine. Both NUDT15 variant genotype and NT5C2 and PRPS1 mutations were significantly associated with mercaptopurine sensitivity in 83 BCP-ALL and 23 T-ALL cell lines. The present study provides direct evidence to support the general principle showing that both inherited genotype and somatically acquired mutation are crucially implicated in the drug sensitivity of leukaemia cells.  相似文献   

2.
Tumor promotion is characterized by selective proliferation of initiated cells resulting in their clonal expansion. Cyclin D1 is frequently upregulated in this process, but its expression does not necessarily correlate positively with cyclin A. In the present article, expression of G1 cell cycle regulatory proteins was systematically analyzed using two models of carcinogenesis: (a) N-methyl-N-nitrosourea (MNU)-induced rat mammary adenocarcinomas and normal rat mammary epithelial cells in vivo and (b) promotion- sensitive, -resistant, and transformed JB6 mouse epidermal cells in vitro. The results of this analysis revealed that p27Kip1 negatively correlated with cyclin D1. In addition, there were two types of correlations between p27Kip1 and cyclin A. First, p27Kip1 negatively correlated with cyclin A (type-I correlation). This scenario was observed in normal rat mammary epithelial cells in vivo and promotion-sensitive (P+) JB6 mouse epidermal cells, stimulated with phorbol ester (TPA) in vitro. Second, p27Kip1 positively correlated with cyclin A (type-II correlation). This correlation was observed in MNU-induced rat mammary adenocarcinomas in vivo and TPA-stimulated (P+) JB6 cells, treated with retinoic acid in vitro.  相似文献   

3.
4.
Salidroside (p-hydroxyphenethyl-beta-d-glucoside), which is present in all species of the genus Rhodiola, has been reported to have a broad spectrum of pharmacological properties. The present study, for the first time, focused on evaluating the effects of the purified salidroside on the proliferation of various human cancer cell lines derived from different tissues, and further investigating its possible molecular mechanisms. Cell viability assay and [3H] thymidine incorporation were used to evaluate the cytotoxic effects of salidroside on cancer cell lines, and flow cytometry analyzed the change of cell cycle distribution induced by salidroside. Western immunoblotting further studied the expression changes of cyclins (cyclin D1 and cyclin B1), cyclin-dependent kinases (CDK4 and Cdc2), and cyclin-dependent kinase inhibitors (p21Cip1 and p27Kip1). The results showed that salidroside inhibited the growth of various human cancer cell lines in concentration- and time-dependent manners, and the sensitivity to salidroside was different in those cancer cell lines. Salidroside could cause G1-phase or G2-phase arrest in different cancer cell lines, meanwhile, salidroside resulted in a decrease of CDK4, cyclin D1, cyclin B1 and Cdc2, and upregulated the levels of p27Kip1 and p21Cip1. Taken together, salidroside could inhibit the growth of cancer cells by modulating CDK4-cyclin D1 pathway for G1-phase arrest and/or modulating the Cdc2-cyclin B1 pathway for G2-phase arrest.  相似文献   

5.
Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA3C) is essential for primary B-cell transformation. In this report we show that cyclin A, an activator of S phase progression, bound tightly to EBNA3C. EBNA3C interacted with cyclin A in vitro and associated with cyclin A complexes in EBV-transformed lymphoblastoid cell lines. Importantly, EBNA3C stimulated cyclin A-dependent kinase activity and rescued p27-mediated inhibition of cyclin A/Cdk2 kinase activity by decreasing the molecular association between cyclin A and p27 in cells. Additionally, phosphorylation of the retinoblastoma protein, a major regulator of cell cycle progression, was enhanced both in vitro and in vivo in the presence of EBNA3C. Cyclin A interacted with a region of the carboxy terminus of EBNA3C, shown to be important both for stimulation of cyclin A-dependent kinase activity and for cell cycle progression. This provides the first evidence of an essential EBV latent antigen's directly targeting a cell cycle regulatory protein and suggests a novel mechanism by which EBV deregulates the mammalian cell cycle, which is of critical importance in B-cell transformation.  相似文献   

