首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dai J  Wang X 《生理学报》2007,59(5):585-592
高同型半胱氨酸血症是动脉粥样硬化的独立危险因子,但是其致病机制尚未完全阐明。本文将从体液免疫、单核巨噬细胞以及T细胞活性等几方面归纳总结同型半胱氨酸在心血管疾病中的免疫调节作用。同型半胱氨酸可以诱导单核细胞和T细胞分泌趋化因子和细胞因子,还可以直接刺激B细胞增殖及IgG分泌。此外,本文还总结了高同型半胱氨酸致炎作用的细胞内机制。同型半胱氨酸可以直接或间接导致氧化应激或者内质网应激,还可以降低一氧化氮的生物活性,影响包括S-腺苷蛋氨酸和S-腺苷同型半胱氨酸的水平,从而导致心血管疾病的发生。  相似文献   

2.
Long noncoding RNAs, including HOTAIR, are involved in the pathogenesis of a wide range of diseases. This study aimed to explore the mechanism underlying the involvement of HOTAIR in neonatal bronchial hyperresponsiveness (BHR). A total of 105 newborns were recruited in this study to collect their peripheral blood mononuclear cell and serum samples, which were then divided into different genotype groups based on the genotypes of rs4759314, rs874945, and rs7958904. The real-time polymerase chain reaction, western blot analysis, computational analyses, and luciferase assays were performed to establish the regulatory relationships between the HOTAIR, microRNA-126 (miR-126), and interleukin-13 (IL-13). The level of HOTAIR, miR-126, and IL-13 among rs4759314 AA, AG, and GG groups, as well as among rs874945 GG, AG, and AA groups was similar. However, the level of HOTAIR was increased in the rs7958904 GG group, accompanied by a decreased level of miR-126 and IL-13. In addition, the level of airway responsiveness was comparable among rs4759314 AA, AG, and GG groups, as well as among rs874945 GG, AG, and AA groups. However, the airway responsiveness in the groups rs7958904 CG and CC was much stronger than that of the GG group. We also demonstrated that, by directly binding to miR-126, HOTAIR reduced the expression of miR-126, which in turn decreased the expression of IL-13. In summary, we demonstrated the role of HOTAIR-induced downregulation of miR-126 and IL-13 in the development of BHR in neonates.  相似文献   

3.
Protective role of magnesium in cardiovascular diseases: A review   总被引:9,自引:0,他引:9  
A considerable number of experimental, epidemiological and clinical studies are now available which point to an important role of Mg2+ in the etiology of cardiovascular pathology. In human subjects, hypomagnesemia is often associated with an imbalance of electrolytes such as Na+, K+ and Ca2+. Abnormal dietary deficiency of Mg2+ as well as abnormalities in Mg2+ metabolism play important roles in different types of heart diseases such as ischemic heart disease, congestive heart failure, sudden cardiac death, atheroscelerosis, a number of cardiac arrhythmias and ventricular complications in diabetes mellitus. Mg2+ deficiency results in progressive vasoconstriction of the coronary vessels leading to a marked reduction in oxygen and nutrient delivery to the cardiac myocytes.Numerous experimental and clinical data have suggested that Mg2+ deficiency can induce elevation of intracellular Ca2+ concentrations, formation of oxygen radicals, proinflammatory agents and growth factors and changes in membrane permeability and transport processes in cardiac cells. The opposing effects of Mg2+ and Ca2+ on myocardial contractility may be due to the competition between Mg2+ and Ca2+ for the same binding sites on key myocardial contractile proteins such as troponin C, myosin and actin.Stimulants, for example, catecholamines can evoke marked Mg2+ efflux which appears to be associated with a concomitant increase in the force of contraction of the heart. It has been suggested that Mg2+ efflux may be linked to the Ca2+ signalling pathway. Depletion of Mg2+ by alcohol in cardiac cells causes an increase in intracellular Ca2+, leading to coronary artery vasospasm, arrhythmias, ischemic damage and cardiac failure. Hypomagnesemia is commonly associated with hypokalemia and occurs in patients with hypertension or myocardial infarction as well as in chronic alcoholism.The inability of the senescent myocardium to respond to ischemic stress could be due to several reasons. Mg2+ supplemented K+ cardioplegia modulates Ca2+ accumulation and is directly involved in the mechanisms leading to enhanced post ischemic functional recovery in the aged myocardium following ischemia. While many of these mechanisms remain controversial and in some cases speculative, the beneficial effects related to consequences of Mg2+ supplementation are apparent. Further research are needed for the incorporation of these findings toward the development of novel myocardial protective role of Mg2+ to reduce morbidity and mortality of patients suffering from a variety of cardiac diseases.  相似文献   

