首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Renal ischaemia/reperfusion (I/R) injury may induce kidney damage and dysfunction, in which oxidative stress and apoptosis play important roles. Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) are reported to be closely related to renal I/R, but the specific molecular mechanism is still unclear. The purpose of this research was to explore the regulatory effect of lncRNA TUG1 on oxidative stress and apoptosis in renal I/R injury. This research revealed that in renal I/R injury and hypoxia/reperfusion (H/R) injury in vitro, the expression level of lncRNA TUG1 was upregulated, and oxidative stress levels and apoptosis levels were negatively correlated with the expression level of lncRNA TUG1. Using bioinformatics databases such as TargetScan and microRNA.org, microRNA-144-3p (miR-144-3p) was predicted to be involved in the association between lncRNA TUG1 and Nrf2. This study confirmed that the level of miR-144-3p was significantly reduced following renal I/R injury and H/R injury in vitro, and miR-144-3p was determined to target Nrf2 and inhibit its expression. In addition, lncRNA TUG1 can reduce the inhibitory effect of miR-144-3p on Nrf2 by sponging miR-144-3p. In summary, our research shows that lncRNA TUG1 regulates oxidative stress and apoptosis during renal I/R injury through the miR-144-3p/Nrf2 axis, which may be a new treatment target for renal I/R injury.  相似文献   

2.
Osteoarthritis (OA) is a common joint disease with high morbidity, but there is still no definitive treatment for it. Long noncoding RNAs (lncRNAs) have been confirmed to play key roles in OA progression. This work was done to investigate the roles and action mechanism of lncRNA TNFSF10 in OA. The messenger RNA levels of TNFSF10 in articular cartilage samples from patients or chondrocytes were detected by Quantitative real-time PCR assay (qRT-PCR). The effects of TNFSF10 on chondrocytes were evaluated on the basis of cell growth, apoptosis, and inflammation. Then, the interaction between TNFSF10 and miR-376-3p was explored by dual-luciferase reporter test, RNA-binding protein immunoprecipitation, and RNA pull-down assay. Finally, various cell experiments, Western blot analysis, and qRT-PCR were performed to study the interaction among TNFSF10, miR-376-3p, and fibroblast growth factor receptor 1 (FGFR1). It was found that TNFSF10 was upregulated in OA cartilages and stimulated cell proliferation, antiapoptosis, and inflammation for chondrocytes. In addition, TNFSF10 acted as a competing endogenous RNA to downregulate miR-376-3p, and the influence of TNFSF10 on chondrocytes was partly reversed by miR-376-3p. Moreover, FGFR1, as a target of miR-376-3p, had reversal functions on the outcomes mediated by miR-376-3p. The further analysis displayed that there was a negative relationship between TNFSF10 and miR-376-3p as well as miR-376-3p and FGFR1, while FGFR1 was positively related with TNFSF10. Altogether, TNFSF10 overexpression probably stimulated proliferation and inflammation, and inhibited apoptosis by regulating the miR-376-3p/FGFR1 axis, implying that its increase contributed to OA progression. Our study provided a new potential biomarker or therapeutic target-TNFSF10, which was helpful to develop an efficient approach to cure OA.  相似文献   

