首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MicroRNAs (miRNAs) regulate gene expression by repressing translation or directing sequence-specific degradation of complementary mRNA. Here, we report that expression of miR-205 is significantly suppressed in melanoma specimens when compared with nevi and is correlated inversely with melanoma progression. miRNA target databases predicted E2F1 and E2F5 as putative targets. The expression levels of E2F1 and E2F5 were correlated inversely with that of miR-205 in melanoma cell lines. miR-205 significantly suppressed the luciferase activity of reporter plasmids containing the 3'-UTR sequences complementary to either E2F1 or E2F5. Overexpression of miR-205 in melanoma cells reduced E2F1 and E2F5 protein levels. The proliferative capacity of melanoma cells was suppressed by miR-205 and mediated by E2F-regulated AKT phosphorylation. miR-205 overexpression resulted in induction of apoptosis, as evidenced by increased cleaved caspase-3, poly-(ADP-ribose) polymerase, and cytochrome c release. Stable overexpression of miR-205 suppressed melanoma cell proliferation, colony formation, and tumor cell growth in vivo and induced a senescence phenotype accompanied by elevated expression of p16INK4A and other markers for senescence. E2F1 overexpression in miR-205-expressing cells partially reversed the effects on melanoma cell growth and senescence. These results demonstrate a novel role for miR-205 as a tumor suppressor in melanoma.  相似文献   

2.
Resistance to anti-neoplastic agents is the major cause of therapy failure, leading to disease recurrence and metastasis. E2F1 is a strong inducer of apoptosis in response to DNA damage through its capacity to activate p53/p73 death pathways. Recent evidence, however, showed that E2F1, which is aberrantly expressed in advanced malignant melanomas together with antagonistic p73 family members, drives cancer progression. Investigating mechanisms responsible for dysregulated E2F1 losing its apoptotic function, we searched for genomic signatures in primary and late clinical tumor stages to allow the prediction of downstream effectors associated with apoptosis resistance and survival of aggressive melanoma cells. We identified miR-205 as specific target of p73 and found that upon genotoxic stress, its expression is sufficiently abrogated by endogenous DNp73. Significantly, metastatic cells can be rescued from drug resistance by selective knockdown of DNp73 or overexpression of miR-205 in p73-depleted cells, leading to increased apoptosis and the reduction of tumor growth in vivo. Our data delineate an autoregulatory circuit, involving high levels of E2F1 and DNp73 to downregulate miR-205, which, in turn, controls E2F1 accumulation. Finally, drug resistance associated to this genetic signature is mediated by removing the inhibitory effect of miR-205 on the expression of Bcl-2 and the ATP-binding cassette transporters A2 (ABCA2) and A5 (ABCA5) related to multi-drug resistance and malignant progression. These results define the E2F1-p73/DNp73-miR-205 axis as a crucial mechanism for chemoresistance and, thus, as a target for metastasis prevention.  相似文献   

3.
Resistance to anti-neoplastic agents is the major cause of therapy failure, leading to disease recurrence and metastasis. E2F1 is a strong inducer of apoptosis in response to DNA damage through its capacity to activate p53/p73 death pathways. Recent evidence, however, showed that E2F1, which is aberrantly expressed in advanced malignant melanomas together with antagonistic p73 family members, drives cancer progression. Investigating mechanisms responsible for dysregulated E2F1 losing its apoptotic function, we searched for genomic signatures in primary and late clinical tumor stages to allow the prediction of downstream effectors associated with apoptosis resistance and survival of aggressive melanoma cells. We identified miR-205 as specific target of p73 and found that upon genotoxic stress, its expression is sufficiently abrogated by endogenous DNp73. Significantly, metastatic cells can be rescued from drug resistance by selective knockdown of DNp73 or overexpression of miR-205 in p73-depleted cells, leading to increased apoptosis and the reduction of tumor growth in vivo. Our data delineate an autoregulatory circuit, involving high levels of E2F1 and DNp73 to downregulate miR-205, which, in turn, controls E2F1 accumulation. Finally, drug resistance associated to this genetic signature is mediated by removing the inhibitory effect of miR-205 on the expression of Bcl-2 and the ATP-binding cassette transporters A2 (ABCA2) and A5 (ABCA5) related to multi-drug resistance and malignant progression. These results define the E2F1-p73/DNp73-miR-205 axis as a crucial mechanism for chemoresistance and, thus, as a target for metastasis prevention.  相似文献   

