首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
C4b and C3b deposited on host cells undergo limited proteolytic cleavage by regulatory proteins. Membrane cofactor protein (MCP; CD46), factor H, and C4b binding protein mediate this reaction, known as cofactor activity, that also requires the plasma serine protease factor I. To explore the roles of the fluid phase regulators vs those expressed on host cells, a model system was used examining complement fragments deposited on cells transfected with human MCP as assessed by FACS and Western blotting. Following incubation with Ab and complement on MCP(+) cells, C4b was progressively cleaved over the first hour to C4d and C4c. There was no detectable cleavage of C4b on MCP(-) cells, indicating that MCP (and not C4BP in the serum) primarily mediates this cofactor activity. C3b deposition was not blocked on MCP(+) cells because classical pathway activation occurred before substantial C4b cleavage. Cleavage, though, of deposited C3b was rapid (<5 min) and iC3b was the dominant fragment on MCP(-) and MCP(+) cells. Studies using a function-blocking mAb further established factor H as the responsible cofactor. If the level of Ab sensitization was reduced 8-fold or if Mg(2+)-EGTA was used to block the classical pathway, MCP efficiently inhibited C3b deposition mediated by the alternative pathway. Thus, for the classical pathway, MCP is the cofactor for C4b cleavage and factor H for C3b cleavage. However, if the alternative pathway mediates C3b deposition, then MCP's cofactor activity is sufficient to restrict complement activation.  相似文献   

3.
Regulation of complement activation by pathogens and the host are critical for survival. Using two highly related orthopoxvirus proteins, the vaccinia and variola (smallpox) virus complement control proteins, which differ by only 11 aa, but differ 1000-fold in their ability to regulate complement activation, we investigated the role of electrostatic potential in predicting functional activity. Electrostatic modeling of the two proteins predicted that altering the vaccinia virus protein to contain the amino acids present in the second short consensus repeat domain of the smallpox protein would result in a vaccinia virus protein with increased complement regulatory activity. Mutagenesis of the vaccinia virus protein confirmed that changing the electrostatic potential of specific regions of the molecule influences its activity and identifies critical residues that result in enhanced function as measured by binding to C3b, inhibition of the alternative pathway of complement activation, and cofactor activity. In addition, we also demonstrate that despite the enhanced activity of the variola virus protein, its cofactor activity in the factor I-mediated degradation of C3b does not result in the cleavage of the alpha' chain of C3b between residues 954-955. Our data have important implications in our understanding of how regulators of complement activation interact with complement, the regulation of the innate immune system, and the rational design of potent complement inhibitors that might be used as therapeutic agents.  相似文献   

4.
Recent studies suggest that uromodulin plays an important role in chronic kidney diseases. It can interact with several complement components, various cytokines and immune system cells. Complement factor H (CFH), as a regulator of the complement alternative pathway, is also associated with various renal diseases. Thus, we have been suggested that uromodulin regulates complement activation by interacting with CFH during tubulointerstitial injury. We detected co‐localization of uromodulin and CFH in the renal tubules by using immunofluorescence. Next, we confirmed the binding of uromodulin with CFH in vitro and found that the affinity constant (KD) of uromodulin binding to CFH was 4.07 × 10?6M based on surface plasmon resonance results. The binding sites on CFH were defined as the short consensus repeat (SCR) units SCR1–4, SCR7 and SCR19–20. The uromodulin‐CFH interaction enhanced the cofactor activity of CFH for factor I‐mediated cleavage of C3b to iC3b. These results indicate that uromodulin plays a role via binding and enhancing the function of CFH.  相似文献   

5.
Regulators of complement activation (RCA) inhibit complement‐induced immune responses on healthy host tissues. We present crystal structures of human RCA (MCP, DAF, and CR1) and a smallpox virus homolog (SPICE) bound to complement component C3b. Our structural data reveal that up to four consecutive homologous CCP domains (i–iv), responsible for inhibition, bind in the same orientation and extended arrangement at a shared binding platform on C3b. Large sequence variations in CCP domains explain the diverse C3b‐binding patterns, with limited or no contribution of some individual domains, while all regulators show extensive contacts with C3b for the domains at the third site. A variation of ~100° rotation around the longitudinal axis is observed for domains binding at the fourth site on C3b, without affecting the overall binding mode. The data suggest a common evolutionary origin for both inhibitory mechanisms, called decay acceleration and cofactor activity, with variable C3b binding through domains at sites ii, iii, and iv, and provide a framework for understanding RCA disease‐related mutations and immune evasion.  相似文献   

