首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Protein arginine methyltransferase 5 (PRMT5) has been implicated in the development and progression of human cancers. However, few studies reveal its role in epithelial‐mesenchymal transition (EMT) of pancreatic cancer cells. In this study, we find that PRMT5 is up‐regulated in pancreatic cancer, and promotes proliferation, migration and invasion in pancreatic cancer cells, and promotes tumorigenesis. Silencing PRMT5 induces epithelial marker E‐cadherin expression and down‐regulates expression of mesenchymal markers including Vimentin, collagen I and β‐catenin in PaTu8988 and SW1990 cells, whereas ectopic PRMT5 re‐expression partially reverses these changes, indicating that PRMT5 promotes EMT in pancreatic cancer. More importantly, we find that PRMT5 knockdown decreases the phosphorylation level of EGFR at Y1068 and Y1172 and its downstream p‐AKT and p‐GSK3β, and then results in down‐regulation of β‐catenin. Expectedly, ectopic PRMT5 re‐expression also reverses the above changes. It is suggested that PRMT5 promotes EMT probably via EGFR/AKT/β‐catenin pathway. Taken together, our study demonstrates that PRMT5 plays oncogenic roles in the growth of pancreatic cancer cell and provides a potential candidate for pancreatic cancer treatment.  相似文献   

2.
3.
The platelet-derived growth factor (PDGF) signaling pathway has been found to play important roles in the development and progression of human cancers by regulating the processes of cell proliferation, apoptosis, migration, invasion, metastasis, and the acquisition of the epithelial-mesenchymal transition (EMT) phenotype. Moreover, PDGF signaling has also been found to alter the expression profile of miRNAs, leading to the reversal of EMT phenotype. Although the role of miRNAs in cancer has been documented, there are very few studies documenting the cellular consequences of targeted re-expression of specific miRNAs. Therefore, we investigated whether the treatment of human pancreatic cancer cells with PDGF could alter the expression profile of miRNAs, and we also assessed the cellular consequences. Our study demonstrates that miR-221 is essential for the PDGF-mediated EMT phenotype, migration, and growth of pancreatic cancer cells. Down-regulation of TRPS1 by miR-221 is critical for PDGF-mediated acquisition of the EMT phenotype. Additionally, the PDGF-dependent increase in cell proliferation appears to be mediated by inhibition of a specific target of miR-221 and down-regulation of p27Kip1.  相似文献   

4.
上皮细胞-间质细胞转化(EMT)在肿瘤转移方面起着非常重要的作用.肾癌发生EMT的具体分子机制尚不清楚.IL-8是一个重要的炎症趋化因子,研究表明肾癌细胞可以分泌IL-8,但IL-8是否参与肾癌细胞EMT的调节目前尚无报道.我们研究发现,IL-8可以促进肾癌细胞形态发生间质化改变,IL-8刺激后E-钙黏蛋白表达水平下降, N-钙黏蛋白表达上调.另外,IL-8可以促进肾癌细胞侵袭,但对肾癌细胞增殖的影响并不明显.进一步研究显示,IL-8通过激活蛋白激酶C(PKC)引起细胞外调节性激酶(ERK)磷酸化.因此,我们认为IL-8可能通过PKC/ERK信号通路促进肾癌细胞发生EMT,这可能是肾癌转移的重要机制之一.  相似文献   

5.
The distal metastasis is the main cause of death in patients with colon cancer. Tyrosine receptor kinase B (TrkB) and ERK signals may be the potential targets for the treatment of colon cancer metastasis. This study aims to investigate whether erlotinib inhibits distant metastasis of colon cancer by regulating TrkB and ERK signaling pathway. Human colon adenocarcinoma cell lines (SW480 and Caco-2) pretreated with exogenous C-X-C motif chemokine ligand 8 (CXCL8) were used to assess the suppressive effect of erlotinib on tumor metastasis, including anoikis, epithelial-mesenchymal transformation (EMT), migration, and invasion. Through TrkB overexpression, Akt suppression, and ERK suppression, the roles of TrkB, Akt, and ERK in erlotinib-induced metastasis inhibition of colon cancer cells were explored. The results showed that erlotinib alleviated CXCL8-induced metastasis of the colon cancer cells. Overexpression of TrkB in colon cancer cells eliminated the effect of erlotinib on anoikis, inhibition of EMT, migration, and invasion, and downregulation of p-ERK and p-Akt. Furthermore, the inhibition of ERK activation instead of Akt activation was found to participate in erlotinib-mediated metastasis resistance, including anoikis, inhibition of EMT, migration, and invasion. In conclusion, erlotinib inhibits colon cancer cell anoikis resistance, EMT, migration, and invasion by inactivating TrkB-dependent ERK signaling pathway.  相似文献   

