首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Status epilepticus (SE) induces apoptosis of hippocampal neurons. However, the underlying mechanism in SE is not fully understood. Recently, lncRNA TUG1 is reported as a significant mediator in neuronal development. In present study, we aimed to investigate whether lncRNA TUG1 induces apoptosis of hippocampal neurons in SE rat models. TUG1 expression in serum of normal volunteers and SE patients, SE rats and neurons with epileptiform discharge was detected. SE rat model was established and intervened with TUG1 to evaluate hippocampal neuronal apoptosis. The experiments in vitro were further performed in neurons with epileptiform discharge to verify the effects of TUG1 on neuronal apoptosis of SE rats. The downstream mechanism of TUG1 was predicted and verified. miR-421 was intervened to perform the rescue experiments. Levels of oxidative stress and inflammation-related factors and mTOR pathway-related proteins in SE rats and hippocampal neurons were detected. TUG1 was highly expressed in serum of SE patients, SE rats and neurons with epileptiform discharge. Inhibition of TUG1 relieved pathological injury, oxidative stress and inflammation and reduced neuronal apoptosis in SE rats, which were further verified in hippocampal neurons. TUG1 upregulated TIMP2 expression by targeting miR-421. Overexpressed miR-421 inhibited hippocampal neuronal apoptosis. TUG1 knockout inactivated the mTOR pathway via the miR-421/TIMP2 axis to relieve neuronal apoptosis, oxidative stress and inflammation in SE rats and hippocampal neurons. Taken together, these findings showed that downregulation of lncRNA TUG1 inhibited apoptosis of hippocampal neurons in SE rats, and attenuated oxidative stress and inflammation damage through regulating the miR-421/mTOR axis.  相似文献   

2.
Accumulating evidence has reported that microRNA‐144‐3p (miR‐144‐3p) is highly related to oxidative stress and apoptosis. However, little is known regarding its role in cerebral ischemia/reperfusion‐induced neuronal injury. Herein, our results showed that miR‐144‐3p expression was significantly downregulated in neurons following oxygen–glucose deprivation and reoxygenation (OGD/R) treatment. Overexpression of miR‐144‐3p markedly reduced cell viability, promoted cell apoptosis, and increased oxidative stress in neurons with OGD/R treatment, whereas downregulation of miR‐144‐3p protected neurons against OGD/R‐induced injury. Brahma‐related gene 1 (Brg1) was identified as a potential target gene of miR‐144‐3p. Moreover, downregulation of miR‐144‐3p promoted the nuclear translocation of nuclear factor erythroid 2‐related factor 2 (Nrf2) and increased antioxidant response element (ARE) activity. However, knockdown of Brg1 significantly abrogated the neuroprotective effects of miR‐144‐3p downregulation. Overall, our results suggest that miR‐144‐3p contributes to OGD/R‐induced neuronal injury in vitro through negatively regulating Brg1/Nrf2/ARE signaling.  相似文献   

3.
MicroRNAs (miRNAs) have been reported to play critical roles in the occurrence, progression, and treatment of many cardiovascular diseases. However, the molecular mechanism by which miRNA regulates target gene expression in ischemia-reperfusion (I/R) injury in acute myocardial infarction (AMI) is not entirely clear. MiR-340-5p was reported to be downregulated in acute ischemic stroke. However, it still remains unknown whether miR-340-5p is mediated in the pathogenesis process of I/R injury after AMI. In the present study, male C57BL/6 J mice and H9C2 cardiomyocytes were used as experimental models. Real-time polymerase chain reaction analysis, Western blot analysis, and the terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling immunofluorescence staining assay were conducted to examine related indicators in the study. We confirmed that the expression of miR-340-5p is downregulated after I/R in AMI mice and hypoxia/reperfusion (H/R)-induced cardiomyocytes. miR-340-5p could inhibit apoptosis and oxidative stress in H/R-induced H9C2 cells via downregulating activator 1 (Act1). The inhibiting action of miR-340-5p on H/R-induced apoptosis and oxidative stress in cardiomyocytes was partially reversed after Act1 overexpression. Moreover, the results showed that the NF-κB pathway may be mediated in the role of miR-340-5p on H/R-induced cardiomyocyte apoptosis and oxidative stress. We demonstrated that upregulation of miR-340-5p suppresses apoptosis and oxidative stress induced by H/R in H9C2 cells by inhibiting Act1. Therapeutic strategies that target miR-340-5p, Act1, and the NF-κB pathway could be beneficial for the treatment of I/R injury after AMI.  相似文献   

