共查询到20条相似文献,搜索用时 15 毫秒
1.
Darryl L. Whitehead Arnault R.G. Gauthier Erica W.H. Mu Mike B. Bennett Ian R. Tibbetts 《Journal of morphology》2015,276(5):481-493
Ampullae of Lorenzini were examined from juvenile Carcharhinus leucas (831–1,045 mm total length) captured from freshwater regions of the Brisbane River. The ampullary organ structure differs from all other previously described ampullae in the canal wall structure, the general shape of the ampullary canal, and the apically nucleated supportive cells. Ampullary pores of 140–205 µm in diameter are distributed over the surface of the head region with 2,681 and 2,913 pores present in two sharks that were studied in detail. The primary variation of the ampullary organs appears in the canal epithelial cells which occur as either flattened squamous epithelial cells or a second form of pseudostratified contour‐ridged epithelial cells; both cell types appear to release material into the ampullary lumen. Secondarily, this ampullary canal varies due to involuted walls that form a clover‐like canal wall structure. At the proximal end of the canal, contour‐ridged cells abut a narrow region of cuboidal epithelial cells that verge on the constant, six alveolar sacs of the ampulla. The alveolar sacs contain numerous receptor and supportive cells bound by tight junctions and desmosomes. Pear‐shaped receptor cells that possess a single apical kinocilium are connected basally by unmyelinated neural boutons. Opposed to previously described ampullae of Lorenzini, the supportive cells have an apical nucleus, possess a low number of microvilli, and form a unique, jagged alveolar wall. A centrally positioned centrum cap of cuboidal epithelial cells overlies a primary afferent lateral line nerve. J. Morphol. 276:481–493, 2015. © 2014 Wiley Periodicals, Inc. 相似文献
2.
A. R. G. Gauthier D. L. Whitehead I. R. Tibbetts B. W. Cribb M. B. Bennett 《Journal of fish biology》2018,92(2):504-514
This study investigated and compared the morphology of the electrosensory system of three species of benthic rays. Neotrygon trigonoides, Hemitrygon fluviorum and Maculabatis toshi inhabit similar habitats within Moreton Bay, Queensland, Australia. Like all elasmobranchs, they possess the ability to detect weak electrical fields using their ampullae of Lorenzini. Macroscopically, the ampullary organs of all three species are aggregated in three bilaterally paired clusters: the mandibular, hyoid and superficial ophthalmic clusters. The hyoid and superficial ophthalmic clusters of ampullae arise from both dorsal and ventral ampullary pores. The dorsal pores are typically larger than the ventral pores in all three species, except for the posterior ventral pores of the hyoid grouping. Ampullary canals arising from the hyoid cluster possessed a quasi‐sinusoidal shape, but otherwise appeared similar to the canals described for other elasmobranchs. Ultrastructure of the ampullae of Lorenzini of the three species was studied using a combination of light, confocal and electron microscopy. All possess ampullae of the alveolar type. In N. trigonoides and M. toshi, each ampullary canal terminates in three to five sensory chambers, each comprising several alveoli lined with receptor and supportive cells and eight to 11 sensory chambers in H. fluviorum. Receptor cells of all three species possess a similar organization to those of other elasmobranchs and were enveloped by large, apically nucleated supportive cells protruding well into the alveolar sacs. The luminally extended chassis of supportive cells protruding dramatically into the ampullary lumen had not previously been documented for any elasmobranch species. 相似文献
3.
Paddlefish Polyodon spathula detected and avoided obstacles with an exposed metallic surface but not plastic objects. An aluminium obstacle was avoided from significantly greater minimum approach distances than were any of the other obstacles. No significant difference was detected between the plastic and plastic-covered aluminium obstacles, while control values were significantly less than for all obstacle types. Avoidance distances measured at different water conductivities were not significantly different. Fish collided frequently with the plastic and plastic-covered aluminium obstacles, and with the control site, suggesting that these obstacles were not detected by the electrosensory apparatus. The aluminium obstacle was avoided successfully in all test runs. The unambiguous avoidance behaviour elicited by the aluminium obstacle suggests that large metallic structures, such as locks and dams, have the potential to interfere with paddlefish migrations. ©2000 The Fisheries Society of the British Isles 相似文献
4.