6.
MUC1 is a type I transmembrane glycoprotein aberrantly overexpressed in various cancer cells. High expression of MUC1 is closely associated with cancer progression and metastasis, leading to poor prognosis. We previously reported that MUC1 is internalized by the binding of the anti-MUC1 antibody, from the cell surface to the intracellular region via the macropinocytotic pathway. Since MUC1 is closely associated with ErbBs, such as EGF receptor (EGFR) in cancer cells, we examined the effect of the anti-MUC1 antibody on EGFR trafficking. Our results show that: (1) anti-MUC1 antibody GP1.4, but not another anti-MUC1 antibody C595, triggered the internalization of EGFR in pancreatic cancer cells; (2) internalization of EGFR by GP1.4 resulted in the inhibition of ERK phosphorylation by EGF stimulation, in a MUC1 dependent manner; (3) inhibition of ERK phosphorylation by GP1.4 resulted in the suppression of proliferation and migration of pancreatic cancer cells. We conclude that the internalization of EGFR by anti-MUC1 antibody GP1.4 inhibits the progression of cancer cells via the inhibition of EGFR signaling.  相似文献   

7.
Epidermal growth factor receptor (EGFR) overexpression and activation result in increased proliferation and migration of solid tumors including ovarian cancer. In recent years, mounting evidence indicates that EGFR is a direct and functional target of miR-7. In this study, we found that miR-7 expression was significantly downregulated in highly metastatic epithelial ovarian cancer (EOC) cell lines and metastatic tissues, whereas the expression of, EGFR correlated positively with metastasis in both EOC patients and cell lines. Overexpression of miR-7 markedly suppressed the capacities of cell invasion and migration and resulted in morphological changes from a mesenchymal phenotype to an epithelial-like phenotype in EOC. In addition, overexpression of miR-7 upregulated CK-18 and β-catenin expression and downregulated Vimentin expression, accompanied with EGFR inhibition and AKT/ERK1/2 inactivation. Similar to miR-7 transfection, silencing of EGFR with this siRNA in EOC cells also upregulated CK-18 and β-catenin expression and downregulated Vimentin expression, and decreased phosphorylation of both Akt and ERK1/2, confirming that EGFR is a target of miR-7 in reversing EMT. The pharmacological inhibition of PI3K-AKT and ERK1/2 both significantly enhanced CK-18 and β-catenin expression and suppressed vimentin expression, indicating that AKT and ERK1/2 pathways are required for miR-7 mediating EMT. Finally, the expression of miR-7 and EGFR in primary EOC with matched metastasis tissues was explored. It was showed that miR-7 is inversely correlated with EGFR. Taken together, our results suggested that miR-7 inhibited tumor metastasis and reversed EMT through AKT and ERK1/2 pathway inactivation by reducing EGFR expression in EOC cell lines. Thus, miR-7 might be a potential prognostic marker and therapeutic target for ovarian cancer metastasis intervention.  相似文献   