4.
Interleukin (IL)‐15 is a recently identified cytokine, which belongs to the interleukin‐2(IL‐2) family, and plays an important role in innate and adaptive immunoreaction. Given the fact that the structure of IL‐15 is partially similar to IL‐2, they share some common biological effects, including immunoregulation. IL‐2 was proven to protect cardiac function in mouse myocardial infarction models. Cardiovascular diseases (CVDs) dominate the cause of mortality worldwide. Besides atherosclerosis, inflammation is also widely involved in the pathogenesis of many CVDs including hypertension, heart failure (HF) and aneurysm. IL‐15, as a pro‐inflammatory cytokine, is up‐regulated in some cardiovascular diseases, such as myocardial infarction and atherosclerosis. The current understanding of IL‐15, including its signal pathway and cellular function, was described. Furthermore, IL‐15 has a protective effect in myocardial infarction and myocarditis by decreasing cardiomyocyte death and improving heart function. The inhibited effect of IL‐15 in ductus arteriosus (DA) should be focused on. IL‐15 promoted atherogenesis. IL‐15 may be a good target in treatment of cardiovascular diabetology. Finally, future research direction of IL‐15 deserves attention. Since IL‐15 plays several roles in CVDs, understanding the role of the IL‐15/IL‐15R system may provide a scientific basis for the development of new approaches that use IL‐15 for the treatment of CVDs.  相似文献   

5.
As a nicotinamide adenine dinucleotide (NAD)+-dependent protein deacetylase, SIRT3 is highly expressed in tissues with high metabolic turnover and mitochondrial content. It has been demonstrated that SIRT3 plays a critical role in maintaining normal mitochondrial biological function through reversible protein lysine deacetylation. SIRT3 has a variety of substrates that are involved in mitochondrial biological processes such as energy metabolism, reactive oxygen species production and clearance, electron transport chain flux, mitochondrial membrane potential maintenance, and mitochondrial dynamics. In the suppression of SIRT3, functional deficiencies of mitochondria contribute to the development of various cardiovascular disorders. Activation of SIRT3 may represent a promising therapeutic strategy for the improvement of mitochondrial function and the treatment of relevant cardiovascular disorders. In the current review, we discuss the emerging roles of SIRT3 in mitochondrial derangements and subsequent cardiovascular malfunctions, including cardiac hypertrophy and heart failure, ischemia-reperfusion injury, and endothelial dysfunction in hypertension and atherosclerosis.  相似文献   

6.
SARS-CoV-2, the virus responsible for the global coronavirus disease (COVID-19) pandemic, attacks multiple organs of the human body by binding to angiotensin-converting enzyme 2 (ACE2) to enter cells. More than 20 million people have already been infected by the virus. ACE2 is not only a functional receptor of COVID-19 but also an important endogenous antagonist of the renin-angiotensin system (RAS). A large number of studies have shown that ACE2 can reverse myocardial injury in various cardiovascular diseases (CVDs) as well as is exert anti-inflammatory, antioxidant, anti-apoptotic and anticardiomyocyte fibrosis effects by regulating transforming growth factor beta, mitogen-activated protein kinases, calcium ions in cells and other major pathways. The ACE2/angiotensin-(1-7)/Mas receptor axis plays a decisive role in the cardiovascular system to combat the negative effects of the ACE/angiotensin II/angiotensin II type 1 receptor axis. However, the underlying mechanism of ACE2 in cardiac protection remains unclear. Some approaches for enhancing ACE2 expression in CVDs have been suggested, which may provide targets for the development of novel clinical therapies. In this review, we aimed to identify and summarize the role of ACE2 in CVDs.  相似文献   

7.
Circular RNA (circRNA) is a class of RNA with the 5' and 3' ends connected covalently to form a closed loop structure and characterized by high stability, conserved sequences and tissue specificity, which is caused by special reverse splicing methods. Currently, it has become a hot spot for research. With the discovery of its powerful regulatory functions and roles, the molecular mechanisms and future value of circRNA in participating in and regulating biological and pathological processes are becoming increasingly apparent. Among them is the increasing prevalence of cardiovascular diseases (CVDs). Many studies have elucidated that circRNA plays a crucial role in the development and progression of CVDs. Therefore, circRNA shows its advantages and brilliant expectations in the field of CVDs. In this review, we describe the biogenesis, bioinformatics detection and function of circRNA and discuss the role of circRNA and its effects on CVDs, including atherosclerosis, myocardial infarction, cardiac hypertrophy and heart failure, myocardial fibrosis, cardiac senescence, pulmonary hypertension, and diabetic cardiomyopathy by different mechanisms. That shows circRNA advantages and brilliant expectations in the field of CVDs.  相似文献   