Electroreception in marine fishes occurs across a variety of taxa and is best understood in the chondrichthyans (sharks, skates, rays, and chimaeras). Here, we present an up-to-date review of what is known about the biology of passive electroreception and we consider how electroreceptive fishes might respond to electric and magnetic stimuli in a changing marine environment. We briefly describe the history and discovery of electroreception in marine Chondrichthyes, the current understanding of the passive mode, the morphological adaptations of receptors across phylogeny and habitat, the physiological function of the peripheral and central nervous system components, and the behaviours mediated by electroreception. Additionally, whole genome sequencing, genetic screening and molecular studies promise to yield new insights into the evolution, distribution, and function of electroreceptors across different environments. This review complements that of electroreception in freshwater fishes in this special issue, which provides a comprehensive state of knowledge regarding the evolution of electroreception. We conclude that despite our improved understanding of passive electroreception, several outstanding gaps remain which limits our full comprehension of this sensory modality. Of particular concern is how electroreceptive fishes will respond and adapt to a marine environment that is being increasingly altered by anthropogenic electric and magnetic fields. 相似文献
5.
Stephen M. Kajiura 《Environmental Biology of Fishes》2001,61(2):125-133
Selection to maximize electroreceptive search area might have driven evolution of the cephalofoil head morphology of hammerhead sharks (family Sphyrnidae). The enhanced electrosensory hypothesis predicts that the wider head of sphyrnid sharks necessitates a greater number of electrosensory pores to maintain a comparable pore density. Although gross head morphology clearly differs between sphyrnid sharks and their closest relatives the carcharhinids, a quantitative examination is lacking. Head morphology and the distribution of electrosensory pores were compared between a carcharhinid, Carcharhinus plumbeus, and two sphyrnid sharks, Sphyrna lewini and S. tiburo. Both sphyrnids had greater head widths than the carcharhinid, although head surface area and volume did not differ between the three species. The raked head morphology of neonatal S. lewini pups, presumably an adaptation to facilitate parturition, becomes orthogonal to the body axis immediately post-parturition whereas this change is much less dramatic for the other two species. The general pattern of electrosensory pore distribution on the head is conserved across species despite the differences in gross head morphology. Sphyrna lewini has a mean of 3067 ± 158.9 SD pores, S. tiburo has a mean of 2028 ± 96.6 SD pores and C. plumbeus has a mean of 2317 ± 126.3 SD pores and the number of pores remains constant with age. Sphyrnids have a greater number of pores on the ventral surface of the head whereas C. plumbeus has an even distribution on dorsal and ventral surfaces. The greater number of pores distributed on a similar surface area provides S. lewini pups with a higher density of electrosensory pores per unit area compared to C. plumbeus pups. The greater number of ampullae, the higher pore density and the larger sampling area of the head combine to provide hammerhead sharks with a morphologically enhanced electroreceptive capability compared to comparably sized carcharhinids. 相似文献
6.
The Neuroecology of the Elasmobranch Electrosensory World: Why Peripheral Morphology Shapes Behavior
Timothy C. Tricas 《Environmental Biology of Fishes》2001,60(1-3):77-92
The adaptations of elasmobranch sensory systems can be studied by linking the morphological structure with the natural behavior and ecology of the organism. This paper presents the first step in a neuroecological approach to interpret the spatial arrangement of the electrosensory ampullary organs in elasmobranch fishes. A brief review of the structure and function of the ampullae of Lorenzini is provided for interpretation of the organ system morphology in relation to the detection of dipole and uniform electric fields. The spatial projections of canals from discrete ampullary clusters were determined for the barndoor skate, Raja laevis, based upon a published figure in Raschi (1986), and measured directly from the head of the white shark, Carcharodon carcharias. The dorsoventrally flattened body of the skate restricts the projections of long canals to the horizontal plane. There is a distinct difference between dorsal and ventral projection patterns in all groups. Notable within-cluster features include a relatively long canal subgroup in the dorsal superficial ophthalmic (SOd) and dorsal hyoid (HYOd) clusters that are oriented parallel (bidirectionally) to the longitudinal axis of the body. It is postulated that this subgroup of canals may be important for detection and orientation to weak uniform fields. Ventral canal projections in the skate are primarily lateral, with the exception of the hyoid (HYOv) that also projects medially. This wide dispersion may function for the detection of prey located below the body and pectoral fins of the skate, and may also be used for orientation behavior. The mandibular canals located near the margin of the lower jaw (of both study species) are ideally positioned for use during prey manipulation or capture, and possibly for interspecific courtship or biting. The head of the white shark, which lacks the hyoid clusters, is ovoid in cross section and thus ampullary canals can project into three-dimensional space. The SOd and superficial ophthalmic ventral (SOv) clusters show strong rostral, dorsal and lateral projection components, whereas the SOv also detects rostral fields under the snout. In the sagittal plane, the SOv and SOd have robust dorsal projections as well as ventral in the SOv. Most notable are canal projections in the white shark buccal (BUC) ampullary cluster, which has a radial turnstile configuration on the ventrolateral side of the snout. The turnstile design and tilt between orthogonal planes indicates the white shark BUC may function in detection of uniform fields, including magnetically induced electric fields that may be used in orientation behaviors. These data can be used in future neuroecology behavioral performance experiments to (1) test for possible specializations of cluster groups to different natural electric stimuli, (2) the possibility of specialized canal subgroups within a cluster, and (3) test several models of navigation that argue for the use of geomagnetically induced electric cues. 相似文献
7.