8.
Epidermal growth factor (EGF) activation of the EGF receptor (EGFR) is an important mediator of cell migration, and aberrant signaling via this system promotes a number of malignancies including ovarian cancer. We have identified the cell surface glycoprotein CDCP1 as a key regulator of EGF/EGFR-induced cell migration. We show that signaling via EGF/EGFR induces migration of ovarian cancer Caov3 and OVCA420 cells with concomitant up-regulation of CDCP1 mRNA and protein. Consistent with a role in cell migration CDCP1 relocates from cell-cell junctions to punctate structures on filopodia after activation of EGFR. Significantly, disruption of CDCP1 either by silencing or the use of a function blocking antibody efficiently reduces EGF/EGFR-induced cell migration of Caov3 and OVCA420 cells. We also show that up-regulation of CDCP1 is inhibited by pharmacological agents blocking ERK but not Src signaling, indicating that the RAS/RAF/MEK/ERK pathway is required downstream of EGF/EGFR to induce increased expression of CDCP1. Our immunohistochemical analysis of benign, primary, and metastatic serous epithelial ovarian tumors demonstrates that CDCP1 is expressed during progression of this cancer. These data highlight a novel role for CDCP1 in EGF/EGFR-induced cell migration and indicate that targeting of CDCP1 may be a rational approach to inhibit progression of cancers driven by EGFR signaling including those resistant to anti-EGFR drugs because of activating mutations in the RAS/RAF/MEK/ERK pathway.  相似文献   

9.
BackgroundWe previously showed that pancreatic stellate cells (PSC) secreted interleukin (IL)-6 and promoted pancreatic ductal adenocarcinoma (PDAC) cell proliferation via nuclear factor erythroid 2 (Nrf2)-mediated metabolic reprogramming. Epithelial-mesenchymal transition (EMT) is a key process for the metastatic cascade. To study the mechanism of PDAC progression to metastasis, we investigated the role of PSC-secreted IL-6 in activating EMT and the involvement of Nrf2 in this process.MethodsGene expression of IL-6 and IL-6Rα in PSC and PDAC cells was measured with qRT-PCR. The role of PSC-secreted IL-6, JAK/Stat3 signaling, and Nrf2 mediation on EMT-related genes expression was also examined with qRT-PCR. EMT phenotypes were assessed with morphological change, wound healing, migration, and invasion.ResultsPSC expressed higher mRNA levels of IL-6 but lower IL-6Rα compared to PDAC cells. Neutralizing IL-6 in PSC secretion reduced mesenchymal-like morphology, migration and invasion capacity, and mesenchymal-like gene expression of N-cadherin, vimentin, fibronectin, collagen I, Sip1, Snail, Slug, and Twist2. Inhibition of JAK/Stat3 signaling induced by IL-6 repressed EMT and Nrf2 gene expression. Induction of Nrf2 activity by tert-butylhydroquinone (tBHQ) increased both EMT phenotypes and gene expression (N-cadherin, fibronectin, Twist2, Snail, and Slug) repressed by IL-6 neutralizing antibody. Simultaneous inhibition of Nrf2 expression with siRNA and Stat3 signaling further repressed EMT gene expression, indicating that Stat3/Nrf2 pathway mediates EMT induced by IL-6.ConclusionsIL-6 from PSC promotes EMT in PDAC cells via Stat3/Nrf2 pathway.General significanceTargeting Stat3/Nrf2 pathway activated by PSC-secreted IL-6 may provide a novel therapeutic option to improve the prognosis of PDAC.  相似文献   

10.
The 17β-estradiol (E2)/estrogen receptor alpha (ERα) signaling pathway is one of the most important pathways in hormone-dependent breast cancer. E2 plays pivotal roles in cancer cell growth, survival, and architecture as well as in gene expression regulatory mechanisms. In this study, we established stably transfected MCF-7 cells by knocking down the ERα gene (designated as MCF-7/SP10 + cells), using specific shRNA lentiviral particles, and compared them with the control cells (MCF-7/c). Interestingly, ERα silencing in MCF-7 cells strongly induced cellular phenotypic changes accompanied by significant changes in gene and protein expression of several markers typical of epithelial to mesenchymal transition (EMT). Notably, these cells exhibited enhanced cell proliferation, migration and invasion. Moreover, ERα suppression strongly affected the gene and protein expression of EGFR and HER2 receptor tyrosine kinases, and various extracellular matrix (ECM) effectors, including matrix metalloproteinases and their endogenous inhibitors (MMPs/TIMPs) and components of the plasminogen activation system. The action caused by E2 in MCF-7/c cells in the expression of HER2, MT1-MMP, MMP1, MMP9, uPA, tPA, and PAI-1 was abolished in MCF-7/SP10 + cells lacking ERα. These data suggested a regulatory role for the E2/ERα pathway in respect to the composition and activity of the extracellular proteolytic molecular network. Notably, loss of ERα promoted breast cancer cell migration and invasion by inducing changes in the expression levels of certain matrix macromolecules (especially uPA, tPA, PAI-1) through the EGFR–ERK signaling pathway.In conclusion, loss of ERα in breast cancer cells results in a potent EMT characterized by striking changes in the expression profile of specific matrix macromolecules highlighting the potential nodal role of matrix effectors in breast cancer endocrine resistance.  相似文献   