6.
p27(Kip1) is an important effector of G(1) arrest by transforming growth factor beta (TGF-beta). Investigations in a human mammary epithelial cell (HMEC) model, including cells that are sensitive (184(S)) and resistant (184A1L5(R)) to G(1) arrest by TGF-beta, revealed aberrant p27 regulation in the resistant cells. Cyclin E1-cyclin-dependent kinase 2 (cdk2) and cyclin A-cdk2 activities were increased, and p27-associated kinase activity was detected in 184A1L5(R) cells. p27 from 184A1L5(R) cells was localized to both nucleus and cytoplasm, showed an altered profile of phosphoisoforms, and had a reduced ability to bind and inhibit cyclin E1-cdk2 in vitro when compared to p27 from the sensitive 184(S) cells. In proliferating 184A1L5(R) cells, more p27 was associated with cyclin D1-cdk4 complexes than in 184(S). While TGF-beta inhibited the formation of cyclin D1-cdk4-p27 complexes in 184(S) cells, it did not inhibit the assembly of cyclin D1-cdk4-p27 complexes in the resistant 184A1L5(R) cells. p27 phosphorylation changed during cell cycle progression, with cyclin E1-bound p27 in G(0) showing a different phosphorylation pattern from that of cyclin D1-bound p27 in mid-G(1). These data suggest a model in which TGF-beta modulates p27 phosphorylation from its cyclin D1-bound assembly phosphoform to an alternate form that binds tightly to inhibit cyclin E1-cdk2. Altered phosphorylation of p27 in the resistant 184A1L5(R) cells may favor the binding of p27 to cyclin D1-cdk4 and prevent its accumulation in cyclin E1-cdk2 in response to TGF-beta.  相似文献   

7.
HMG-CoA reductase inhibitors, so called statins, decrease cardiac events. Previous studies have shown that HMG-CoA reductase inhibitors inhibit cardiomyocyte hypertrophy in vitro and in vivo by blocking Rho isoprenylation. We have shown that the G1 cell cycle regulatory proteins cyclin D1 and Cdk4 play important roles in cardiomyocyte hypertrophy. However, the relation between Rho and cyclin D1 in cardiomyocyte is unknown. To investigate whether HMG-CoA reductase inhibitors prevent cardiac hypertrophy through attenuation of Rho and cyclin D1, we studied the effect of fluvastatin on angiotensin II-induced cardiomyocyte hypertrophy in vitro and in vivo. Angiotensin II increased the cell surface area and [(3)H]leucine uptake of cultured neonatal rat cardiomyocytes and these changes were suppressed by fluvastatin treatment. Angiotensin II also induced activation of Rho kinase and increased cyclin D1, both of which were also significantly suppressed by fluvastatin. Specific Rho kinase inhibitor, Y-27632 inhibited angiotensin II-induced cardiomyocyte hypertrophy and increased cyclin D1. Overexpression of cyclin D1 by adenoviral gene transfer induced cardiomyocyte hypertrophy, as evidenced by increased cell size and increased protein synthesis; this hypertrophy was not diminished by concomitant treatment with fluvastatin. Infusion of angiotensin II to Wistar rats for 2 weeks induced hypertrophic changes in cardiomyocytes, and this hypertrophy was prevented by oral fluvastatin treatment. These results show that an HMG-CoA reductase inhibitor, fluvastatin, prevents angiotensin II-induced cardiomyocyte hypertrophy in part through inhibition of cyclin D1, which is linked to Rho kinase. This novel mechanism discovered for fluvastatin could be revealed how HMG-CoA reductase inhibitors are preventing cardiac hypertrophy.  相似文献   

8.
Cardiomyocytes withdraw from cell cycle after terminal differentiation due in part to impaired nuclear import of cyclin D1. Thus, we have previously shown that expression of nuclear localization signal-tagged cyclin D1 (D1NLS) and cyclin-dependent kinase 4 promotes cardiomyocyte proliferation both in vitro and in vivo. Here we show that cyclin D2 fails to stimulate cell cycle in cardiomocytes through a mechanism distinct from that of cyclin D1. We demonstrate that cyclin D2 can express in the nucleus much more efficiently than cyclin D1. Cyclin D2, however, was much less effective in activating CDK2 and cell proliferation than cyclin D1 when expressed transiently in the nucleus of cardiomyocytes using nuclear localization signals. Consistent with such an observation, CDK inhibitors p21cip1 and p27kip1 remained bound to CDK2 in cells expressing cyclin D2, whereas p21 and p27 were sequestered to cyclin D1 in cells expressing D1NLS. These data suggest that cyclin D2 has weaker affinities to the CDK inhibitors and therefore is less efficient in activating cell cycle than cyclin D1. According to such a notion, double knockdown of p21 and p27 in cells expressing D2NLS induced activation of CDK2/CDC2 and BrdU incorporation to levels similar to those in cells expressing D1NLS. Taken together, our data suggest that distinct mechanisms keep cyclin D1 and cyclin D2 from activating cell cycle in terminally differentiated cardiomyocytes.  相似文献   

