首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: Glycolysis was a representative hallmark in the tumor microenvironment (TME), and we aimed to explore the correlations between glycolysis with immune activity and clinical traits in bladder urothelial carcinoma (BLCA).Methods: Our study obtained glycolysis scores for each BLCA samples from TCGA by a single-sample gene set enrichment analysis (ssGSEA) algorithm, based on a glycolytic gene set. The relationship between glycolysis with prognosis, clinical characteristics, and immune function were investigated subsequently.Results: We found that enhanced glycolysis was associated with poor prognosis and metastasis in BLCA. Moreover, glycolysis had a close correlation with immune function, and enhanced glycolysis increased immune activities. In other words, glycolysis had a positive correlation with immune activities. Immune checkpoints such as IDO1, CD274, were up-regulated in high-glycolysis group as well.Conclusion: We speculated that in BLCA, elevated glycolysis enhanced immune function, which caused tumor cells to overexpress immune checkpoints to evade immune surveillance. Inhibition of glycolysis might be a promising assistant for immunotherapy in bladder cancer.  相似文献   

2.
BackgroundMany studies have demonstrated that autophagy plays a significant role in regulating tumor growth and progression. However, the effect of autophagy-related genes (ARGs) on the prognosis have rarely been analyzed in head and neck squamous cell carcinoma (HNSCC).MethodsWe obtained differentially expressed ARGs from HNSCC mRNA data in The Cancer Genome Atlas (TCGA) database. And then we performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses to explore the autophagy-related biological functions. The overall survival (OS)-related and disease specific survival (DSS)-related ARGs were identified by univariate Cox regression analyses. With these genes, we established OS-related and DSS-related risk signature by LASSO regression method, respectively. We validated the reliability of the risk signature with receiver operating characteristic (ROC) analysis, Kaplan-Meier survival curves, clinical correlation analysis, and nomogram. Then we analyzed relationships between risk signature and immune cell infiltration.ResultsWe established the prognostic signatures based on 14 ARGs for OS and 12 ARGs for DSS. The ROC curves, survival analysis, and nomogram validated the predictive accuracy of the models. Clinic correlation analysis showed that the risk group was closely related to Stage, pathological T stage, pathological N stage and human papilloma virus (HPV) subtype. Cox regression demonstrated that the risk score was an independent predictor for the prognosis of HNSCC patients. Furthermore, patients in low-risk score group exhibited higher immunescore and distinct immune cell infiltration than high-risk score group. And we further analysis revealed that the copy number alterations (CNAs) of ARGs-based signature affected the abundance of tumor-infiltrating immune cells.ConclusionIn this study, we identified novel autophagy-related signature for the prediction of OS and DSS in patients with HNSCC. Meanwhile, our study provides a novel sight to understand the role of autophagy and elucidate the important role of autophagy in tumor immune microenvironment (TIME) of HNSCC.  相似文献   

3.
Glioblastoma multiforme (GBM) is a devastating brain tumour without effective treatment. Recent studies have shown that autophagy is a promising therapeutic strategy for GBM. Therefore, it is necessary to identify novel biomarkers associated with autophagy in GBM. In this study, we downloaded autophagy-related genes from Human Autophagy Database (HADb) and Gene Set Enrichment Analysis (GSEA) website. Least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression analysis were performed to identify genes for constructing a risk signature. A nomogram was developed by integrating the risk signature with clinicopathological factors. Time-dependent receiver operating characteristic (ROC) curve and calibration plot were used to evaluate the efficiency of the prognostic model. Finally, four autophagy-related genes (DIRAS3, LGALS8, MAPK8 and STAM) were identified and were used for constructing a risk signature, which proved to be an independent risk factor for GBM patients. Furthermore, a nomogram was developed based on the risk signature and clinicopathological factors (IDH1 status, age and history of radiotherapy or chemotherapy). ROC curve and calibration plot suggested the nomogram could accurately predict 1-, 3- and 5-year survival rate of GBM patients. For function analysis, the risk signature was associated with apoptosis, necrosis, immunity, inflammation response and MAPK signalling pathway. In conclusion, the risk signature with 4 autophagy-related genes could serve as an independent prognostic factor for GBM patients. Moreover, we developed a nomogram based on the risk signature and clinical traits which was validated to perform better for predicting 1-, 3- and 5-year survival rate of GBM.  相似文献   