4.
5.
Autophagy degrades cytoplasmic proteins and organelles to recycle cellular components that are required for cell survival and tissue homeostasis. However, it is not clear how autophagy is regulated in mammalian cells. WASH (Wiskott–Aldrich syndrome protein (WASP) and SCAR homologue) plays an essential role in endosomal sorting through facilitating tubule fission via Arp2/3 activation. Here, we demonstrate a novel function of WASH in modulation of autophagy. We show that WASH deficiency causes early embryonic lethality and extensive autophagy of mouse embryos. WASH inhibits vacuolar protein sorting (Vps)34 kinase activity and autophagy induction. We identified that WASH is a new interactor of Beclin 1. Beclin 1 is ubiquitinated at lysine 437 through lysine 63 linkage in cells undergoing autophagy. Ambra1 is an E3 ligase for lysine 63‐linked ubiquitination of Beclin 1 that is required for starvation‐induced autophagy. The lysine 437 ubiquitination of Beclin 1 enhances the association with Vps34 to promote Vps34 activity. WASH can suppress Beclin 1 ubiquitination to inactivate Vps34 activity leading to suppression of autophagy.  相似文献   

6.
The long noncoding RNA MNX1-AS1 has been reported to facilitate the progression of glioblastoma and ovarian cancer. Nevertheless, the biological roles and underlying mechanisms of MNX1-AS1 in colon adenocarcinoma have not been studied until now. In the current study, MNX1-AS1 was upregulated in colon adenocarcinoma. JASPAR prediction tool showed that E2F1 could bind to the promoter region of MNX1-AS1. The chromatin immunoprecipitation assay and luciferase reporter assay were used to verify the interactions between MNX1-AS1 and E2F1. Then functional assays revealed that downregulation of MNX1-AS1 decreased cell proliferation, migration, and invasion in colon adenocarcinoma, but upregulation of E2F1 reversed the effects. Moreover, subcellular fractionation assay manifested that MNX1-AS1 was enriched in the cytoplasm of colon adenocarcinoma cells, thus we speculated whether MNX1-AS1 could function as a competing endogenous RNA (ceRNA) to play roles in colon adenocarcinoma. Bioinformatics analysis and luciferase reporter assay indicated that MNX1-AS1 could sponge microRNA-218-5p (miR-218-5p). Furthermore, we discovered that SEC61A1 was downstream target of miR-218-5p, and MNX1-AS1 acted as a ceRNA to upregulate the expression of SEC61A1 through sponging miR-218-5p. Finally, rescue assays confirmed that MNX1-AS1 facilitated the progression of colon adenocarcinoma through regulating miR-218-5p/SEC61A1 axis. Taken together, we concluded that E2F1-mediated MNX1-AS1-miR-218-5p-SEC61A1 feedback loop contributed to the progression of colon adenocarcinoma.  相似文献   

7.
Emerging interest on the interrelationship between the apoptotic and autophagy pathways in the context of cancer chemotherapy is providing exciting discoveries. Complexes formed between molecules from both pathways present potential targets for chemotherapeutics design as disruption of such complexes could alter cell survival. This study demonstrates an important role of Beclin‐1 and p53 interaction in cell fate decision of human embryonal carcinoma cells. The findings provide evidence for p53 interaction with Beclin‐1 through the BH3 domain of the latter. This interaction facilitated Beclin‐1 ubiquitination through lysine 48 linkage, resulting in proteasome‐mediated degradation, consequently maintaining a certain constitutive level of Beclin‐1. Disruption of Beclin‐1–p53 interaction through shRNA‐mediated down‐regulation of p53 reduced Beclin‐1 ubiquitination suggesting requirement of p53 for the process. Reduction of ubiquitination consequently resulted in an increase in Beclin‐1 levels with cells showing high autophagic activity. Enforced overexpression of p53 in the p53 down‐regulated cells restored ubiquitination of Beclin‐1 reducing its level and lowering autophagic activity. The Beclin‐1–p53 interaction was also disrupted by exposure to cisplatin‐induced stress resulting in higher level of Beclin‐1 because of lesser ubiquitination. This higher concentration of Beclin‐1 increased autophagy and offered protection to the cells from cisplatin‐induced death. Inhibition of autophagy by either pharmacological or genetic means during cisplatin exposure increased apoptotic death in vitro as well as in xenograft tumours grown in vivo confirming the protective nature of autophagy. Therefore, Beclin‐1–p53 interaction defines one additional molecular subroutine crucial for cell fate decisions in embryonal carcinoma cells.  相似文献   