4.
The present study was designed to evaluate the potential role of miR-93 in cerebral ischemic/reperfusion (I/R) injury in mice. The stroke model was produced in C57BL/6 J mice via middle cerebral artery occlusion (MCAO) for 1 h followed by reperfusion. And miR-93 antagomir was transfected to down-regulate the miR-93 level. Our results showed that miR-93 levels in the cerebral cortex of mice increased at 24 and 48 h after reperfusion. Importantly, in vivo study demonstrated that treatment with miR-93 antagomir reduced cerebral infarction volume, neural apoptosis and restored the neurological scores. In vitro study demonstrated that miR-93 antagomir attenuated hydrogen peroxide (H2O2)-induced injury. Moreover, miR-93 antagomir suppressed oxidative stress in I/R brain and H2O2 treated cortical neurons. Furthermore, we founded that down-regulation of miR-93 increased the expression of nuclear factor erythroid 2-related factor (Nrf2) and heme oxygenase-1 (HO-1) and the luciferase reporter assay confirmed that miR-93 directly binds to the predicted 3′-UTR target sites of the nrf2 gene. Finally, we found that knockdown of Nrf2 or HO-1 abolished miR-93 antagomir-induced neuroprotection against oxidative stress in H2O2 treated neuronal cultures. These results suggested that miR-93 antagomir alleviates ischemic injury through the Nrf2/HO-1 antioxidant pathway.  相似文献   

5.
Zhang  Heng-Sheng  Ouyang  Bo  Ji  Xiong-Ying  Liu  Mei-Fang 《Neurochemical research》2021,46(7):1747-1758

Cerebral ischaemia/reperfusion (I/R) injury-induced irreversible brain injury is a major cause of mortality and functional impairment in ageing people. Gastrodin (GAS), derived from the traditional Chinese herbal medicine Tianma, has been reported to inhibit the progression of stroke, but the mechanism whereby GAS modulates the progression of cerebral I/R remains unclear. The middle cerebral artery occlusion method was used as a model of I/R in vivo. Rats were pretreated with GAS by intraperitoneal injection 7 days before I/R surgery and were then treated with GAS for 7 days after I/R surgery. Additionally, an oxygen–glucose deprivation/reoxygenation model using neuronal cells was established in vitro to simulate I/R injury. 2,3,5-Triphenyltetrazolium chloride and Nissl staining were used to evaluate infarct size and neuronal damage, respectively. Lactate dehydrogenase release and cell counting kit-8 assays were used to assess neuronal cell viability. Enzyme-linked immunosorbent assay, qPCR, flow cytometry and western blotting were performed to analyse the expression levels of inflammatory factors (IL-1β, IL-18), lncRNA NEAT1, miR-22-3p, NLRP3 and cleaved caspase-1. Luciferase reporter experiments were performed to verify the association between lncRNA NEAT1 and miR-22-3p. The results indicated that GAS could significantly improve the neurological scores of rats and reduce the area of cerebral infarction. Meanwhile, GAS inhibited pyroptosis by downregulating NLRP3, inflammatory factors (IL-1β, IL-18) and cleaved caspase-1. In addition, GAS attenuated I/R-induced inflammation in neuronal cells through the modulation of the lncRNA NEAT1/miR-22-3p axis. GAS significantly attenuated cerebral I/R injury via modulation of the lncRNA NEAT1/miR-22-3p axis. Thus, GAS might serve as a new agent for the treatment of cerebral I/R injury.