3.
Laryngocarcinoma is the most common head and neck cancer and has a high incidence and mortality, causing about 83 000 deaths per year worldwide. Our research aimed to investigate the possible role of long noncoding RNA (lncRNA) taurine upregulated gene 1 (TUG1) in laryngocarcinoma development. The messenger RNA (mRNA) levels of TUG1 in tumor tissues and control (plasma) samples of laryngocarcinoma patients as well as in laryngocarcinoma cells were detected. The influences of TUG1 suppression on cell biological processes (viability, apoptosis, migration, and invasion) and cytoskeleton rearrangement in laryngocarcinoma cells were tested. Moreover, we investigated the regulatory interaction between TUG1 and miR-145-5p, and identified the target gene of miR-145-5p. The association between TUG1 and the protein expressions of RhoA/rho associated coiled-coil containing protein kinase (ROCK)/matrix metalloproteinases (MMPs) pathway-associated factors were detected. TUG1 was found to be highly expressed in tumor tissues and plasma samples of laryngocarcinoma patients as well as in laryngocarcinoma cells. Suppression of TUG1 decreased laryngocarcinoma cell viability, increased apoptosis, and suppression migration, invasion, and cytoskeleton rearrangement. Moreover, TUG1 negatively regulated miR-145-5p. TUG1 regulated tumor growth (viability and apoptosis) and metastasis through miR-145-5p. Furthermore, ROCK1 was targeted by miR-145-5p, and miR-145-5p/ROCK1 partner was involved in the process of tumor growth and metastasis. Finally, we found that TUG1 functioned on laryngocarcinoma by activating RhoA/ROCK/MMPs pathway. Our study reveals that lncRNA TUG1 is upregulated in laryngocarcinoma and may be involved in the process of laryngocarcinoma through miR-145-5p downregulation and activating the RhoA/ROCK/MMPs signals.  相似文献   

4.
Status epilepticus (SE) induces apoptosis of hippocampal neurons. However, the underlying mechanism in SE is not fully understood. Recently, lncRNA TUG1 is reported as a significant mediator in neuronal development. In present study, we aimed to investigate whether lncRNA TUG1 induces apoptosis of hippocampal neurons in SE rat models. TUG1 expression in serum of normal volunteers and SE patients, SE rats and neurons with epileptiform discharge was detected. SE rat model was established and intervened with TUG1 to evaluate hippocampal neuronal apoptosis. The experiments in vitro were further performed in neurons with epileptiform discharge to verify the effects of TUG1 on neuronal apoptosis of SE rats. The downstream mechanism of TUG1 was predicted and verified. miR-421 was intervened to perform the rescue experiments. Levels of oxidative stress and inflammation-related factors and mTOR pathway-related proteins in SE rats and hippocampal neurons were detected. TUG1 was highly expressed in serum of SE patients, SE rats and neurons with epileptiform discharge. Inhibition of TUG1 relieved pathological injury, oxidative stress and inflammation and reduced neuronal apoptosis in SE rats, which were further verified in hippocampal neurons. TUG1 upregulated TIMP2 expression by targeting miR-421. Overexpressed miR-421 inhibited hippocampal neuronal apoptosis. TUG1 knockout inactivated the mTOR pathway via the miR-421/TIMP2 axis to relieve neuronal apoptosis, oxidative stress and inflammation in SE rats and hippocampal neurons. Taken together, these findings showed that downregulation of lncRNA TUG1 inhibited apoptosis of hippocampal neurons in SE rats, and attenuated oxidative stress and inflammation damage through regulating the miR-421/mTOR axis.  相似文献   

5.
Myocardial fibrosis (MF) is one of the basic causes of many cardiovascular diseases. Noncoding RNAs (ncRNAs), including microRNA (miRNA) and long noncoding RNA (lncRNA), have been reported to play an indispensable role in MF. The current work is focused on investigating the biological role of lncRNA taurine upregulation gene 1 (TUG1) in activating cardiac myofibroblasts as well as the underlying mechanism. The outcome revealed that after myocardial infarction TUG1 expression increased and miR-133b expression decreased in the rat model of MF. The expression level of TUG1 increased following AngII treatment in cardiac myofibroblast. TUG1 knockdown inhibited the Ang-II induced cardiac myofibroblast activation and TUG1 overexpression increased proliferation and collagen generation of cardiac myofibroblasts. Bioinformatic prediction programs predicted that TUG1 had MRE directly combined with miR-133b seed sequence, luciferase activity, and RIP experiments indicated that TUG1, acted as a sponger and interacted with miR-133b in cardiac myofibroblasts. Furthermore, a target of miR-133b was CTGF and CTGF knockdown counteracted the promotion of MF by miR-133b knockdown. Collectively, our study suggested that TUG1 mediates CTGF expression by sponging miR-133b in the activation of cardiac myofibroblasts. The current work reveals a unique role of the TUG1/miR-133b/CTGF axis in MF, thus suggesting its immense therapeutic potential in the treatment of cardiac diseases.  相似文献   