6.
GM2 activator protein (GM2AP) is a specific protein cofactor that stimulates the enzymatic hydrolysis of the GalNAc from GM2, a sialic acid containing glycosphingolipid, both in vitro and in lysosomes. While phospholipids together with glycosphingolipids are important membrane constituents, little is known about the possible effect of GM2AP on the hydrolysis of phospholipids. Several recent reports suggest that GM2AP might have functions other than stimulating the conversion of GM2 into GM3 by beta-hexosaminidase A, such as inhibiting the activity of platelet activating factor and enhancing the degradation of phosphatidylcholine by phospholipase D (PLD). We therefore examined the effect of GM2AP on the in vitro hydrolyses of a number of phospholipids and sphingomyelin by microbial (Streptomyces chromofuscus) and plant (cabbage) PLD. GM2AP, at the concentration as low as 1.08 microM (1 microg/50 microl) was found to inhibit about 70% of the hydrolyses of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol by PLD, whereas the same concentration of GM2AP only inhibited about 20-25% of the hydrolysis of sphingomyelin by sphingomyelinase and had no effect on the hydrolysis of sphingosylphosphorylcholine by PLD. Thus, GM2AP exerts strong and broad inhibitory effects on the hydrolysis of phospholipids carried out by plant and microbial PLDs. High ammonium sulfate concentration (1.6 M or 21.1%) masks this inhibitory effect, possibly due to the alteration of the ionic property of GM2AP.  相似文献   

7.
C4b-binding protein (C4BP) inhibits all pathways of complement activation, acting as a cofactor to the serine protease factor I (FI) in the degradation of activated complement factors C4b and C3b. C4BP is a disulfide-linked polymer of seven alpha-chains and a unique beta-chain, the alpha- and beta-chains being composed of eight and three complement control protein (CCP) domains, respectively. In previous studies we have localized cofactor activity and binding of C4b to alpha-chain CCP1-3 of C4BP, whereas the binding of C3b required additionally CCP4. Likewise, introduced point mutations that decreased binding of C4b/C3b caused a decrease in cofactor activity. In the present study, we describe two mutants of C4BP, K126Q/K128Q and F144S/F149S, clustered on alpha-chain CCP3, which selectively lost their ability to act as cofactors in the cleavage of both C4b and C3b. Both mutants show the same binding affinity for C4b/C3b as measured by surface plasmon resonance and have the same inhibitory effect on formation and decay of the classical pathway C3-convertase as the wild type C4BP. It appears that C4b and C3b do not undergo the same conformational changes upon binding to the C4BP mutants as during the interaction with the wild type C4BP, which then results in the observed loss of the cofactor activity.  相似文献   

8.
Herpesvirus saimiri is known to encode a homolog of human complement regulators named complement control protein homolog (CCPH). We have previously reported that this virally encoded inhibitor effectively inactivates complement by supporting factor I-mediated inactivation of complement proteins C3b and C4b (termed cofactor activity), as well as by accelerating the irreversible decay of the classical/lectin and alternative pathway C3 convertases (termed decay-accelerating activity). To fine map its functional sites, in the present study, we have generated a homology model of CCPH and performed substitution mutagenesis of its conserved residues. Functional analyses of 24 substitution mutants of CCPH indicated that (i) amino acids R118 and F144 play a critical role in imparting C3b and C4b cofactor activities, (ii) amino acids R35, K142, and K191 are required for efficient decay of the C3 convertases, (iii) positively charged amino acids of the linker regions, which are dubbed to be critical for functioning in other complement regulators, are not crucial for its function, and (iv) S100K and G110D mutations substantially enhance its decay-accelerating activities without affecting the cofactor activities. Overall, our data point out that ionic interactions form a major component of the binding interface between CCPH and its interacting partners.  相似文献   