8.
Autophagy is a regulated process that sequesters and transports cytoplasmic materials such as protein aggregates via autophagosomes to lysosomes for degradation. Dapper1 (Dpr1), an interacting protein of Dishevelled (Dvl), antagonizes Wnt signaling by promoting Dishevelled degradation via lysosomes. However, the mechanism is unclear. Here, we show that Dpr1 promotes the von Hippel-Lindau tumor suppressor (VHL)-mediated ubiquitination of Dvl2 and its autophagic degradation. Knockdown of Dpr1 decreases the interaction between Dvl2 and pVHL, resulting in reduced ubiquitination of Dvl2. Dpr1-mediated autophagic degradation of Dvl2 depends on Dvl2 aggregation. Moreover, the aggregate-prone proteins Dvl2, p62, and the huntingtin mutant Htt103Q promote autophagy in a Dpr1-dependent manner. These protein aggregates enhance the Beclin1-Vps34 interaction and Atg14L puncta formation, indicating that aggregated proteins stimulate autophagy initiation. Ubiquitination is not essential for the aggregate-induced autophagy initiation as inhibition of the ubiquitin-activation E1 enzyme activity did not block the aggregate-induced Atg14L puncta formation. Our findings suggest that Dpr1 promotes the ubiquitination of Dvl2 by pVHL and mediates the protein aggregate-elicited autophagy initiation.  相似文献   

9.
LBX2-AS1 is a long non-coding RNA that facilitates the development of gastrointestinal cancers and lung cancer, but its participation in ovarian cancer development remained uninvestigated. Clinical data retrieved from TCGA ovarian cancer database and the clinography of 60 ovarian cancer patients who received anti-cancer treatment in our facility were analysed. The overall cell growth, colony formation, migration, invasion, apoptosis and tumour formation on nude mice of ovarian cancer cells were evaluated before and after lentiviral-based LBX2-AS1 knockdown. ENCORI platform was used to explore LBX2-AS1-interacting microRNAs and target genes of the candidate microRNAs. Luciferase reporter gene assay and RNA pulldown assay were used to verify the putative miRNA-RNA interactions. Ovarian cancer tissue specimens showed significant higher LBX2-AS1 expression levels that non-cancerous counterparts. High expression level of LBX2-AS1 was significantly associated with reduced overall survival of patients. LBX2-AS1 knockdown significantly down-regulated the cell growth, colony formation, migration, invasion and tumour formation capacity of ovarian cancer cells and increased their apoptosis in vitro. LBX2-AS1 interacts with and thus inhibits the function of miR-455-5p and miR-491-5p, both of which restrained the expression of E2F2 gene in ovarian cancer cells via mRNA targeting. Transfection of miRNA inhibitors of these two miRNAs or forced expression of E2F2 counteracted the effect of LBX2-AS1 knockdown on ovarian cancer cells. LBX2-AS1 was a novel cancer-promoting lncRNA in ovarian cancer. This lncRNA increased the cell growth, survival, migration, invasion and tumour formation of ovarian cancer cells by inhibiting miR-455-5p and miR-491-5p, thus liberating the expression of E2F2 cancer-promoting gene.  相似文献   

10.
Dysregulation of non-coding RNAs (ncRNAs) has been proved to play pivotal roles in epithelial-mesenchymal transition (EMT) and fibrosis. We have previously demonstrated the crucial function of long non-coding RNA (lncRNA) ATB in silica-induced pulmonary fibrosis-related EMT progression. However, the underlying molecular mechanism has not been fully elucidated. Here, we verified miR-29b-2-5p and miR-34c-3p as two vital downstream targets of lncRNA-ATB. As opposed to lncRNA-ATB, a significant reduction of both miR-29b-2-5p and miR-34c-3p was observed in lung epithelial cells treated with TGF-β1 and a murine silicosis model. Overexpression miR-29b-2-5p or miR-34c-3p inhibited EMT process and abrogated the pro-fibrotic effects of lncRNA-ATB in vitro. Further, the ectopic expression of miR-29b-2-5p and miR-34c-3p with chemotherapy attenuated silica-induced pulmonary fibrosis in vivo. Mechanistically, TGF-β1-induced lncRNA-ATB accelerated EMT as a sponge of miR-29b-2-5p and miR-34c-3p and shared miRNA response elements with MEKK2 and NOTCH2, thus relieving these two molecules from miRNA-mediated translational repression. Interestingly, the co-transfection of miR-29b-2-5p and miR-34c-3p showed a synergistic suppression effect on EMT in vitro. Furthermore, the co-expression of these two miRNAs by using adeno-associated virus (AAV) better alleviated silica-induced fibrogenesis than single miRNA. Approaches aiming at lncRNA-ATB and its downstream effectors may represent new effective therapeutic strategies in pulmonary fibrosis.  相似文献   