6.
MicroRNAs (miRNAs) are fundamental regulators of cell proliferation, differentiation, and apoptosis, and are implicated in tumorigenesis of many cancers. MiR-34a is best known as a tumor suppressor through repression of growth factors and oncogenes. Growth arrest specific1 (GAS1) protein is a tumor suppressor that inhibits cancer cell proliferation and induces apoptosis through inhibition of RET receptor tyrosine kinase. Both miR-34a and GAS1 are frequently down-regulated in various tumors. However, it has been reported that while GAS1 is down-regulated in papillary thyroid carcinoma (PTC), miR-34a is up-regulated in this specific type of cancer, although their potential roles in PTC tumorigenesis have not been examined to date. A computational search revealed that miR-34a putatively binds to the 3′-UTR of GAS1 gene. In the present study, we confirmed previous findings that miR-34a is up-regulated and GAS1 down-regulated in PTC tissues. Further studies indicated that GAS1 is directly targeted by miR-34a. Overexpression of miR-34a promoted PTC cell proliferation and colony formation and inhibited apoptosis, whereas knockdown of miR-34a showed the opposite effects. Silencing of GAS1 had similar growth-promoting effects as overexpression of miR-34a. Furthermore, miR-34a overexpression led to activation of PI3K/Akt/Bad signaling pathway in PTC cells, and depletion of Akt reversed the pro-growth, anti-apoptotic effects of miR-34a. Taken together, our results demonstrate that miR-34a regulates GAS1 expression to promote proliferation and suppress apoptosis in PTC cells via PI3K/Akt/Bad pathway. MiR-34a functions as an oncogene in PTC.  相似文献   

7.
Growing reports indicate that long noncoding RNA (lncRNA) are involved in the regulation of various biological processes of cancer cells. LINC00319 is an ill investigated lncRNA and has been shown to regulate lung cancer, nasopharyngeal carcinoma and ovarian cancer. Nevertheless, its roles in bladder cancer (BCa) remain unclear. In our research, LINC00319 was shown to be an upregulated lncRNA in BCa tissues. LINC00319 expression is negatively correlated with the patient's prognosis. Silencing of LINC00319 suppressed BCa proliferation and invasiveness. In addition, the data indicated LINC00319 was a sponge for miR-4492 and miR-4492 suppressed ROMO1 expression in BCa. Furthermore, our results illustrated miR-4492/ROMO1 axis regulates proliferation, migration, and invasion and LINC00319 exerts oncogenic roles through modulating miR-4492/ROMO1 axis. In sum, this study suggested that LINC00319 acts as oncogenic roles in BCa progression.  相似文献   

8.
The molecule mechanisms of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in human diseases have been broadly studied recently, therefore, our research aimed to assess the effect of lncRNA taurine upregulated gene 1 (TUG1)/miR-187-3p/tescalcin (TESC) axis in pituitary adenoma (PA) by regulating the nuclear factor-kappa B (NF-κB) signaling pathway. We observed that TUG1 was upregulated in PA tissues and was associated with invasion, knosp grade and tumor size. TUG1 particularly bound to miR-187-3p. TUG1 knockdown inhibited cell proliferation, invasion, migration, and epithelial–mesenchymal transition, promoted apoptosis, and regulated the expression of NF-κB p65 and inhibitor of κB (IκB)-α in PA cells lines in vitro, and also inhibited tumor growth in vivo, and these effects were reversed by miR-187-3p reduction. Similarly, miR-187-3p elevation inhibited PA cell malignant behaviors and modulated the expression of NF-κB p65 and IκB-α in PA cells, and reduced in vivo tumor growth as well. TUG1 inhibition downregulated TESC, which was targeted by miR-187-3p. In conclusion, this study suggests that TUG1 sponges miR-187-3p to affect PA development by elevating TESC and regulating the NF-κB signaling pathway.Subject terms: Cell biology, Diseases  相似文献   