11.
The study aims to verify the hypothesis that up‐regulation of microRNA‐300 (miR‐300) targeting CUL4B promotes apoptosis and suppresses proliferation, migration, invasion, and epithelial‐mesenchymal transition (EMT) of pancreatic cancer cells by regulating the Wnt/β‐catenin signaling pathway. Pancreatic cancer tissues and adjacent tissues were collected from 110 pancreatic cancer patients. Expression of miR‐300, CUL4B, Wnt, β‐catenin, E‐cadherin, N‐cadherin, Snail, GSK‐3β, and CyclinD1 were detected using qRT‐PCR and Western blot. CFPAC‐1, Capan‐1, and PANC‐1 were classified into blank, negative control (NC), miR‐300 mimics, miR‐300 inhibitors, siRNA‐CUL4B, and miR‐300 inhibitors + siRNA‐CUL4B groups. The proliferation, migration, invasion abilities, the cell cycle distribution, and apoptosis rates were measured in CCK‐8 and Transwell assays. Pancreatic cancer tissues showed increased CUL4B expression but decreased miR‐300 expression. When miR‐300 was lowly expressed, CUL4B was upregulated which in‐turn activated the Wnt/β‐catenin pathway to protect the β‐catenin expression and thus induce EMT. When miR‐300 was highly expressed, CUL4B was downregulated which in‐turn inhibited the Wnt/β‐catenin pathway to prevent EMT. Weakened cell migration and invasion abilities and enhanced apoptosis were observed in the CUL4B group. The miR‐300 inhibitors group exhibited an evident increase in growth rate accompanied the largest tumor volume. Smaller tumor volume and slower growth rate were observed in the miR‐300 mimics and siRNA‐CUL4B group. Our study concludes that lowly expressed miR‐300 may contribute to highly expressed CUL4B activating the Wnt/β‐catenin signaling pathway and further stimulating EMT, thus promoting proliferation and migration but suppressing apoptosis of pancreatic cancer cells.  相似文献   

12.
Trophoblasts are important parts of the placenta and exert vital roles in the maternal-foetal crosstalk, and sufficient trophoblasts migration and invasion is critical for embryo implantation and normal pregnancy. Macrophages, as the major components of decidual microenvironment at maternal-foetal interface, can interact with trophoblasts to participate in the regulation of normal pregnancy. Previously, our group have demonstrated that trophoblasts could induce macrophages polarization to M2 subtype by secreting interleukin-6 (IL-6); however, the understanding of macrophages regulating the migration and invasion of trophoblasts is limited. In the present study, we used the co-cultured model to further investigate the effects of macrophages on trophoblasts migration and invasion. Our results showed that co-culture with macrophages promoted epithelial-to-mesenchymal transition (EMT) of trophoblasts, thereby enhancing their migrative and invasive abilities. Further experiments revealed that M2 macrophage-derived G-CSF was a key factor, which promoted the EMT, migration and invasion of trophoblasts via activating PI3K/Akt/Erk1/2 signalling pathway. Clinically, G-CSF was highly expressed in placental villous tissues of normal pregnancy patients compared to patients with recurrent spontaneous abortion, and its expression level was significantly correlation with EMT markers. Taken together, these findings indicate the important role of M2 macrophages in regulating trophoblasts EMT, migration and invasion, contributing to a new insight in concerning the crosstalk between macrophages and trophoblasts in the establishment and maintenance of normal pregnancy.  相似文献   