  相似文献   

6.
Isoflurane has demonstrated to exert protective impacts against ischemia/reperfusion (I/R) injury in some organs. This research explored the role of emulsified isoflurane (EI) in myocardial I/R injury through the interaction with microRNA-21 (miR-21). The myocardial I/R injury mouse models established by coronary artery ligation were respectively treated with EI, miR-21 mimic/inhibitor or silenced secreted phosphoprotein 1 (SPP1) plasmids. Then, the pathology, fibrosis and cardiomyocyte apoptosis in mouse myocardial tissues were observed. Furthermore, the expression levels of miR-21, SPP1, oxidative stress indices, inflammatory factors and apoptotic proteins in mouse myocardial tissues were determined. The targeting relation between miR-21 and SPP1 was confirmed. MiR-21 was poorly expressed and SPP1 was highly expressed in myocardial I/R injury mice. EI treatment, elevated miR-21, or silenced SPP1 improved cardiac function and suppressed the oxidative stress, myocardial fibrosis, inflammatory reaction and cardiomyocyte apoptosis in myocardial I/R injury mice, thereby reliving the myocardial I/R injury. These therapeutic effects of EI were repressed by miR-21 inhibition. Additionally, SPP1 was targeted by miR-21. Results in our research indicated that miR-21 mediated the therapeutic effect of EI on myocardial I/R injury in mice by targeting SPP1. This study may provide a novel treatment strategy for myocardial I/R injury.  相似文献   

7.
Emerging studies have shown that long noncoding RNA (lncRNA) TUG1 (taurine‐up‐regulated gene 1) plays critical roles in multiple biological processes. However, the expression and function of lncRNA TUG1 in cerebral ischaemia/reperfusion injury have not been reported yet. In this study, we found that LncRNA TUG1 expression was significantly up‐regulated in cultured MA‐C cells exposed to OGD/R injury, while similar results were also observed in MCAO model. Mechanistically, knockdown of TUG1 decreased lactate dehydrogenase levels and the ratio of apoptotic cells and promoted cell survival in vitro. Moreover, knockdown of TUG1 decreased AQP4 (encoding aquaporin 4) expression to attenuate OGD/R injury. TUG1 could interact directly with miR‐145, and down‐regulation of miR‐145 could efficiently reverse the function of TUG1 siRNA on AQP4 expression. Finally, the TUG1 shRNA reduced the infarction area and cell apoptosis in I/R mouse brains in vivo. In summary, our results suggested that lncRNA TUG1 may function as a competing endogenous RNA (ceRNA) for miR‐145 to induce cell damage, possibly providing a new therapeutic target in cerebral ischaemia/reperfusion injury.  相似文献   

8.
1‐O‐Hexyl‐2,3,5‐trimethylhydroquinone (HTHQ), a lipophilic phenolic agent, has an antioxidant activity and reactive oxygen species (ROS) scavenging property. However, the role of HTHQ on cerebral ischaemic/reperfusion (I/R) injury and the underlying mechanisms remain poorly understood. In the present study, we demonstrated that HTHQ treatment ameliorated cerebral I/R injury in vivo, as demonstrated by the decreased infarct volume ration, neurological deficits, oxidative stress and neuronal apoptosis. HTHQ treatment increased the levels of nuclear factor erythroid 2–related factor 2 (Nrf2) and its downstream antioxidant protein, haeme oxygenase‐1 (HO‐1). In addition, HTHQ treatment decreases oxidative stress and neuronal apoptosis of PC12 cells following hypoxia and reperfusion (H/R) in vitro. Moreover, we provided evidence that PC12 cells were more vulnerable to H/R‐induced oxidative stress after si‐Nrf2 transfection, and the HTHQ‐mediated protection was lost in PC12 cells transfected with siNrf2. In conclusion, these results suggested that HTHQ possesses neuroprotective effects against oxidative stress and apoptosis after cerebral I/R injury via activation of the Nrf2/HO‐1 pathway.  相似文献   