9.
Adipose-derived stem cells (ADSCs) have emerged as a cell source for regeneration medicine. ADSCs possess the capacity to differentiate into endothelial cells and serve an essential role in vascular development and function. LncRNA taurine upregulated gene 1 (TUG1) has recently been linked with angiogenesis in hepatoblastoma. However, the roles of TUG1 in endothelial differentiation of ADSCs remain unidentified. Human adipose-derived stem cells (hADSCs) were obtained and characterized by flow cytometry, Oil red O and Alizarin Red staining. HADSCs were maintained in the endothelial differentiation medium and the expressions of TUG1, miR-143, and FGF1 were examined by qRT-PCR. To assess endothelial differentiation, the expressions of CD31, von Willebrand factor (vWF), VE-cadherin were examined by Western blot analysis, qRT-PCR, and immunofluorescence. Tube formation in Matrigel was examined. The interactions between TUG1 and miR-143, miR-143 and FGF1 were validated by luciferase assays. During the endothelial differentiation process, TUG1 and FGF1 were upregulated, whereas miR-143 was downregulated. TUG1 overexpression downregulated miR-143, upregulated FGF1, CD31, vWF, and VE-cadherin, and enhanced capillary tube formation. Luciferase assays showed that TUG1 interacted with miR-143, and FGF1 was a direct target of miR-143. Furthermore, the enhancement of endothelial differentiation induced by TUG1 overexpression was abolished by miR-143 overexpression. Our findings implicated that lncRNA TUG1 promoted endothelial differentiation of ADSCs by regulating the miR-143/FGF1 axis.  相似文献   

10.
Papillary thyroid cancer (PTC) accounts for 80% of all thyroid cancers and seriously impacts the quality of people's lives. Long noncoding RNAs (lncRNAs) play an important role in PTC. In previous studies, thousands of lncRNAs were screened to study their potential relationships with PTC. The aim of this study was to investigate the effect of RPL34-AS1 in PTC and to explore its potential mechanisms. Bioinformatic analyses were performed to characterize the possible function and biological features of RPL34-AS1. Apoptosis, proliferation, and invasion were detected to assess the effect of RPL34-AS1. Cell proliferation was measured using a Cell Counting Kit-8 assay. Western blot analysis was used to assess the apoptosis proteins Bax and Bcl-2. Cell invasion was measured using a Transwell assay. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was performed to examine RPL34-AS1, miR-3663-3P, and RGS4 expression. Dual-luciferase assay was performed to assess the binding of miR-3663-3P by RPL34-AS1. RIP experiment was used to verify the combination between miR-3663-3p and RGS4. We found that overexpression of RPL34-AS1 could inhibit proliferation and invasion while promoting apoptosis in PTC cell lines. Moreover, RPL34-AS1 could also competitively bind miR-3663-3p and exert its function by regulating the miR-3663-3p/RGS4 in PTC cell lines. We found a previously uncharacterized lncRNA, RPL34-AS1, and studied its function and mechanism in PTC. Our research will provide new insights into PTC and new clues for its clinical treatment.  相似文献   

11.
12.
13.
Protein regulator of cytokinesis 1 (PRC1) has been reported in correlation with various malignancies. Functionality of PRC1 in nasopharyngeal carcinoma (NPC) was investigated, in perspective of long noncoding RNA (lncRNA) regulatory circuitry. Aberrant expressed messenger RNA and lncRNA were screened out from the Gene Expression Omnibus microarray database. NPC cell line CNE-2 was adopted for in vitro study and transfected with mimic or short hairpin RNA of miR-194-3p and PTPRG-AS1. The radioactive sensitivity, cell viability, migration, invasion, and apoptosis were detected. PTPRG-AS1 and PRC1 were upregulated in NPC, whereas miR-194-3p was downregulated. PTPRG-AS1 was found to specifically bind to miR-194-3p as a competing endogenous RNA and miR-194-3p targets and negatively regulates PRC1. Overexpressed miR-194-3p or silenced PTPRG-AS1 resulted in enhanced sensitivity to radiotherapy and cell apoptosis along with suppressed cell migration, invasion and proliferation in NPC. Furthermore, impaired tumor formation was also caused by miR-194-3p overexpression or PTPRG-AS1 suppression through xenograft tumor in nude mice. In our study, PTPRG-AS1/miR-194-3p/PRC1 regulatory circuitry was revealed in NPC, the mechanism of which can be of clinical significance for treatment of NPC.  相似文献   