11.
Melanoma contributes a lot to skin cancer-related deaths. lncRNAs are implicated in various diseases, including melanoma. lncRNA NEAT1 is frequently dysregulated and can play important roles in multiple cancers. Nevertheless, little has been studied about the function of NEAT1 in melanoma progression. In our present research, we displayed NEAT1 was overexpressed in melanoma cells. A series of functional assays showed that overexpression of NEAT1 promoted the proliferation, migration, and invasion of melanoma cells. By contrast, NEAT1 knockdown obviously restrained melanoma cell progression. Mechanistically, it was revealed that NEAT1 could directly bind with miR-495-3p, which led to a negative effect on miR-495-3p levels. In addition, miR-495-3p was significantly decreased in melanoma cells. Furthermore, E2F3 was postulated as the target of miR-495-3p and overexpression of this miR could suppress the levels of E2F3. Meanwhile, it was exhibited that melanoma cell proliferation, migration, and invasion induced by E2F3 silence was abrogated by miR-495-3p. Moreover, an in vivo xenograft nude mice model was established using A375 cells and it was indicated that NEAT1 promoted melanoma progression in vivo via regulating the miR-495-3p/E2F3 axis. In conclusion, we suggest that NEAT1 exerts an oncogenic effect on melanoma development via inhibition of miR-495-3p and induction of E2F3. NEAT1 might serve as a crucial prognostic biomarker of melanoma.  相似文献   

12.
MicroRNAs (miRNAs) are small yet versatile gene tuners that regulate a variety of cellular processes, including cell growth and proliferation. The aim of this study was to explore how miR-448-5p affects airway remodeling and transforming growth factor-β1 (TGF-β1)-stimulated epithelial-mesenchymal transition (EMT) by targeting Sine oculis homeobox homolog 1 (Six1) in asthma. Asthmatic mice models with airway remodeling were induced with ovalbumin solution. MiRNA expression was evaluated using quantitative real-time polymerase chain reaction. Transfection studies of bronchial epithelial cells were performed to determine the target genes. A luciferase reporter assay system was applied to identify whether Six1 is a target gene of miR-448-5p. In the current study, we found that miR-448-5p was dramatically decreased in lung tissues of asthmatic mice and TGF-β1-stimulated bronchial epithelial cells. In addition, the decreased level of miR-448-5p was closely associated with the increased expression of Six1. Overexpression of miR-448-5p decreased Six1 expression and, in turn, suppressed TGF-β1-mediated EMT and fibrosis. Next, we predicted that Six1 was a potential target gene of miR-448-5p and demonstrated that miR-448-5p could directly target Six1. An SiRNA targeting Six1 was sufficient to suppress TGF-β1-induced EMT and fibrosis in 16HBE cells. Furthermore, the overexpression of Six1 partially reversed the protective effect of miR-448-5p on TGF-β1-mediated EMT and fibrosis in bronchial epithelial cells. Taken together, the miR-448-5p/TGF-β1/Six1 link may play roles in the progression of EMT and pulmonary fibrosis in asthma.  相似文献   

13.
Long noncoding RNAs (lncRNAs) display essential roles in cancer progression. FLVCR1-AS1 is a rarely investigated lncRNAs involved in various human cancers, such as hepatocellular carcinoma and lung cancer. However, its function in glioma has not been clarified. In our study, we found that FLVCR1-AS1 was highly expressed in glioma tissues and cell lines. And upregulation of FLVCR1-AS1 predicted poor prognosis in patients with glioma. Moreover, FLVCR1-AS1 knockdown inhibited proliferation, migration and invasion of glioma cells. Through bioinformatics analysis, we identified that FLVCR1-AS1 was a sponge for miR-4731-5p to upregulate E2F2 expression. Moreover, rescue assays indicated that FLVCR1-AS1 modulated E2F2 expression to participate in glioma progression. Altogether, our research demonstrates that the FLVCR1-AS1/miR-4731-5p/E2F2 axis is a novel signaling in glioma and may be a potential target for tumor therapy.  相似文献   