9.
LncRNAs and microRNAs play critical roles in osteoblast differentiation and bone formation. However, their exact roles in osteoblasts under fluid shear stress (FSS) and the possible mechanisms remain unclear. The aim of this study was to explore whether and how miR-34a regulates osteoblast proliferation and apoptosis under FSS. In this study, FSS down-regulated miR-34a levels of MC3T3-E1 cells. MiR-34a up-regulation attenuated FSS-induced promotion of proliferation and suppression of apoptosis. Luciferase reporter assay revealed that miR-34a directly targeted FGFR1. Moreover, miR-34a regulated osteoblast proliferation and apoptosis via FGFR1. Further, we validated that lncRNA TUG1 acted as a competing endogenous RNA (ceRNA) to interact with miR-34a and up-regulate FGFR1 protein expression. Furthermore, lncRNA TUG1 could promote proliferation and inhibit apoptosis. Taken together, our study revealed the key role of the lncRNA TUG1/miR-34a/FGFR1 axis in FSS-regulated osteoblast proliferation and apoptosis and may provide potential therapeutic targets for osteoporosis.  相似文献   

10.
Laryngocarcinoma is the most common head and neck cancer and has a high incidence and mortality, causing about 83 000 deaths per year worldwide. Our research aimed to investigate the possible role of long noncoding RNA (lncRNA) taurine upregulated gene 1 (TUG1) in laryngocarcinoma development. The messenger RNA (mRNA) levels of TUG1 in tumor tissues and control (plasma) samples of laryngocarcinoma patients as well as in laryngocarcinoma cells were detected. The influences of TUG1 suppression on cell biological processes (viability, apoptosis, migration, and invasion) and cytoskeleton rearrangement in laryngocarcinoma cells were tested. Moreover, we investigated the regulatory interaction between TUG1 and miR-145-5p, and identified the target gene of miR-145-5p. The association between TUG1 and the protein expressions of RhoA/rho associated coiled-coil containing protein kinase (ROCK)/matrix metalloproteinases (MMPs) pathway-associated factors were detected. TUG1 was found to be highly expressed in tumor tissues and plasma samples of laryngocarcinoma patients as well as in laryngocarcinoma cells. Suppression of TUG1 decreased laryngocarcinoma cell viability, increased apoptosis, and suppression migration, invasion, and cytoskeleton rearrangement. Moreover, TUG1 negatively regulated miR-145-5p. TUG1 regulated tumor growth (viability and apoptosis) and metastasis through miR-145-5p. Furthermore, ROCK1 was targeted by miR-145-5p, and miR-145-5p/ROCK1 partner was involved in the process of tumor growth and metastasis. Finally, we found that TUG1 functioned on laryngocarcinoma by activating RhoA/ROCK/MMPs pathway. Our study reveals that lncRNA TUG1 is upregulated in laryngocarcinoma and may be involved in the process of laryngocarcinoma through miR-145-5p downregulation and activating the RhoA/ROCK/MMPs signals.  相似文献   

11.
Myocardial ischemia-reperfusion (I/R) injury is a common complication following reperfusion therapy that involves a series of immune or apoptotic reactions. Studies have revealed the potential roles of miRNAs in I/R injury. Herein, we established a myocardial I/R model in rats and a hypoxia/reoxygenation (H/R) model in H9c2 cells and investigated the effect of miR-145-5p on myocardial I/R injury. After 3 h or 24 h of reperfusion, left ventricular end-systolic pressure (LVESP), ejection fraction (EF), and fractional shortening (FS) were obviously decreased, and left ventricular end-diastolic pressure (LVEDP) was increased. Meanwhile, I/R induced an increase in myocardial infarction area. Moreover, a decrease in miR-145-5p and increase in (NADPH) oxidase homolog 1 (NOH-1) were observed following I/R injury. With this in mind, we performed a luciferase reporter assay and demonstrated that miR-145-5p directly bound to NOH-1 3’ untranslated region (UTR). Furthermore, miR-145-5p mimics decreased the levels of tumor necrosis factor (TNF)-α, IL-1β, and IL-6 via oxygen and glucose deprivation/reperfusion (OGD/R) stimulation. Upregulation of miR-145-5p increased cell viability and reduced apoptosis accompanied by downregulation of Bax, cleaved caspase-3, cleaved poly(ADP-ribose) polymerase (PARP) and upregulation of Bcl2. In addition, miR-145-5p overexpression increased superoxide dismutase (SOD) activity and reduced reactive oxygen species (ROS) and malondialdehyde (MDA) content under OGD/R stress. Notably, NOH-1 could significantly abrogate the above effects, suggesting that it is involved in miR-145-5p-regulated I/R injury. In summary, our findings indicated that miR-145-5p/NOH-1 has a protective effect on myocardial I/R injury by inhibiting the inflammatory response and apoptosis.  相似文献   