14.
15.
16.
Emerging studies have shown that long noncoding RNA (lncRNA) TUG1 (taurine‐up‐regulated gene 1) plays critical roles in multiple biological processes. However, the expression and function of lncRNA TUG1 in cerebral ischaemia/reperfusion injury have not been reported yet. In this study, we found that LncRNA TUG1 expression was significantly up‐regulated in cultured MA‐C cells exposed to OGD/R injury, while similar results were also observed in MCAO model. Mechanistically, knockdown of TUG1 decreased lactate dehydrogenase levels and the ratio of apoptotic cells and promoted cell survival in vitro. Moreover, knockdown of TUG1 decreased AQP4 (encoding aquaporin 4) expression to attenuate OGD/R injury. TUG1 could interact directly with miR‐145, and down‐regulation of miR‐145 could efficiently reverse the function of TUG1 siRNA on AQP4 expression. Finally, the TUG1 shRNA reduced the infarction area and cell apoptosis in I/R mouse brains in vivo. In summary, our results suggested that lncRNA TUG1 may function as a competing endogenous RNA (ceRNA) for miR‐145 to induce cell damage, possibly providing a new therapeutic target in cerebral ischaemia/reperfusion injury.  相似文献   

17.
18.
19.
Taurine-upregulated gene 1 (TUG1) is a 7.1 kb long noncoding RNA (lncRNA) first recognized in 2005 as an important element for retinal development in rodents. Subsequently, this lncRNA has been shown to participate in oncogenic processes through alteration in chromatin structure, sponging microRNAs, and affecting the expression of some cancer-related pathways. While most of the studies have revealed an oncogenic role for this lncRNA, some reports have shown downregulation of TUG1 in lung cancer samples compared with noncancerous samples. In triple negative breast cancer samples, the expression of this lncRNA has been decreased. Besides, its expression has been higher in HER2-enriched and basal-like subtypes compared with luminal A. In the current review, we discuss the latest literature about the expression pattern and functional roles of TUG1 in diverse cancer types. In addition, its role in epithelial−mesenchymal transition and activation of Wnt/β-catenin pathway in human malignancies will be explored.  相似文献   

20.
lncRNA COL1A2-AS1 (COL1A2 antisense RNA 1), a lncRNA overexpressed in hypertrophic scar, has been demonstrated to be involved in the hypertrophic scar formation. However, the mechanisms of lncRNA COL1A2-AS1 inhibiting the scar fibroblasts proliferation remains not well understood. In this study, we demonstrated that lncRNA COL1A2-AS1 was upregulated in hypertrophic scar tissue and fibroblasts, and suppressed fibroblasts proliferation by promoting Smad7 expression. Furthermore, we found that miR-21 was involved in lncRNA COL1A2-AS1-induced expression of Smad7, by which COL1A2-AS1 acted as endogenous sponge to adsorb miR-21 and in turn regulated Smad7 and a cascade of molecular to play a protective role in hypertrophic scar. In addition, overexpression of miR-21 attenuated COL1A2-AS1-mediated proliferation suppression of hypertrophic scar fibroblasts. In conclusion, our study demonstrated that COL1A2-AS1/miR-21/Smad pathway plays an important role in inhibiting hypertrophic scar formation, and suggested this novel pathway may be a new target for hypertrophic scar treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号