4.
N6-methyladenosine (m6A) methyltransferase has been shown to be an oncogene in a variety of cancers. Nevertheless, the relationship between the long non-coding RNAs (lncRNAs) and hepatocellular carcinoma (HCC) remains elusive. We integrated the gene expression data of 371 HCC and 50 normal tissues from The Cancer Genome Atlas (TCGA) database. Differentially expressed protein-coding genes (DE-PCGs)/lncRNAs (DE-lncRs) analysis and univariate regression and Kaplan–Meier (K–M) analysis were performed to identify m6A methyltransferase-related lncRNAs. Three prognostic lncRNAs were selected by univariate and LASSO Cox regression analyses to construct the m6A methyltransferase-related lncRNA signature. Multivariate Cox regression analyses illustrated that this signature was an independent prognostic factor for overall survival (OS) prediction. The Gene Set Enrichment Analysis (GSEA) suggested that the m6A methyltransferase-related lncRNAs were involved in the immune-related biological processes (BPs) and pathways. Besides, we discovered that the lncRNAs signature was correlated with the tumor microenvironment (TME) and the expression of critical immune checkpoints. Tumor Immune Dysfunction and Exclusion (TIDE) analysis revealed that the lncRNAs could predict the clinical response to immunotherapy. Our study had originated a prognostic signature for HCC based on the potential prognostic m6A methyltransferase-related lncRNAs. The present study had deepened the understanding of the TME status of HCC patients and laid a theoretical foundation for the choice of immunotherapy.  相似文献   

5.
Reversing the highly immunosuppressive tumor microenvironment (TME) is essential to achieve long-term efficacy with cancer immunotherapy. Despite the impressive clinical response to checkpoint blockade in multiple types of cancer, only a minority of patients benefit from this approach. Here, we report that the oncolytic virus M1 induces immunogenic tumor cell death and subsequently restores the ability of dendritic cells to prime antitumor T cells. Intravenous injection of M1 disrupts immune tolerance in the privileged TME, reprogramming immune-silent (cold) tumors into immune-inflamed (hot) tumors. M1 elicits potent CD8+ T cell-dependent therapeutic effects and establishes long-term antitumor immune memory in poorly immunogenic tumor models. Pretreatment with M1 sensitizes refractory tumors to subsequent checkpoint blockade by boosting T-cell recruitment and upregulating the expression of PD-L1. These findings reveal the antitumor immunological mechanism of the M1 virus and indicated that oncolytic viruses are ideal cotreatments for checkpoint blockade immunotherapy.Subject terms: Cancer microenvironment, Targeted therapies  相似文献   

6.
Breast cancer (BRCA) is a major global health issue, characterized by high mortality and low early diagnosis rates. The tumor immune microenvironment (TME) of BRCA is closely linked to fatty acid metabolism (FAM). This study aimed to identify FAM-related subtypes in BRCA based on gene expression and clinical data from the Cancer Genome Atlas (TCGA) database. The study found two distinct FAM-related subtypes, each with unique immune characteristics and prognostic implications. A FAM-related risk score prognostic model was developed and validated using TCGA and International Cancer Genome Consortium (GEO) cohorts, showing potential clinical applications for chemotherapy and immunotherapy. Additionally, a nomogram was established to facilitate clinical use of the risk score. These results highlight the significant correlation between FAM genes and TME in BRCA, and demonstrate the potential clinical utility of the FAM-related risk score in informing treatment decisions for BRCA patients.  相似文献   

7.
淋巴细胞活化因子-3(lymphocyte activation gene-3,LAG-3)又名CD223,为一类免疫检查点受体蛋白,主要表达于活化的免疫细胞中.LAG-3分子在生理条件下可维持机体免疫稳态,在肿瘤微环境中可介导肿瘤细胞的免疫逃逸,因此,可将LAG-3作为肿瘤免疫治疗的新靶点进行研究.LAG-3阻断性抗...  相似文献   