12.
Renal ischemia/reperfusion (I/R) injury is the main reason for acute kidney injury (AKI) and is closely related to high morbidity and mortality. In this study, we found that exosomes from human-bone-marrow-derived mesenchymal stem cells (hBMSC-Exos) play a protective role in hypoxia/reoxygenation (H/R) injury. hBMSC-Exos were enriched in miR-199a-3p, and hBMSC-Exo treatment increased the expression level of miR-199a-3p in renal cells. We further explored the function of miR-199a-3p on H/R injury. miR-199a-3p was knocked down in hBMSCs with a miR-199a-3p inhibitor. HK-2 cells cocultured with miR-199a-3p-knockdown hBMSCs were more susceptible to H/R injury and showed more apoptosis than those cocultured with hBMSCs or miR-199a-3p-overexpressing hBMSCs. Meanwhile, we found that HK-2 cells exposed to H/R treatment incubated with hBMSC-Exos decreased semaphorin 3A (Sema3A) and activated the protein kinase B (AKT) and extracellular-signal-regulated kinase (ERK) pathways. However, HK-2 cells cocultured with miR-199a-3p-knockdown hBMSCs restored Sema3A expression and blocked the activation of the AKT and ERK pathways. Moreover, knocking down Sema3A could reactivate the AKT and ERK pathways suppressed by a miR-199a-3p inhibitor. In vivo, we injected hBMSC-Exos into mice suffering from I/R injury; this treatment induced functional recovery and histologic protection and reduced cleaved caspase-3 and Sema3A expression levels, as shown by immunohistochemistry. On the whole, this study demonstrated an antiapoptotic effect of hBMSC-Exos, which protected against I/R injury, via delivering miR-199a-3p to renal cells, downregulating Sema3A expression and thereby activating the AKT and ERK pathways. These findings reveal a novel mechanism of AKI treated with hBMSC-Exos and provide a therapeutic method for kidney diseases.  相似文献   

13.
The role of long non-coding RNAs (lncRNAs) in kidney diseases has been gradually discovered in recent years. LINC00963, as an lncRNA, was found to be involved in chronic renal failure. However, the role and molecular mechanisms of LINC00963 engaged in acute kidney injury (AKI) were still unclear. In this study, we established rat AKI models by ischaemia and reperfusion (I/R) treatment. Urea and creatinine levels were determined, and histological features of kidney tissues were examined following HE staining. CCK8 assay was chosen to assess the viability of hypoxia-induced HK-2 cells. Dual-luciferase reporter gene assays were performed to verify the target relationship between LINC00963 and microRNA. The mRNA and protein levels were assayed by RT-qPCR and Western blot, respectively. Annexin V-FITC/PI and TUNEL staining were used to evaluate apoptosis. LINC00963 was highly expressed in the cell and rat models, and miR-128-3p was predicted and then verified as a target gene of LINC00963. Knockdown of LINC00963 reduced acute renal injury both in vitro and in vivo. LINC00963 activated the JAK2/STAT1 pathway to aggravate renal I/R injury. LINC00963 could target miR-128-3p to reduce G1 arrest and apoptosis through JAK2/STAT1 pathway to promote the progression of AKI.  相似文献   