8.
Interleukin-22 (IL-22) is an IL-10 family cytokine member that was recently discovered to be mainly produced by Th17 cells. Previous studies have indicated the importance of IL-22 in host defense against Gram-negative bacterial organisms (in gut and lung). Recently, there is emerging evidence that IL-22 is involved in the development and pathogenesis of several autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), Sjögren's syndrome (SS) and psoriasis. Therapeutics targeting IL-22 therefore may have promise for treating various autoimmune diseases. In this review, we discuss the recent progression of the involvement of IL-22 in the development and pathogenesis of autoimmune diseases, as well as its clinical implications and therapeutic potential.  相似文献   

9.
10.
Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β superfamily that has garnered significant attention due to its anti-cardiac aging properties. Many studies have revealed that GDF11 plays an indispensable role in the onset of cardiovascular diseases (CVDs). Consequently, it has emerged as a potential target and novel therapeutic agent for CVD treatment. However, currently, no literature reviews comprehensively summarize the research on GDF11 in the context of CVDs. Therefore, herein, we comprehensively described GDF11’s structure, function, and signaling in various tissues. Furthermore, we focused on the latest findings concerning its involvement in CVD development and its potential for clinical translation as a CVD treatment. We aim to provide a theoretical basis for the prospects and future research directions of the GDF11 application regarding CVDs.  相似文献   

11.
Gut microbiota (GM) is a collection of bacteria, fungi, archaea, viruses and protozoa, etc. They inhabit human intestines and play an essential role in human health and disease. Close information exchange between the intestinal microbes and the host performs a vital role in digestion, immune defence, nervous system regulation, especially metabolism, maintaining a delicate balance between itself and the human host. Studies have shown that the composition of GM and its metabolites are firmly related to the occurrence of various diseases. More and more researchers have demonstrated that the intestinal microbiota is a virtual ‘organ’ with endocrine function and the bioactive metabolites produced by it can affect the physiological role of the host. With deepening researches in recent years, clinical data indicated that the GM has a significant effect on the occurrence and development of cardiovascular diseases (CVD). This article systematically elaborated the relationship between metabolites of GM and its effects, the relationship between intestinal dysbacteriosis and cardiovascular risk factors, coronary heart disease, myocardial infarction, heart failure and hypertension and the possible pathogenic mechanisms. Regulating the GM is supposed to be a potential new therapeutic target for CVD.  相似文献   

12.
Cardiovascular and metabolic disease (CVMD) is becoming increasingly prevalent in developed and developing countries with high morbidity and mortality. In recent years, fibroblast growth factor 21 (FGF21) has attracted intensive research interest due to its purported role as a potential biomarker and critical player in CVMDs, including atherosclerosis, coronary artery disease, myocardial infarction, hypoxia/reoxygenation injury, heart failure, type 2 diabetes, obesity, and nonalcoholic steatohepatitis. This review summarizes the recent developments in investigating the role of FGF21 in CVMDs and explores the mechanism whereby FGF21 regulates the development of CVMDs. Novel molecular targets and related pathways of FGF21 (adenosine 5''-monophosphate-activated protein kinase, silent information regulator 1, autophagy-related molecules, and gut microbiota-related molecules) are highlighted in this review. Considering the poor pharmacokinetics and biophysical properties of native FGF21, the development of new generations of FGF21-based drugs has tremendous therapeutic potential. Related preclinical and clinical studies are also summarized in this review to foster clinical translation. Thus, our review provides a timely and insightful overview of the physiology, biomarker potential, molecular targets, and therapeutic potential of FGF21 in CVMDs.  相似文献   

13.
Metformin, a well‐known AMPK agonist, has been widely used as the first‐line drug for treating type 2 diabetes. There had been a significant concern regarding the use of metformin in people with cardiovascular diseases (CVDs) due to its potential lactic acidosis side effect. Currently growing clinical and preclinical evidence indicates that metformin can lower the incidence of cardiovascular events in diabetic patients or even non‐diabetic patients beyond its hypoglycaemic effects. The underlying mechanisms of cardiovascular benefits of metformin largely involve the cellular energy sensor, AMPK, of which activation corrects endothelial dysfunction, reduces oxidative stress and improves inflammatory response. In this minireview, we summarized the clinical evidence of metformin benefits in several widely studied cardiovascular diseases, such as atherosclerosis, ischaemic/reperfusion injury and arrhythmia, both in patients with or without diabetes. Meanwhile, we highlighted the potential AMPK‐dependent mechanisms in in vitro and/or in vivo models.  相似文献   