9.
Amygdalin, a natural compound, has been used by many cancer patients as an alternative approach to treat their illness. However, whether or not this substance truly exerts an anti-tumor effect has never been settled. An in vitro study was initiated to investigate the influence of amygdalin (1.25–10 mg/ml) on the growth of a panel of bladder cancer cell lines (UMUC-3, RT112 and TCCSUP). Tumor growth, proliferation, clonal growth and cell cycle progression were investigated. The cell cycle regulating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1, p19, p27 as well as the mammalian target of rapamycin (mTOR) related signals phosphoAkt, phosphoRaptor and phosphoRictor were examined. Amygdalin dose-dependently reduced growth and proliferation in all three bladder cancer cell lines, reflected in a significant delay in cell cycle progression and G0/G1 arrest. Molecular evaluation revealed diminished phosphoAkt, phosphoRictor and loss of Cdk and cyclin components. Since the most outstanding effects of amygdalin were observed on the cdk2-cyclin A axis, siRNA knock down studies were carried out, revealing a positive correlation between cdk2/cyclin A expression level and tumor growth. Amygdalin, therefore, may block tumor growth by down-modulating cdk2 and cyclin A. In vivo investigation must follow to assess amygdalin''s practical value as an anti-tumor drug.  相似文献   

10.
Paraquat (PQ) promotes cell senescence in brain tissue, which contributes to Parkinson's disease. Furthermore, PQ induces heart failure and oxidative damage, but it remains unknown whether and how PQ induces cardiac aging. Here, we demonstrate that PQ induces phenotypes associated with senescence of cardiomyocyte cell lines and results in cardiac aging‐associated phenotypes including cardiac remodeling and dysfunction in vivo. Moreover, PQ inhibits the activation of Forkhead box O3 (FoxO3), an important longevity factor, both in vitro and in vivo. We found that PQ‐induced senescence phenotypes, including proliferation inhibition, apoptosis, senescence‐associated β‐galactosidase activity, and p16INK4a expression, were significantly enhanced by FoxO3 deficiency in cardiomyocytes. Notably, PQ‐induced cardiac remolding, apoptosis, oxidative damage, and p16INK4a expression in hearts were exacerbated by FoxO3 deficiency. In addition, both in vitro deficiency and in vivo deficiency of FoxO3 greatly suppressed the activation of antioxidant enzymes including catalase (CAT) and superoxide dismutase 2 (SOD2) in the presence of PQ, which was accompanied by attenuation in cardiac function. The direct in vivo binding of FoxO3 to the promoters of the Cat and Sod2 genes in the heart was verified by chromatin immunoprecipitation (ChIP). Functionally, overexpression of Cat or Sod2 alleviated the PQ‐induced senescence phenotypes in FoxO3‐deficient cardiomyocyte cell lines. Overexpression of FoxO3 and CAT in hearts greatly suppressed the PQ‐induced heart injury and phenotypes associated with aging. Collectively, these results suggest that FoxO3 protects the heart against an aging‐associated decline in cardiac function in mice exposed to PQ, at least in part by upregulating the expression of antioxidant enzymes and suppressing oxidative stress.  相似文献   

11.
12.
An efficient synthesis of substituted pyrido[2,3-d]pyrimidines was carried out and evaluated for in vitro anticancer activity against five cancer cell lines, namely hepatic cancer (HepG-2), prostate cancer (PC-3), colon cancer (HCT-116), breast cancer (MCF-7), and lung cancer (A-549) cell lines. Regarding HepG-2, PC-3, HCT-116 cancer cell lines, 7-(4-chlorophenyl)-2-(3-methyl-5-oxo-2,3-dihydro-1H-pyrazol-1-yl)-5-(p-tolyl)- pyrido[2,3-d]pyrimidin-4(3H)-one (5a) exhibited strong, more potent anticancer (IC50: 0.3, 6.6 and 7?µM) relative to the standard doxorubicin (IC50: 0.6, 6.8 and 12.8?µM), respectively. Kinase inhibitory assessment of 5a showed promising inhibitory activity against three kinases namely PDGFR β, EGFR, and CDK4/cyclin D1 at two concentrations 50 and 100?µM in single measurements. Further, a molecular docking study for compound 5a was performed to verify the binding mode towards the EGFR and CDK4/cyclin D1 kinases.  相似文献   