14.
Beclin 1, the mammalian orthologue of yeast Atg6, has a central role in autophagy, a process of programmed cell survival, which is increased during periods of cell stress and extinguished during the cell cycle. It interacts with several cofactors (Atg14L, UVRAG, Bif-1, Rubicon, Ambra1, HMGB1, nPIST, VMP1, SLAM, IP(3)R, PINK and survivin) to regulate the lipid kinase Vps-34 protein and promote formation of Beclin 1-Vps34-Vps15 core complexes, thereby inducing autophagy. In contrast, the BH3 domain of Beclin 1 is bound to, and inhibited by Bcl-2 or Bcl-XL. This interaction can be disrupted by phosphorylation of Bcl-2 and Beclin 1, or ubiquitination of Beclin 1. Interestingly, caspase-mediated cleavage of Beclin 1 promotes crosstalk between apoptosis and autophagy. Beclin 1 dysfunction has been implicated in many disorders, including cancer and neurodegeneration. Here, we summarize new findings regarding the organization and function of the Beclin 1 network in cellular homeostasis, focusing on the cross-regulation between apoptosis and autophagy.  相似文献   

15.
p72 is the member of the DEAD-box RNA helicase family, which can unwind double-stranded RNA and is efficient for microRNA (miRNA, miR) processing. However, its specific role in glioma has not been elucidated. First, the expression of p72 in glioma cell lines and tissues was explored using Western blot. To explore the role of p72 on glioma progression, adenovirus inhibiting p72 was transfected into A172 and T98G cells. Cell autophagy was determined using GFPLC3 dots, and cell apoptosis was determined using flow cytometry. The effect of Beclin1 was explored using GFP-LC3 dots, flow cytometry, and colony formation. The possible miRNAs that target the 3′-untranslated region (3′-UTR) of Beclin1 were predicted using TargetScan. Dual luciferase reporter assay was applied to determine whether these miRNAs bind to the 3′-UTR of Beclin1. The expression of p72 was significantly increased in glioma cell lines and tissues. Autophagy-related protein Beclin1 was found to be significantly enhanced when p72 was inhibited. The accumulation of GFP-LC3 dots was significant in cells transfected with ad-sh-p72 compared with ad-con. Colony formation capacity and cell apoptosis were also found to be significantly decreased with p72 inhibition. Furthermore, upregulation of Beclin1 contributes to A172 cell autophagy, invasion, and apoptosis. Overexpression of p72 induces increased miR-34-5p and miR-5195-3p expression in A172 and T98G cells. Beclin1 was the target gene of miR-34-5p and miR-5195-3p. In conclusion, we found for the first time that overexpression of p72 decreased Beclin1 expression partially by increasing miR-34-5p and miR-5195-3p expression in A172 and T98G cells.  相似文献   

16.
High‐mobility group box 1 (HMGB1) shows pro‐inflammatory activity in various inflammatory diseases and has been found up‐regulated in chronic obstructive pulmonary disease (COPD). Lung macrophages play an important role in airway inflammation and lung destruction in COPD, yet whether HMGB1 is involved in cigarette smoke (CS)‐induced lung macrophage dysfunction is unknown. We sought to evaluate the intracellular localization and release of HMGB1 in lung macrophages from COPD patients and CS‐exposed mice, and to investigate the role of HMGB1 in regulating autophagy in CS extract (CSE)‐treated lung macrophages (MH‐S cells). Our results showed that HMGB1 was highly expressed in lung tissues and sera of COPD patients and CS‐exposed mice, along with predominantly cytoplasmic exporting from nuclei in lung macrophages. In vitro experiments revealed that CSE promoted the expression, nucleocytoplasmic translocation and release of HMGB1 partly via the nicotinic acetylcholine receptor (nAChR). Blockade of HMGB1 with chicken anti‐HMGB1 polyclonal antibody (anti‐HMGB1) or glycyrrhizin (Gly) attenuated the increase of LC3B‐II and Beclin1, migration and p65 phosphorylation, suggesting the involvement of HMGB1 in autophagy, migration and NF‐κB activation of lung macrophages. Hydroxychloroquine (CQ), an autophagy inhibitor, enhanced the increase of LC3B‐II but not Beclin1 in CSE or rHMGB1‐treated MH‐S cells, and inhibition of autophagy by CQ and 3‐methyladenine (3‐MA) abrogated the migration and p65 phosphorylation of CSE‐treated cells. These results indicate that CS‐induced HMGB1 translocation and release contribute to migration and NF‐κB activation through inducing autophagy in lung macrophages, providing novel evidence for HMGB1 as a potential target of intervention in COPD.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号