Prey manipulation through headfirst ingestion is a common foraging tactic in predatory taxa. Sawsharks possess a toothed rostrum that is thought to assist in prey capture, but the process from prey contact to ingestion is unknown. This study provides evidence of headfirst ingestion and possible prey orientation in situ through the use of cone beam CT scans in the common sawshark (Pristiophorus cirratus). CT scans provide an efficient method for assessing ingestion and proposing plausible behavioural tactics for food manipulation in a species difficult to observe in the wild or maintain in captivity. 相似文献
8.
J. A. Sisneros T. C. Tricas C. A. Luer 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1998,183(1):87-99
This study examined the response properties of skate electrosensory primary afferent neurons of pre-hatch embryo (8–11 weeks), post-hatch juvenile (1–8 months), and adult (>2 year) clearnose skates (Raja eglanteria) to determine whether encoding of electrosensory information changes with age, and if the electro-sense is adapted to encode natural bioelectric stimuli across life history stages. During ontogeny, electrosensory primary afferents increase resting discharge rate, spike regularity, and sensitivity at best frequency. Best frequency was at 1–2 Hz for embryos, showed an upwards shift to 5 Hz in juveniles, and a downward shift to 2–3 Hz in adults. Encapsulated embryos exhibit ventilatory movements that are interrupted by a “freeze response”” when presented with weak uniform fields at 0.5 and 1 Hz. This phasic electric stimulus contains spectral information found in potentials produced by natural fish predators, and therefore indicates that the embryo electrosense can efficiently mediate predator detection and avoidance. In contrast, reproductively active adult clearnose skates discharge their electric organs at rates near the peak frequency sensitivity of the adult electrosensory system, which; facilitates electric communication during social behavior. We suggest that life-history-dependent functions such as these may shape the evolution of the low-frequency response properties for the elasmobranch electrosensory system. Accepted: 19 February 1998 相似文献
9.
Arnault R.G. Gauthier Darryl L. Whitehead Michael B. Bennett Ian R. Tibbetts 《Journal of morphology》2015,276(9):1047-1054
We hypothesized that due to the relative conductivity of the environment, and to maintain sensory function, ampullary organs of marine Neoarius graeffei would differ morphologically from those described previously for estuarine and freshwater conspecifics. Unlike the ampullary systems of N. graeffei from freshwater and estuarine habitats, the ampullary pores of marine specimens occur in two distinct patterns; numerous pores seemingly randomly scattered on the head and ventro‐lateral regions of the body, and pores arranged in distinctive vertical lines above the lateral line on the dorso‐lateral body of the fish. Light and electron microscopy revealed that the ampullary organs also differed morphologically from estuarine and freshwater specimens in the presence of longer ampullary canals, a hitherto unreported canal wall composition, and in the collagen sheath surrounding both the canal and the ampulla proper within dermal connective tissues. Ampullary pores were wider in marine individuals and opened to the longest ampullary canals reported for this species. The canal wall was lined by cuboidal and squamous epithelial cells. Each ampullary canal opened into a single ampulla proper containing significantly more receptor cells than estuarine and freshwater conspecifics. The distribution of ampullary pores as well as the microstructure of the ampullary organs indicates that the electrosensory system of marine N. graeffei differs from those of estuarine and freshwater specimens in ways that would be expected to maintain the functionality of the system in a highly conductive, fully marine environment, and reveals the remarkable plasticity of this species’ ampullary system in response to habitat conductivity. J. Morphol. 276:1047–1054, 2015. © 2015 Wiley Periodicals, Inc. 相似文献
10.