13.
In carcinogenesis, inflammasomes may play contradictory roles through facilitating anti-tumor immunity or inducing oncogenic factors. Their function in cancer remains poorly characterized. In this study, we explored the effect of interleukin-17A (IL-17A) on the migration and invasion activity of nasopharyngeal carcinoma (NPC) cell lines and account for related mechanisms. Our results revealed that exogenous IL-17A promoted cell migration and invasion significantly in both NPC-039 and CNE-2Z cell lines. In addition, the expression of matrix metalloproteinase-2 (MMP-2)/-9 and Vimentin could be elevated by IL-17A stimulation; meanwhile the expression of E-cadherin was decreased. The results also show that IL-17A could activate the p38 signaling pathway in IL-17A-stimulated NPC-039 and CNE-2Z cell lines. Combining treatment with a p38 inhibitor (SB203580) resulted in decreased invasion capabilities of NPC-039 and CNE-2Z cell lines. SB203580 also inhibited the expression of MMP-2/-9 and increased the expression of E-cadherin in IL-17A-stimulated NPC-039 and CNE-2Z cell lines. IL-17A also could activate NF-κB in NPC-039 and CNE-2Z cell lines. In summary, our data show that IL-17A promote the cell migration and invasion of NPC cells. The effect of IL-17A on cell migration and invasion may be mediated via regulation of the expression of MMP-2/-9 and epithelial-mesenchymal transition (EMT) via p38-NF-κB signaling pathway. Thus, IL-17A or its related signaling pathways may be a promising target for preventing and inhibiting NPC metastasis.  相似文献   

14.
The ATP-gated P2X7 has been shown to play an important role in invasiveness and metastasis of some tumors. However, the possible links and underlying mechanisms between P2X7 and prostate cancer have not been elucidated. Here, we demonstrated that P2X7 was highly expressed in some prostate cancer cells. Down-regulation of P2X7 by siRNA significantly attenuated ATP- or BzATP-driven migration and invasion of prostate cancer cells in vitro, and inhibited tumor invasiveness and metastases in nude mice. In addition, silencing of P2X7 remarkably attenuated ATP- or BzATP- driven expression changes of EMT/invasion-related genes Snail, E-cadherin, Claudin-1, IL-8 and MMP-3, and weakened the phosphorylation of PI3K/AKT and ERK1/2 in vitro. Similar effects were observed in nude mice. These data indicate that P2X7 stimulates cell invasion and metastasis in prostate cancer cells via some EMT/invasion-related genes, as well as PI3K/AKT and ERK1/2 signaling pathways. P2X7 could be a promising therapeutic target for prostate cancer.  相似文献   

15.
Large intergenic noncoding RNA regulator of reprogramming (Linc-RoR) was first identified as a regulator to increase the emergence of induced pluripotent stem cells through reprogramming differentiated cells and is abnormal expression in a variety of malignant tumors. However, the function of Linc-RoR in pancreatic cancer progression needs further clarification. The data from this study demonstrated that Linc-RoR knockdown suppressed cell proliferative capacity and colony formation, while Linc-RoR overexpression promoted these behaviors. In particular, Linc-RoR overexpression promoted the level of mesenchymal markers, inhibited the expression of epithelial markers, as well as enhanced pancreatic cancer cells migration and invasion, whereas Linc-RoR knockdown inhibited the expression of mesenchymal markers, promoted the expression of epithelial markers, as well as weakened pancreatic cancer cells migration and invasion. Further study revealed that Linc-RoR knockdown brought about a significant fall in YAP phosphorylation and a rise in total YAP, while Linc-RoR overexpression produced the opposite results. Specifically, Linc-RoR promoted YAP in the cytoplasm into the nucleus. Taken together, we conjectured that Linc-RoR promoted proliferation, migration, and invasion of pancreatic cancer cells by activating the Hippo/YAP pathway. YAP might be an underlying target of Linc-RoR and mediate epithelial-mesenchymal transition (EMT) in pancreatic cancer (PC); thus, Linc-RoR might be a very meaningful biomarker for PC.  相似文献   