8.
Background: Colorectal cancer (CRC) is one of the most prevalent malignant cancers worldwide. Immune-related long non-coding RNAs (IRlncRNAs) are proved to be essential in the development and progression of carcinoma. The purpose of the present study was to develop and validate a prognostic IRlncRNA signature for CRC patients.Methods: Gene expression profiles of CRC samples were downloaded from The Cancer Genome Atlas (TCGA) database. Immune-related genes were obtained from the ImmPort database and were used to identify IRlncRNA by correlation analysis. Through LASSO Cox regression analyses, a prognostic signature was constructed. Functional enrichment analysis was performed by gene set enrichment analysis (GSEA). TIMER2.0 web server and tumor immune dysfunction and exclusion (TIDE) algorithm were employed to analyze the association between our model and tumor-infiltrating immune cells and immunotherapy response. The expression levels of IRlncRNAs in cell lines were detected by quantitative real-time PCR (qPCR).Results: A 9-IRlncRNA signature was developed by a LASSO Cox proportional regression model. Based on the signature, CRC patients were divided into high- and low-risk groups with different prognoses. GSEA results indicated that patients in high-risk group were associated with cancer-related pathways. In addition, patients in low-risk group were found to have more infiltration of anti-tumor immune cells and might show a favorable response to immunotherapy. Finally, the result of qPCR revealed that most IRlncRNAs were differently expressed between normal and tumor cell lines.Conclusion: The constructed 9-IRlncRNA signature has potential to predict the prognosis of CRC patients and may be helpful to guide personalized immunotherapy.  相似文献   

9.
Nowadays, an increasing number of studies illustrated that bladder urothelial cancer (BLCA) may act as the most common subtype of urological malignancies with a high rate of recurrence and metastasis. In this study, we attempted to establish a prognostic model and identify the possible pathway crosstalk. Long noncoding RNAs (lncRNAs) and mRNA expression and corresponding clinical information of patients with BLCA were downloaded from The Cancer Genome Atlas (TCGA). The differentially expressed genes analysis, univariate Cox analysis, the least absolute shrinkage, and selection operator Cox (LASSO Cox) regression model were then applied to identify five crucial lncRNAs (AC092725.1, AC104071.1, AL023584.1, AL132642.1, and AL137804.1). The multivariate cox analysis was utilized to calculate the regression coefficients (βi). The risk-score model was subsequently constructed as follows: (0.13541AC092725.1) + (0.20968AC104071.1) + (0.1525AL023584.1) − (0.14768AL132642.1) + (0.14387AL137804.1). Nomogram and assessment of overall survival (OS) prediction were verificated by the receiver operating characteristic curve in the testing group. As to 3-, 5-year OS prediction, the area under curve (AUC) for the nomogram of training data set was 0.83 and 0.86. Besides, the AUC (0.883 and 0.879) presented excellent predictive power in the testing group. In addition, the calibration plots validated the predictive performance of the nomogram. Weighted correlation network analysis (WGCNA) coupled with functional enrichment analysis contributed to explore the potential pathways, including PI3K-Akt, HIF-1, and Jak-STAT signaling pathways. Construction of the risk-score model and data analysis were both derived from multiple packages on the basis of the R platform chiefly.  相似文献   

10.
《Genomics》2021,113(3):1203-1218
Bladder cancer (BLCA) has a high incidence and recurrence rate, and the effect of immunotherapy varies from person to person. Immune-related genes (IRGs) have been shown to be associated with immunotherapy and prognosis in many other cancers, but their role in immunogenic BLCA is less well defined. In this study, we constructed an eight-IRG risk model, which demonstrated strong prognostic and immunotherapeutic predictive power. The signature was significantly related to tumor clinicopathological characteristics, tumor class, immune cell infiltration and mutation status. Additionally, a nomogram containing the risk score and other potential risk factors could effectively predict the long-term overall survival probability of BLCA patients. The enriched mechanisms identified by gene set enrichment analysis suggested that the reason why this signature can accurately distinguish high- and low-risk populations may be closely related to the different degrees of innate immune response and T cell activation in different patients.  相似文献   

11.
12.
Ferroptosis is a newly recognized mechanism of regulated cell death. It was reported to be highly associated with immune therapy and chemotherapy. However, its mechanism of regulation in the tumor microenvironment (TME) and influence on oral squamous cell carcinoma (OSCC) therapy are unknown. We identified a ferroptosis-specific gene-expression signature, an FPscore, developed by a principal component analysis (PCA) algorithm to evaluate the ferroptosis regulation patterns of individual tumor. Multi-omics analysis of ferroptosis regulation patterns was conducted. Three distinct ferroptosis regulation subtypes, which linked to outcomes and the clinical relevance of each patient, were established. A high FPscore of patients with OSCC was associated with a favorable prognosis, a ferroptosis-related immune-activation phenotype, potential sensitivities to the chemotherapy and immunotherapy. Importantly, a high FPscore correlated with a low gene copy number burden and high immune checkpoint expressions. We validated the prognostic value of the FPscore using independent immunotherapy and pan-cancer cohorts. Comprehensive evaluation of individual tumors with distinct ferroptosis regulation patterns provides new mechanistic insights, which may be clinically relevant for the application of combination therapies in OSCC.  相似文献   