9.
C4b-binding protein (C4BP) is a regulator of the classical complement pathway, acting as a cofactor to factor I in the degradation of C4b. Computer modeling and structural analysis predicted a cluster of positively charged amino acids at the interface between complement control protein modules 1 and 2 of the C4BP alpha-chain to be involved in C4b binding. Three C4BP mutants, R39Q, R64Q/R66Q, and R39Q/R64Q/R66Q, were expressed and assayed for their ability to bind C4b and to function as factor I cofactors. The apparent affinities of R39Q, R64Q/R66Q, and R39Q/R64Q/R66Q for immobilized C4b were 15-, 50-, and 140-fold lower, respectively, than that of recombinant wild type C4BP. The C4b binding site demonstrated herein was also found to be a specific heparin binding site. In C4b degradation, the mutants demonstrated decreased ability to serve as factor I cofactors. In particular, the R39Q/R64Q/R66Q mutant was inefficient as cofactor for cleavage of the Arg937-Thr938 peptide bond in C4b. In contrast, the factor I mediated cleavage of Arg1317-Asn1318 bond was less affected by the C4BP mutations. In conclusion, we identify a cluster of amino acids that is part of a C4b binding site involved in the regulation of the complement system.  相似文献   

10.
The presence of mono-, di-, and tri-O-acetylated sialic acids on human cells was demonstrated by using radiochromatographic and chemical techniques. Human melanoma cells and fresh colon tissue were biosynthetically labeled with 6- (3H) glucosamine. Radiolabeled sialic acids were hydrolytically removed from cellular glycoconjugates, purified by ion-exchange chromatography, and separated by paper chromatography on the basis of the number of O-substitutions on each sialic molecule. This analytical technique characterized radiolabeled sialic acids that migrated with the same Rf as synthetic mono-, di-, and tri-O-acetylated 14C-labeled sialic acids. The mono-O-acetylated sialic acids were characterized by their sensitivity to sodium periodate oxidation and a crude mouse liver esterase preparation. The di- and tri-O-acetylated sialic acids were characterized by their resistance to sodium periodate oxidation and sensitivity to the action of crude mouse liver esterase. Chromatographically separated di- and tri-O-acetylated sialic acids from normal human colon tissue were characterized by their respective ion molecular weights by using fast-atom bombardment-mass spectrometry. Using these methods, we chemically characterized mono, di-, and tri-O-acetylated sialic acids expressed on human cells. Aberrant expression of O-acetylated sialic acids was associated with adenocarcinoma of the colon, leading to a nearly complete loss of di- and tri-O-acetylated sialic acids.  相似文献   

11.
C3b/C4b receptor (CR1) and membrane cofactor protein (MCP) are integral membrane glycoproteins with factor I-dependent cofactor activity. They bind to C3b, allowing factor I to cleave C3b at two sites (first and second cleavage), which results in the generation of C3bi, a hemolytically inactive form which is a ligand for complement receptor type three (CR3). C3bi is further degraded by factor I and CR1 (third cleavage) to C3dg (a ligand for complement receptor type two, CR2) and C3c. Using two different substrates, fluid-phase C3b and cell-bound C3b, the cleavage of C3b by MCP and factor I was compared to that by CR1 and factor I under various conditions. The optimal pH for the first and second cleavage of either substrate was 6.0 for MCP and 7.5 for CR1. The third cleavage was mediated only by CR1 and factor I, the optimal pH being 8.0. Low ionic conditions enhanced the C3b binding and cofactor activity of both CR1 and MCP. The efficiency of binding C3b to CR1 or MCP was maximal at pH 6.2. The isoelectric point (pI) of MCP was acidic (approximately 4.0), while that of CR1 was 6.8. Therefore, compared to CR1, MCP possesses distinct functional profiles relative to C3b-binding and factor I-cofactor activity.  相似文献   

12.
A fluorimetric assay has been developed for sialic acids in which sialic acids react with pyridoxamine to give fluorescent compounds in the presence of zinc ion and pyridine. This assay method is specific for unbound sialic acids and is a simple and sensitive procedure compared with the thiobarbituric acid assay of sialic acids.  相似文献   