Phalangida includes three of the four suborders of Opiliones (Arachnida): Eupnoi, Dyspnoi and Laniatores. We review the literature on the sensory structures and capabilities of Phalangida, provide new morphological data for 18 species and discuss the 11 sensory structures that have been described in the group. Based on the published data encompassing both behaviour and morphology, three conclusions are apparent: (1) species of Phalangida appear to have limited abilities to detect stimuli at a distance; (2) close range olfaction probably helps to find foods with strong odours, but (3) they appear to be highly dependent on contact chemoreception to detect live prey, predators and mates. We also highlight the fact that legs I in the three suborders and pedipalps in Dyspnoi and Eupnoi are very important sensory appendages, thus legs II should not be called the ‘sensory appendages’ of harvestmen. In conclusion, we highlight the fact that the sensory capabilities, diet, prey capturing and handling ability, and foraging behaviour of species of Phalangida seem to be different from those of most other arachnids. Finally, we suggest future directions for studies in the field of the sensory system of the group. 相似文献
11.
Korbinian Pacher Michael Breuker Matthew J. Hansen Ralf H. J. M. Kurvers Jan Häge Felicie Dhellemmes Paolo Domenici John F. Steffensen Stefan Krause Thomas Hildebrandt Guido Fritsch Pascal Bach Philippe S. Sabarros Paul Zaslansky Kristin Mahlow Johannes Müller Rogelio González Armas Hector Villalobos Ortiz Felipe Galván-Magaña Jens Krause 《Journal of fish biology》2024,104(3):713-722
Billfish rostra potentially have several functions; however, their role in feeding is unequivocal in some species. Recent work linked morphological variation in rostral micro-teeth to differences in feeding behavior in two billfish species, the striped marlin (Kajikia audax) and the sailfish (Istiophorus platypterus). Here, we present the rostral micro-tooth morphology for a third billfish species, the blue marlin (Makaira nigricans), for which the use of the rostrum in feeding behavior is still undocumented from systematic observations in the wild. We measured the micro-teeth on rostrum tips of blue marlin, striped marlin, and sailfish using a micro–computed tomography approach and compared the tooth morphology among the three species. This was done after an analysis of video-recorded hunting behavior of striped marlin and sailfish revealed that both species strike prey predominantly with the first third of the rostrum, which provided the justification to focus our analysis on the rostrum tips. In blue marlin, intact micro-teeth were longer compared to striped marlin but not to sailfish. Blue marlin had a higher fraction of broken teeth than both striped marlin and sailfish, and broken teeth were distributed more evenly on the rostrum. Micro-tooth regrowth was equally low in both marlin species but higher in sailfish. Based on the differences and similarities in the micro-tooth morphology between the billfish species, we discuss potential feeding-related rostrum use in blue marlin. We put forward the hypothesis that blue marlin might use their rostra in high-speed dashes as observed in striped marlin, rather than in the high-precision rostral strikes described for sailfish, possibly focusing on larger prey organisms. 相似文献
12.
Robert J. Asher 《American journal of physical anthropology》1998,105(3):355-367
The hypothesis that the vomeronasal organ has an important functional relationship with, and led to the evolution of, the prosimian toothcomb has not been well tested. This paper examines the diversity of anatomical strepsirrhinism across several mammalian taxa to determine if fossil and living strepsirrhine primates exhibit any derived characters that may highlight the functional link between the vomeronasal organ and the toothcomb, and to examine the potential importance of anatomical strepsirrhinism to toothcomb origins. Results indicate that extant gregarious lemuriforms are derived in having a relatively wide interincisal gap, providing an unobstructed line of communication between the vomeronasal organ and anterior rostral structures such as the toothcomb. This finding is consistent with the proposal that anatomical strepsirrhinism is functionally related to use of the toothcomb in grooming. However, the importance of the vomeronasal organ to toothcomb origins is less clear. If the morphology of adapiforms and non-gregarious lemuriforms is representative of the morphology of basal lemuriforms, then it can be inferred that early lemuriforms did not possess the wide-gap autapomorphy; hence, anatomical evidence discussed here cannot be used to rule out non-social hypotheses of toothcomb origins. Am J Phys Anthropol 105:355–367, 1998. © 1998 Wiley-Liss, Inc. 相似文献
13.