13.
Intergeneric nucleus transfer (ig-NT) is a promising technique to produce offspring of endangered species. The objectives of this study were to (1) investigate the in vitro development of marbled cat (MC; Pardofelis marmorata) and flat-headed cat (FC; Prionailurus planiceps) ig-NT embryos reconstructed from domestic cat (DC; Felis catus) oocytes (Experiment 1), (2) evaluate the effect of individual FC donor cell lines on NT success (Experiment 2), and (3) assess the developmental ability of FC-cloned and DC-IVF embryos in vitro and in vivo after oviductal transfer (Experiment 3). In Experiment 1, the morula rate of FC-reconstructed embryos was significantly higher than those of MC and DC embryos but lower than that of parthenogenic DC embryos. However, blastocyst rate was not different. In Experiment 2, FC-ig-NT embryos reconstructed from female muscular tissue had significantly higher morula rate in comparison with those derived from other donor cell lines. However, there was no difference in blastocyst rate among cell lines. In Experiment 3, in vitro development of FC-ig-NT embryos was lower than that of DC-IVF embryos. The competency of in vivo development of FC-ig-NT and/or DC-IVF embryos was investigated by assessing pregnancy rate after their transfer into DC recipients. Domestic cat recipients receiving only FC-ig-NT embryos, FC-ig-NT embryos in one side of the oviduct and DC-IVF embryos contralaterally (co-transfer), and only DC-IVF embryos were observed. No pregnancy was detected in all recipients receiving FC-ig-NT embryos. One recipient receiving co-transferred embryos became pregnant, then delivered DC-IVF dead fetuses (n = 2) and live kittens (n = 6). All recipients receiving DC-IVF embryos became pregnant, and three of six recipients delivered five DC-IVF kittens. These results illustrate the developmental capacity of MC- and FC-ig-NT embryos up to the blastocyst stage. Individual donor cell line affects the developmental success up to the morula stage of FC-ig-NT embryos. Improving the developmental competence and quality of FC-ig-NT embryos may be required for implantation and development to term of FC-ig-NT offspring.  相似文献   

14.
p27 mediates Cdk2 inhibition and is also found in cyclin D1-Cdk4 complexes. The present data support a role for p27 in the assembly of D-type cyclin-Cdk complexes and indicate that both cyclin D1-Cdk4-p27 assembly and kinase activation are regulated by p27 phosphorylation. Prior work showed that p27 can be phosphorylated by protein kinase B/Akt (PKB/Akt) at T157 and T198. Here we show that PKB activation and the appearance of p27pT157 and p27pT198 precede p27-cyclin D1-Cdk4 assembly in early G1. PI3K/PKB inhibition rapidly reduced p27pT157 and p27pT198 and dissociated cellular p27-cyclin D1-Cdk4. Mutant p27 allele products lacking phosphorylation at T157 and T198 bound poorly to cellular cyclin D1 and Cdk4. Cellular p27pT157 and p27pT198 coprecipitated with Cdk4 but were not detected in Cdk2 complexes. The addition of p27 to recombinant cyclin D1 and Cdk4 led to cyclin D1-Cdk4-p27 complex formation in vitro. p27 phosphorylation by PKB increased p27-cyclin D1-Cdk4 assembly in vitro but yielded inactive Cdk4. In contrast, Src pretreatment of p27 did not affect p27-cyclin D1-Cdk4 complex formation. However, Src treatment led to tyrosine phosphorylation of p27 and catalytic activation of assembled cyclin D1-Cdk4-p27 complexes. Thus, while PKB-dependent p27 phosphorylation appears to increase cyclin D1-Cdk4-p27 assembly or stabilize these complexes in vitro, cyclin D1-Cdk4-p27 activation requires the tyrosine phosphorylation of p27. Constitutive activation of PKB and Abl or Src family kinases in cancers would drive p27 phosphorylation, increase cyclin D1-Cdk4 assembly and activation, and reduce the cyclin E-Cdk2 inhibitory function of p27. Combined therapy with both Src and PI3K/PKB inhibitors may reverse this process.  相似文献   

15.
16.
We have investigated the expression of cyclins, cyclin dependent kinases (CDK), and CDK inhibitors (CKI) at the mRNA level in a panel of small-cell lung cancer (SCLC) cell linesin vitro andin vivo as xenografts in nude mice. The results showed that the cell lines expressed varying amounts of most cyclin and CDK’s but only a few of the cell lines expressed cyclin D1 and/or D2 and some lacked expression of CDK6. Most cell lines expressed mRNA for the CKI’s but two cell lines lacked expression of p15INK4B and p16INK4A. The mRNA expression differed for a few of the cell lines regarding cyclin D2 and CDK6 whenin vitro andin vivo data were compared. Two of the cell lines that express the retinoblastoma (Rb) protein had no sign of a deregulated Rb pathway but further studies at the protein level are necessary to demonstrate whether these two cell lines should have a normal Rb pathway or whether they will join the majority of cell lines with deregulated Rb pathway.  相似文献   