13.
Analysis of gangliosides using fast atom bombardment mass spectrometry   总被引:1,自引:0,他引:1  
The native gangliosides GM3, GM1, Fuc-GM1, GD1a, GD1b, Fuc-GD1b, GT1b and GQ1b were analysed by fast atom bombardment mass spectrometry (FAB-MS) in the negative ion mode in a matrix of thioglycerol. After permethylation the same gangliosides were analysed by electron impact (EI) and FAB-MS in the positive ion mode. The negative ion mass spectra furnished information on the molecular weight, the ceramide moiety and the sequence of carbohydrate residues. The sites of attachment and the number of sialic acids present could be deduced directly from the pattern of sequence ions. After addition of sodium acetate positive ion FAB-spectra of the permethylated samples show intense pseudomolecular ions M + Na, that provide evidence on the homogeneity of the samples. In addition, the ceramide part, the oligosaccharide moiety obtained after cleavage of the glycosidic bond of the hexosamine residue, the whole carbohydrate chain and the sialic acids are represented by specific fragment ions. With EI-MS further information can be obtained on the sphingosine and fatty acid components of the ceramide residue. The data show, that the combination of soft ionization mass spectrometry with classical EI-MS gives valuable information on the structure and homogeneity of gangliosides. The method is also applicable to the structural elucidation or quantitation of more complex gangliosides or glycolipid mixtures using only micrograms of material.  相似文献   

14.
15.
Complement C2 receptor inhibitor trispanning (CRIT) inhibits the classical pathway (CP) C3 convertase formation by competing with C4b for the binding of C2. The C-terminal 11-amino-acid of the first CRIT-extracellular domain (CRIT-H17) has a strong homology with a sequence in the C4beta chain, which is responsible for the binding of C2. Since the CP and alternative pathway (AP) C3 convertases have many functional and structural similarities, we further investigated the effects of CRIT-H17 on the AP. The factor D-mediated cleavage of factor B (FB) was blocked by CRIT-H17. By ELISA and immunoblot, CRIT-H17 was shown to bind FB. CRIT-H17 had no decay activity on the C3bBb complex as compared to decay-accelerating factor. Binding of CRIT-H17 to FB did not interfere with the assembly of C3bB complex. In a haemolytic assay using C2-deficient serum, CRIT-H17 interfered with AP complement activation.  相似文献   

16.
The 8-17 deoxyribozyme is a small DNA catalyst of significant applicative interest. We have analyzed the kinetic features of a well behaved 8-17 construct and determined the influence of several reaction conditions on such features, providing a basis for further exploration of the deoxyribozyme mechanism. The 8-17 bound its substrate with a rate constant ~10-fold lower than those typical for the annealing of short complementary oligonucleotides. The observed free energy of substrate binding indicates that an energetic penalty near to +7 kcal/mol is attributable to the deoxyribozyme core. Substrate cleavage required divalent metal ion cofactors, and the dependence of activity on the concentration of Mg2+, Ca2+ or Mn2+ suggests the occurrence of a single, low-specificity binding site for activating ions. The efficiency of activation correlated with the Lewis acidity of the ion cofactor, compatible with a metal-assisted deprotonation of the reactive 2′-hydroxyl group. However, alternative roles of the metal ions cannot be excluded, because those ions that are stronger Lewis acids are also capable of forming stronger interactions with ligands such as the phosphate oxygens. The apparent enthalpy of activation for the 8-17 reaction was close to the values observed for hydroxide-catalyzed and hammerhead ribozyme-catalyzed RNA cleavage.  相似文献   

17.
Membrane cofactor protein (MCP; CD46), a widely distributed regulator of complement activation, is a cofactor for the factor I-mediated degradation of C3b and C4b deposited on host cells. MCP possesses four extracellular, contiguous complement control protein modules (CCPs) important for this inhibitory activity. The goal of the present study was to delineate functional sites within these modules. We employed multiple approaches including mutagenesis, epitope mapping, and comparisons to primate MCP to make the following observations. First, functional sites were located to each of the four CCPs. Second, some residues were important for both C3b and C4b interactions while others were specific for one or the other. Third, while a reduction in ligand binding was invariably accompanied by a parallel reduction in cofactor activity (CA), other mutants lost or had reduced CA but retained ligand binding. Fourth, two C4b-regulatory domains overlapped measles virus interactive regions, indicating that the hemagglutinin docks to a site important for complement inhibition. Fifth, several MCP regulatory areas corresponded to functionally critical, homologous positions in other CCP-bearing C3b/C4b-binding proteins. Based on these data and the recently derived crystal structure of repeats one and two, computer modeling was employed to predict MCP structure and examine active sites.  相似文献   