13.
Low-grade glioma (LGG) is a heterogeneous tumour with the median survival rate less than 10 years. Therefore, it is urgent to develop efficient immunotherapy strategies of LGG. In this study, we analysed mutation profiles based on the data of 510 LGG patients from the Cancer Genome Atlas (TCGA) database and investigated the prognostic value of mutated genes and evaluate their immune infiltration. Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was used to indicate the characteristics of gliomas that respond to immune checkpoint blockade (ICB) therapy. Univariate and multivariate cox regression analysis was performed to identify indicators to construct the nomogram model. 485 (95.47%) of 508 LGG samples showed gene mutation, and 9 mutated genes were significantly related to overall survival (OS), among which 6 mutated genes were significantly correlated with OS between mutation and wildtypes. Immune infiltration and immune score analyses revealed that these six mutated genes were significantly associated with tumour immune microenvironment in LGG. The response of LGG with different characteristics to ICB was evaluated by TIDE algorithm. Finally, CIC gene was screened through both univariate and multivariate Cox regression analyses, and the nomogram model was established to determine the potential prognostic value of CIC in LGG. Our study provides comprehensive analysis of mutated genes in LGG, supporting modulation of mutated genes in the management of LGG.  相似文献   

14.
Breast cancer (BRCA) represents the most common malignancy among women worldwide with high mortality. Radiotherapy is a prevalent therapeutic for BRCA that with heterogeneous effectiveness among patients. Here, we proposed to develop a gene expression-based signature for BRCA radiotherapy sensitivity estimation. Gene expression profiles of BRCA samples from the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) were obtained and used as training and independent testing dataset, respectively. Differential expression genes (DEGs) in BRCA samples compared with their paracancerous samples in the training set were identified by using the edgeR Bioconductor package. Univariate Cox regression analysis and LASSO Cox regression method were applied to screen optimal genes for constructing a radiotherapy sensitivity estimation signature. Nomogram combining independent prognostic factors was used to predict 1-, 3-, and 5-year OS of radiation-treated BRCA patients. Relative proportions of tumor infiltrating immune cells (TIICs) calculated by CIBERSORT and mRNA levels of key immune checkpoint receptors was adopted to explore the relation between the signature and tumor immune response. As a result, 603 DEGs were obtained in BRCA tumor samples, six of which were retained and used to construct the radiotherapy sensitivity prediction model. The signature was proved to be robust in both training and testing sets. In addition, the signature was closely related to the immune microenvironment of BRCA in the context of TIICs and immune checkpoint receptors’ mRNA levels. In conclusion, the present study obtained a radiotherapy sensitivity estimation signature for BRCA, which should shed new light in clinical and experimental research.  相似文献   

15.
16.
To evaluate the validity of CHAC1 for predicting the prognosis of kidney renal clear cell carcinoma (KIRC) and to explore its therapeutic potential for KIRC, we conducted several bioinformatic analyses using the sequencing data and clinical information derived from online databases. We found CHAC1 is down-regulated in KIRC samples when compared with normal samples but up-regulated in KIRC samples with relatively higher malignancy and later stages. Univariate cox analysis and multivariate cox regression analysis were conducted and the results revealed up-regulated CHAC1 is an independent risk factor for poor prognosis of KIRC. Further, the nomogram model based on the result of multivariate cox regression analysis was constructed and effectively predicted patients' 1-year, 3-year and 5-year survival respectively. The correlation analyses showed CHAC1 is associated with the immune pathway markers of memory B cell, natural killer cell and type1 T helper cell as well as the checkpoint genes like ADORA2A, CD200, CD44, CD70, HHLA2, NRP1, PDCD1LG2 and TNFRSF18. Furthermore, experiments in vitro indicated CHAC1 could induce cell death in KIRC cell lines but had limited influence on cell migration and cell invasion. In conclusion, CHAC1 is found a valid indicator for poor prognosis of kidney renal clear cell carcinoma.  相似文献   