16.
17.
Gamma-Aminobutyric Acid Type B Receptor (GABABR) plays essential roles in tumor progression. However, the function of GABABR in colorectal cancer (CRC) needs further clarification. As the main part of GABABR, GABABR1 expression was identified significantly lower in tumor tissues than those in non-tumor normal tissues and that CRC patients with high GABABR1 expression lived longer. Further studies indicated that knockdown of GABABR1 elevated CRC cell proliferation, migration, and invasion. Furthermore, knockdown of GABABR1 activated the expression of the epithelial-mesenchymal transition (EMT)-related proteins N-cadherin and Vimentin, whereas decrease the protein level of E-cadherin. In addition, activation of Hippo/YAP1 signaling contributes to the GABABR1 down-regulation promoted proliferation, migration, invasion and EMT in CRC cells. At last, we verified the contribution of Hippo/YAP1 signaling in the GABABR1 down-regulation impaired biological phenotype of colon cancer cells in vivo. In summary, these data indicate that GABABR1 impairs the migration and invasion of CRC cells by inhibiting EMT and the Hippo/YAP1 pathway, suggesting that GABABR1 could be a potential therapeutic target for CRC.  相似文献   

18.
Pancreatic cancer is one of the most lethal malignant tumors due to a late diagnosis and highly invasion and metastasis. Transforming growth factor-β (TGF-β) signaling plays a vital role in the progression of pancreatic cancer. The delicate activity of TGF-β signaling is particular important for the development of aggression and metastasis which must be fine-tuned. Here, we investigated the role of super-enhancers in regulating the expression of TGF-β signaling pathway in pancreatic cancer. TGFBR2 owns the modification of H3K27Ac around the gene in pancreatic cancer cells. Inhibition of BRD4 by JQ1 robustly blocked the expression of TGFBR2 in a dose dependent manner. We successfully mapped a super-enhancer in TGFBR2 by sgRNA. Deletion of the super-enhancer in TGFBR2 (sgTGFBR2-SEΔ) significantly reduced the expression of TGFBR2 in pancreatic cancer cells. TGF-β-induced p-SMAD2/3 was greatly impaired in TGFBR2 super-enhancer deleted cells. Both migration and EMT induced by TGF-β in pancreatic cancer cells were impaired after deleting the super-enhancer of TGFBR2. Our data suggest a novel molecular mechanism by which a super-enhancer regulates TGFBR2, affecting the activity of TGF-β as well as its function in pancreatic cancer progression.  相似文献   

19.
20.
Epithelial-to-mesenchymal transition (EMT), important cellular process in metastasis of primary tumors, is characterized by loss of their cell polarity, disruption of cell-cell adhesion, and gain certain properties of mesenchymal phenotype that enable migration and invasion. Delphinidin is a member of anthocyanidin belong to flavonoid groups, known as having pharmacological and physiological effects including anti-tumorigenic, antioxidative, anti-inflammatory, and antiangiogenic effects. However, the effects of delphinidin on EMT is rarely investigated. Epidermal growth factor (EGF) is known as a crucial inducer of EMT in various cancer including hepatocellular carcinoma (HCC). To determine whether delphinidin inhibits EGF-induced EMT in HCC cells, antiproliferative effect of delphinidin on Huh7 and PLC/PRF/5 cells were measured by Cell Counting Kit-8 assay. As a result, delphinidin inhibited cell proliferation in a dose-dependent manner. Based on the result of proliferation, to measure the effects of delphinidin on EGF-induced EMT, we designated a proper concentration of delphinidin, which is not affected to cell proliferation. We found that delphinidin inhibits morphological changes from epithelial to mesenchymal phenotype by EGF. Moreover, delphinidin increased the messenger RNA and protein expression of E-cadherin and decreased those of Vimentin and Snail in EGF-induced HCC cells. Also, delphinidin prevented motility and invasiveness of EGF-induced HCC cells through suppressing activation of matrix metalloproteinase 2, EGF receptor (EGFR), AKT, and extracellular signal-regulated kinase (ERK). Taken together, our findings demonstrate that delphinidin inhibits EGF-induced EMT by inhibiting EGFR/AKT/ERK signaling pathway in HCC cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号