18.
The action of six different enzymes on the function and structure of Factor H was investigated by use of sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, haemagglutination, two enzyme-linked immunosorbent assay systems and an assay for Factor I cofactor activity. Six monoclonal antibodies directed against the 38 kDa tryptic fragment of Factor H [which contains the binding site for C3b (a 180 kDa fragment of the third component of complement) and the cofactor activity] were also used to detect cleavage products derived from the same fragment. Elastase, chymotrypsin A4 or trypsin first cleaved Factor H to 36-38 kDa fragments carrying all six monoclonal anti-(Factor H)-binding sites. In parallel, the interaction of Factor H with surface-bound C3b was lost, whereas the cofactor function was preserved. Further cleavage of the 36-38 kDa fragments into two 13-19 kDa fragments (one carrying the MAH4 and MRC OX 24 epitopes, the other the MAH1, MAH2, MAH3 and MRC OX 23 epitopes) destroyed cofactor activity. Pepsin, bromelain or papain rapidly split off a 13-15 kDa fragment of Factor H carrying the MAH1, MAH2, MAH3 and MRC OX 23 epitopes and destroyed all tested functions of Factor H. Ficin cleaved Factor H into disulphide-linked fragments smaller than 25 kDa, but did not affect the functions of the Factor H molecule. The 38 kDa tryptic fragment of Factor H is the N-terminal end of the Factor H molecule, as determined by N-terminal sequence analysis. A model is presented of the substructure of Factor H.  相似文献   

19.
Vaccinia virus encodes a structural and functional homolog of human complement regulators named vaccinia virus complement control protein (VCP). This four-complement control protein domain containing secretory protein is known to inhibit complement activation by supporting the factor I-mediated inactivation of complement proteins, proteolytically cleaved form of C3 (C3b) and proteolytically cleaved form of C4 (C4b) (termed cofactor activity), and by accelerating the irreversible decay of the classical and to a limited extent of the alternative pathway C3 convertases (termed decay-accelerating activity [DAA]). In this study, we have mapped the VCP domains important for its cofactor activity and DAA by swapping its individual domains with those of human decay-accelerating factor (CD55) and membrane cofactor protein (MCP; CD46). Our data indicate the following: 1) swapping of VCP domain 2 or 3, but not 1, with homologous domains of decay-accelerating factor results in loss in its C3b and C4b cofactor activities; 2) swapping of VCP domain 1, but not 2, 3, or 4 with corresponding domains of MCP results in abrogation in its classical pathway DAA; and 3) swapping of VCP domain 1, 2, or 3, but not 4, with homologous MCP domains have marked effect on its alternative pathway DAA. These functional data together with binding studies with C3b and C4b suggest that in VCP, domains 2 and 3 provide binding surface for factor I interaction, whereas domain 1 mediates dissociation of C2a and Bb from the classical and alternative pathway C3 convertases, respectively.  相似文献   

20.
Replacement of aspartic acid by alanine at position 265 (D265A) in mouse IgG1 results in a complete loss of interaction between this isotype and low-affinity IgG Fc receptors (Fc gammaRIIB and Fc gammaRIII). However, it has not yet been defined whether the D265A substitution could exhibit similar effects on the interaction with two other Fc gammaR (Fc gammaRI and Fc gammaRIV) and on the activation of complement. To address this question, 34-3C anti-RBC IgG2a and IgG2b switch variants bearing the D265A mutation were generated, and their effector functions and in vivo pathogenicity were compared with those of the respective wild-type Abs. The introduction of the D265A mutation almost completely abolished the binding of 34-3C IgG2a and IgG2b to all four classes of Fc gammaR and the activation of complement. Consequently, these mutants were hardly pathogenic. Although oligosaccharide side chains of these mutants were found to contain higher levels of sialic acids than those of wild-type Abs, the analysis of enzymatically desialylated D265A variants ruled out the possibility that very poor Fc-associated effector functions of the D265A mutants were due to an increased level of the mutant Fc sialylation. Thus, our results demonstrate that aspartic acid at position 265 is a residue critically implicated in triggering the Fc-associated effector functions of IgG, probably by defining a crucial three-dimensional structure of the Fc region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号