17.
癌症仍然是现阶段威胁人类健康的一大难题,随着医学的发展,癌症治疗方法除传统方法:手术、放疗、化疗,还可以采用免疫疗法。目前,癌症免疫疗法受到广泛关注,但在应用方面具有许多局限性,如 PD-1/PD-L1 抑制剂,在应用的过程中会出现获得性耐药现象,因此细胞免疫疗法(chimeric antigen receptor T cell, CAR-T) 应运而生,成为弥补免疫检查点抑制剂(immune checkpoint inhibitors, ICIs)和单克隆抗体药物缺陷的新兴治疗方式,简要介绍了 CAR-T 免疫疗法的产生、应用及对 TME 相关靶点的研究进展,为后续研究提供一定的思路。  相似文献   

18.
Increasing evidences have showed that autophagy played a significant role in oral squamous cell carcinoma (OSCC). Purpose of our study was to explore the prognostic value of autophagy-related genes (ATGs) and screen autophagy-related biomarkers for OSCC. RNA-seq and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database following extracting ATG expression profiles. Then, differentially expressed analysis was performed in R software and a risk score model according to ATGs was established. Moreover, comprehensive bioinformatics analyses were used to screen autophagy-related biomarkers which were later verified in OSCC tissues and cell lines. A total of 232 ATGs were extracted, and 37 genes were differentially expressed in OSCC. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that these genes were mainly located in autophagosome membrane and associated with autophagy. Furthermore, the risk score on basis of ATGs was identified as potential independent prognostic biomarker. Moreover, ATG12 and BID were identified as potential autophagy-related biomarkers of OSCC. This study successfully constructed a risk model, and the risk score could predict the prognosis of OSCC patients accurately. Moreover, ATG12 and BID were identified as two potential independent prognostic autophagy-related biomarkers and might provide new OSCC therapeutic targets.  相似文献   

19.
The transition from non–muscle‐invasive bladder cancer (NMIBC) to muscle‐invasive bladder cancer (MIBC) is detrimental to bladder cancer (BLCA) patients. Here, we aimed to study the underlying mechanism of the subtype transition. Gene set variation analysis (GSVA) revealed the epithelial‐mesenchymal transition (EMT) signalling pathway with the most positive correlation in this transition. Then, we built a LASSO Cox regression model of an EMT‐related gene signature in BLCA. The patients with high risk scores had significantly worse overall survival (OS) and disease‐free survival (DFS) than those with low risk scores. The EMT‐related gene signature also performed favourably in the accuracy of prognosis and in the subtype survival analysis. Univariate and multivariate Cox regression analyses demonstrated that the EMT‐related gene signature, pathological N stage and age were independent prognostic factors for predicting survival in BLCA patients. Furthermore, the predictive nomogram model was able to effectively predict the outcome of BLCA patients by appropriately stratifying the risk score. In conclusion, we developed a novel EMT‐related gene signature that has tumour‐promoting effects, acts as a negative independent prognostic factor and might facilitate personalized counselling and treatment in BLCA.  相似文献   

20.
目的:分析ATP7B基因缺陷(Wilson's disease,WD)小鼠肝脏组织中自噬相关基因的表达和自噬相关蛋白的相互作用方式,探讨铜累积诱导肝内自噬活化的可能机制。方法:对4周龄和12周龄WD小鼠肝组织进行铜含量检测和转录组测序,对差异基因进行GO和KEGG富集分析,筛选自噬相关差异基因做qRT-PCR和Western blot验证,采用GeneMANIA数据库构建自噬相关差异蛋白的互作网络(PPI)并进行功能注释分析,抑制自噬相关蛋白的表达分析其对自噬的影响。结果:与野生型小鼠相比,WD小鼠肝铜含量显著升高,铜累积导致基因表达模式改变;基于GO数据库统计自噬相关差异基因数目,4周龄和12周龄分别有8个、51个,基于KEGG数据库统计,4周龄和12周龄分别有5个、19个;筛选Ulk1Ddit4Plk3等9个基因进行qRT-PCR,定量结果与测序结果表达趋势基本一致;其编码的蛋白质通过共表达、共定位等方式互相作用;Western blot结果显示铜累积导致Ulk1、Plk3、Park2蛋白表达显著增加和细胞自噬发生,抑制Ulk1、Plk3、Park2的蛋白质表达可显著下调细胞自噬水平。结论:WD不同阶段的铜累积可调节肝脏多个自噬相关基因的表达,通过其编码的自噬相关蛋白的互相作用共同诱导肝脏自噬活化以缓解肝损伤。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号