Spogmai Komak Jean G. Boal Ludovic Dickel Bernd U. Budelmann 《Marine and Freshwater Behaviour and Physiology》2005,38(2):117-125
Physiological studies have shown that the epidermal head and arm lines in cephalopods are a mechanoreceptive system that is similar to the fish and amphibian lateral lines (Budelmann BU, Bleckmann H. 1988. A lateral line analogue in cephalopods: Water waves generate microphonic potentials in the epidermal head lines of Sepia officinalis and Lolliguncula brevis. J. Comp. Physiol. A 164:1-5.); however, the biological significance of the epidermal lines remains unclear. To test whether cuttlefish show behavioural responses to local water movements, juvenile Sepia officinalis were exposed to local sinusoidal water movements of different frequencies (0.01-1000 Hz) produced by a vibrating sphere. Five behavioural responses were recorded: body pattern changing, moving, burrowing, orienting, and swimming. Cuttlefish responded to a wide range of frequencies (20-600 Hz), but not to all of the frequencies tested within that range. No habituation to repeated stimuli was seen. Results indicate that cuttlefish can detect local water movements (most likely with the epidermal head and arm lines) and are able to integrate that information into behavioural responses. 相似文献
14.
The anatomical characteristics of the mechanoreceptive lateral line system and electrosensory ampullae of Lorenzini of Rhinobatos typus and Aptychotrema rostrata are compared. The spatial distribution of somatic pores of both sensory systems is quite similar, as lateral line canals
are bordered by electrosensory pore fields. Lateral line canals form a sub-epidermal, bilaterally symmetrical net on the dorsal
and ventral surfaces; canals contain a nearly continuous row of sensory neuromasts along their length and are either non-pored
or pored. Pored canals are connected to the surface through a single terminal pore or additionally possess numerous tubules
along their length. On the dorsal surface of R. typus, all canals of the lateral line occur in the same locations as those of A. rostrata. Tubules branching off the lateral line canals of R. typus are ramified, which contrasts with the straight tubules of A. rostrata. The ventral prenasal lateral line canals of R. typus are pored and possess branched tubules in contrast to the non-pored straight canals in A. rostrata. Pores of the ampullae of Lorenzini are restricted to the cephalic region of the disk, extending only slightly onto the pectoral
fins in both species. Ampullary canals penetrate subdermally and are detached from the dermis. Ampullae occur clustered together,
and can be surrounded by capsules of connective tissue. We divided the somatic pores of the ampullae of Lorenzini of R. typus into 12 pore fields (10 in A. rostrata), corresponding to innervation and cluster formation. The total number of ampullary pores found on the ventral skin surface
of R. typus is approximately six times higher (four times higher in A. rostrata) than dorsally. Pores are concentrated around the mouth, in the abdominal area between the gills and along the rostral cartilage.
The ampullae of both species of shovelnose ray are multi-alveolate macroampullae, sensu Andres and von Düring (1988). Both the pore patterns and the distribution of the ampullary clusters in R. typus differ from A. rostrata, although a basic pore distribution pattern is conserved. 相似文献
15.
16.
Strickler JR Balázsi G 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2007,362(1487):1947-1958
In the water column, planktonic copepods encounter small-scale hydrodynamic disturbances generated by fellow zooplankters. Our question is whether or not the copepods can distinguish between hydrodynamic disturbances created by predators, prey, conspecifics and/or mates. We used a Schlieren optical system with a density gradient in the water volume and filmed at 48 frames per second to record the behaviour of copepods during encounters with an artificial hydrodynamic disturbance. We observed the reactions of Cyclops scutifer and Epischura nordenskioldi towards disturbances of different strengths. We also re-examined an earlier report on tandem swimming in C. scutifer while attempting to mate, using novel mathematical tools to analyse possible correlations between the two mates. We conclude that the information within the hydrodynamic disturbances created by swimming zooplankters has enough content for differentiated reactions. We also suggest that the adaptive value of tandem swimming during mating results in offspring capable of executing escape reactions comparable in strength to the disturbances. 相似文献
17.