14.
15.
Extracellular vesicles (EVs) are nano-sized vesicles, released from many cell types including cardiac cells, have recently emerged as intercellular communication tools in cell dynamics. EVs are an important mediator of signaling within cells that influencing the functional behavior of the target cells. In heart complex, cardiac cells can easily use EVs to transport bioactive molecules such as proteins, lipids, and RNAs to the regulation of neighboring cell function. Cross-talk between intracardiac cells plays pivotal roles in the heart homeostasis and in adaptive responses of the heart to stress. EVs were released by cardiomyocytes under baseline conditions, but stress condition such as hypoxia intensifies secretome capacity. EVs secreted by cardiac progenitor cells and cardiosphere-derived cells could be pinpointed as important mediators of cardioprotection and cardiogenesis. Furthermore, EVs from many different types of stem cells could potentially exert a therapeutic effect on the damaged heart. Recent evidence shows that cardiac-derived EVs are rich in microRNAs, suggesting a key role in the controlling of cellular processes. EVs harboring exosomes may be clinically useful in cell-free therapy approaches and potentially act as prognosis and diagnosis biomarkers of cardiovascular diseases.  相似文献   

16.
17.
高照  李法琦 《生命科学》2010,(8):772-777
松弛素是一类新近发现可作用于心血管的肽类激素,参与心血管系统的生理和病理过程。大量实验研究显示松弛素有扩血管、改善心血管重塑及调节炎症反应的心血管保护作用,也有利于改善高凝状态和胰岛素抵抗。松弛素作用广泛,可与松弛素受体或糖皮质激素受体结合,但其受体后的确切机制以及不同生理和病理状态对松弛素的调控还需进一步基础研究阐明。在从实验室到临床应用转化的初期临床试验中可观察到,人重组松弛素治疗急慢性心力衰竭安全性好,可改善症状、血流动力学指标及近期预后,为Ⅲ期临床试验奠定了基础,其临床应用前景令人期待。  相似文献   

18.
Ischemic heart disease and congestive heart failure are major contributors to high morbidity and mortality. Approximately 1.5 million cases of myocardial infarction occur annually in the United States; the yearly incidence rate is approximately 600 cases per 100,000 people. Although significant progress to improve the survival rate has been made by medications and implantable medical devices, damaged cardiomyocytes are unable to be recovered by current treatment strategies. After almost two decades of research, stem cell therapy has become a very promising approach to generate new cardiomyocytes and enhance the function of the heart. Along with clinical trials with stem cells conducted in cardiac regeneration, concerns regarding safety and potential risks have emerged. One of the contentious issues is the electrical dysfunctions of cardiomyocytes and cardiac arrhythmia after stem cell therapy. In this review, we focus on the cell sources currently used for stem cell therapy and discuss related arrhythmogenic risk.  相似文献   

19.
Tao J  Li SF  Xu M 《生理科学进展》2011,42(5):335-339
近年来MicroRNA(miRNA)一直是医学生物学研究的热点。它作为一类非编码的小RNA,参与基因的转录和表达调控,因此人体的众多生命活动和疾病的发生、发展都与miRNA的变化密不可分。miRNA的作用因细胞特异性和目标mRNA的不同而异,miRNA可以通过影响细胞的分裂、增殖、凋亡和再生等表型的变化,参与疾病的损伤与修复过程。特别是近期研究人员进行了基于miRNA的疾病诊治研究,结果预示了良好的应用前景。  相似文献   

20.
Interleukin‐29 (IL‐29) is a newly discovered member of type III interferon. It mediates signal transduction via binding to its receptor complex and activates downstream signalling pathways, and therefore induces the generation of inflammatory components. Recent studies reported that expression of IL‐29 is dysregulated in inflammatory autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, osteoarthritis, Sjögren's syndrome, psoriasis and systemic sclerosis. Furthermore, functional analysis revealed that IL‐29 may involve in the pathogenesis of the inflammatory autoimmune disorders. In this review, we will systematically review the current knowledge about IL‐29. The information collected revealed the regulatory role of IL‐29 and may give important implications for its potential in clinical treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号