17.
Cell cycle progression is under the control of cyclin-dependent kinases (cdks), the activity of which is dependent on the expression of specific cdk inhibitors. In this paper we report that the two cdk inhibitors, p27(Kip1) and p18(INK4c), are differently expressed and control different steps of human B lymphocyte activation. Resting B cells contain large amounts of p27(Kip1) and no p18(INK4c). In vitro stimulation by Staphylococcus aureus Cowan 1 strain or CD40 ligand associated with IL-10 and IL-2 induces a rapid decrease in p27(Kip1) expression combined with cell cycle entry and progression. In contrast, in vitro Ig production correlates with specific expression of p18(INK4c) and early G(1) arrest. This G(1) arrest is associated with inhibition of cyclin D3/cdk6-mediated retinoblastoma protein phosphorylation by p18(INK4c). A similar contrasting pattern of p18(INK4c) and p27(Kip1) expression is observed both in B cells activated in vivo and in various leukemic cells. Expression of p18(INK4c) was also detected in various Ig-secreting cell lines in which both maximum Ig secretion and specific p18(INK4c) expression were observed during the G(1) phase. Our study shows that p27(Kip1) and p18(INK4c) have different roles in B cell activation; p27(Kip1) is involved in the control of cell cycle entry, and p18(INK4c) is involved in the subsequent early G(1) arrest necessary for terminal B lymphocyte differentiation.  相似文献   

18.
19.
Abstract. Objectives: This article is to study the role of G1/S regulators in differentiation of pluripotent embryonic cells. Materials and methods: We established a P19 embryonal carcinoma cell‐based experimental system, which profits from two similar differentiation protocols producing endodermal or neuroectodermal lineages. The levels, mutual interactions, activities, and localization of G1/S regulators were analysed with respect to growth and differentiation parameters of the cells. Results and Conclusions: We demonstrate that proliferation parameters of differentiating cells correlate with the activity and structure of cyclin A/E–CDK2 but not of cyclin D–CDK4/6–p27 complexes. In an exponentially growing P19 cell population, the cyclin D1–CDK4 complex is detected, which is replaced by cyclin D2/3–CDK4/6–p27 complex following density arrest. During endodermal differentiation kinase‐inactive cyclin D2/D3–CDK4–p27 complexes are formed. Neural differentiation specifically induces cyclin D1 at the expense of cyclin D3 and results in predominant formation of cyclin D1/D2–CDK4–p27 complexes. Differentiation is accompanied by cytoplasmic accumulation of cyclin Ds and CDK4/6, which in neural cells are associated with neural outgrowths. Most phenomena found here can be reproduced in mouse embryonic stem cells. In summary, our data demonstrate (i) that individual cyclin D isoforms are utilized in cells lineage specifically, (ii) that fundamental difference in the function of CDK4 and CDK6 exists, and (iii) that cyclin D–CDK4/6 complexes function in the cytoplasm of differentiated cells. Our study unravels another level of complexity in G1/S transition‐regulating machinery in early embryonic cells.  相似文献   

20.
Regulation of Exit from Quiescence by p27 and Cyclin D1-CDK4   总被引:13,自引:9,他引:4       下载免费PDF全文
The synthesis of cyclin D1 and its assembly with cyclin-dependent kinase 4 (CDK4) to form an active complex is a rate-limiting step in progression through the G1 phase of the cell cycle. Using an activated allele of mitogen-activated protein kinase kinase 1 (MEK1), we show that this kinase plays a significant role in positively regulating the expression of cyclin D1. This was found both in quiescent serum-starved cells and in cells expressing dominant-negative Ras. Despite the observation that cyclin D1 is a target of MEK1, in cycling cells, activated MEK1, but not cyclin D1, is capable of overcoming a G1 arrest induced by Ras inactivation. Either wild-type or catalytically inactive CDK4 cooperates with cyclin D1 in reversing the G1 arrest induced by inhibition of Ras activity. In quiescent NIH 3T3 cells expressing either ectopic cyclin D1 or activated MEK1, cyclin D1 is able to efficiently associate with CDK4; however, the complex is inactive. A significant percentage of the cyclin D1-CDK4 complexes are associated with p27 in serum-starved activated MEK1 or cyclin D1 cell lines. Reduction of p27 levels by expression of antisense p27 allows for S-phase entry from quiescence in NIH 3T3 cells expressing ectopic cyclin D1, but not in parental cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号