The microstructure, composition and mechanical properties of the rostrum in Cyrtotrachelus longimanus (JHC Fabre) were studied utilizing light, fluorescent, scanning electron microscopy (SEM) and energy-dispersive spectroscopy. SEM images show the morphological characteristics of rostrum’s cross section; it is a typical lightweight multilayer structure – one rigid exocuticle layer and dense endocuticle layers, which construct unevenly overlapping fiber structures. The composition analysis of the rostrum shows that it is mainly composed of C, H, N, O, as well as some metal elements and microelements, such as Mg, Si, Zn, Ca and Na, which contribute to its mechanical performance. The mechanical properties of the rostrum were tested by the electronic universal testing machine, which shows it has high-specific strength and is almost the same as that of the stainless steel. The results may provide a biological template to inspire biomimetic lightweight structure design. 相似文献
18.
All Bdelloid Rotifers have the same body plan: elongated body, ciliated apical region (rotatory apparatus or corona), telescopically retractable foot and head with pseudosegments, paired gonads, single dorsal antenna, apical rostrum, ramate mastax. Bdelloids use the rotatory apparatus for both locomotion and collecting food and therefore the shape of the corona and arrangement of the cilia, both related to the animal's life style, probably are important for the fitness of the rotifers. We have analyzed the fine morphology of the corona and the rostrum from species belonging to the four families, Habrotrochidae, Philodinidae, Adinetidae and Philodinavidae, each with its own form of feeding and locomotion. In the rostrum one can distinguish a sensorial area and a ciliated area. The former is common to all bdelloids, while the latter is lacking in the Adinetidae. Three models of corona can be recognized: 1) a simple ciliated field of undifferentiated cilia (Adinetidae), 2) a well developed ciliated field with specialized cilia forming the paired trochi on the disks and the cingulum (Habrotrochidae and Philodinidae), and 3) a ciliated field with a single trochus encompassing rudimentary pedicels and cingulum (Abrochtha). We propose (1) to no longer use Digononta as a taxon, (2) to assign the class rank to Bdelloidea, (3) to distinguish three orders, grouping Philodinidae and Habrotrochidae under a single order and (4) to retain the current families. 相似文献
19.
This work comprises the first comparative study of the morphology and cytology of the sperm transmission organs in males of 14 species of viviparous clinid fishes (Clinidae, Blennioidei, Teleostei). The form and dimensions of these organs differ among the various species studied. The organs are composed of intra-abdominal ampullae, into which the sperm ducts and urinary bladder anchor, and an external protruding intromittent papilla used for insemination. The form of the ampullae differs among the various species, from pear-shaped to horseshoe-shaped. It increases in dimensions with increasing length of the male. In all the species this organ is covered by a connective-tissue tunic that encompasses both circular and longitudinal striated muscle bundles. The lumina of the ampullae harbor the epididymis, a strongly convoluted and plicated duct, which becomes filled with spermatozeugmata during reproduction. From here, the epididymis continues into the protruding intromittent papillae, where its folds gradually straighten at the apical part of the intromittent organ. The form and dimensions of this copulatory organ also differ in the various species. Papillae bearing taste buds are found on the apical parts of the intromittent organ, and it is probable that these, together with the difference in forms of the organ, help to prevent interspecific copulation. 相似文献
20.
Gary Dougill Eugene L. Starostin Alyx O. Milne Gert H. M. van der Heijden Victor G. A. Goss Robyn A. Grant 《Journal of morphology》2020,281(10):1271-1279
Whiskers are present in many species of mammals. They are specialised vibrotactile sensors that sit within strongly innervated follicles. Whisker size and shape will affect the mechanical signals that reach the follicle, and hence the information that reaches the brain. However, whisker size and shape have not been quantified across mammals before. Using a novel method for describing whisker curvature, this study quantifies whisker size and shape across 19 mammalian species. We find that gross two-dimensional whisker shape is relatively conserved across mammals. Indeed, whiskers are all curved, tapered rods that can be summarised by Euler spiral models of curvature and linear models of taper, which has implications for whisker growth and function. We also observe that aquatic and semi-aquatic mammals have relatively thicker, stiffer, and more highly tapered whiskers than arboreal and terrestrial species. In addition, smaller mammals tend to have relatively long, slender, flexible whiskers compared to larger species. Therefore, we propose that whisker morphology varies between larger aquatic species, and smaller scansorial species. These two whisker morphotypes are likely to induce quite different mechanical signals in the follicle, which has implications for follicle anatomy as well as whisker function. 相似文献