14.
MicroRNAs (miRNAs) have been found to act as key regulators in the pathogenesis of myocardial ischemic-reperfusion (I/R) injury. In this study, we explore the role and mechanism of microRNA-202-3p (miR-202-3p) in regulating cardiomyocyte apoptosis, in respective of the TGF-β1/Smads signaling pathway by targeting the transient receptor potential cation channel, subfamily M, member 6 (TRPM6). The targeting relationship between miR-202-3p and TRPM6 was verified by a dual-luciferase reporter gene assay. Sprague-Dawley rat models of myocardial I/R injury were initially established and treated with different mimics, inhibitors and siRNAs to test the effects of miR-202-3p and TRPM6 on myocardial I/R injury. The levels of inflammatory factors; IL-1β, IL-6, TNF-α as well as the degree of myocardial fibrosis and cardiomyocyte apoptosis were determined in rats transfected with different plasmids. TRPM6 was found to be the target of miR-202-3p. Up-regulated miR-202-3p or knockdown of TRPM-6 alleviated oxidative stress and inflammatory response, reduced ventricular mass, altered cardiac hemodynamics, suppressed myocardial infarction, attenuated cell apoptosis, and inhibited myocardial fibrosis. MiR-202-3p overexpression activates the TGF-β1/Smads signaling pathway by negatively regulating TRPM6 expression. Taken together, these findings suggest that miR-202-3p offers protection against ventricular remodeling after myocardial I/R injury via activation of the TGF-β1/Smads signaling pathway.  相似文献   

15.
16.
Daphnetin, a coumarin derivative extracted from Daphne odora var., was reported to possess a neuroprotective effect. Recently, it has been demonstrated that daphnetin attenuates ischemia/reperfusion (I/R) injury. However, the role of daphnetin in cerebral I/R injury and the potential mechanism have not been fully understood. The present study aimed to explore the regulatory roles of daphnetin on oxygen-glucose deprivation/reoxygenation (OGD/R)–induced cell injury in a model of hippocampal neurons. Our results demonstrated that daphnetin improved cell viability and reduced the lactate dehydrogenase leakage in OGD/R–stimulated hippocampal neurons. In addition, daphnetin inhibited oxidative stress and cell apoptosis in hippocampal neurons after OGD/R stimulation. Furthermore, daphnetin significantly enhanced the nuclear translocation of the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression in hippocampal neurons exposed to OGD/R. Knockdown of Nrf2 blocked the protective effect of daphnetin on OGD/R–induced hippocampal neurons. In conclusion, these findings demonstrated that daphnetin attenuated oxidative stress and neuronal apoptosis after OGD/R injury through the activation of the Nrf2/HO-1 signaling pathway in hippocampal neurons. Thus, daphnetin may be a novel therapeutic agent for cerebral I/R injury.  相似文献   

17.
Renal ischaemia‐reperfusion (RI/R) injury is one major pathological state of acute kidney injury (AKI) with a mortality rate ranking 50% to 80%. MiR‐144‐5p acts as a molecular trigger in various diseases. We presumed that miR‐144‐5p might be involved RI/R injury progression. We found that RI/R injury decreased miR‐144‐5p expression in rat models. MiR‐144‐5p downregulation promoted cell apoptosis rate and activated Wnt/β‐catenin signal in RI/R injury rats. By performing bioinformatic analysis, RIP, RNA pull‐down, luciferase reporter experiments, we found that circ‐AKT3 sponged to miR‐144‐5p and decreased its expression in RI/R injury rats. Moreover, we found that circ‐AKT3 promoted cell apoptosis rate and activated Wnt/β‐catenin signal, and miR‐144‐5p mimic reversed the promotive effect of circ‐AKT3 in rat models. We also found that circ‐AKT3 increased the oxidative stress level in rat models. In conclusion, our study suggests that the circAKT3 is involved RI/R injury progression through regulating miR‐144‐5p/Wnt/β‐catenin pathway and oxidative stress.  相似文献   

18.
The molecule mechanisms of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in human diseases have been broadly studied recently, therefore, our research aimed to assess the effect of lncRNA taurine upregulated gene 1 (TUG1)/miR-187-3p/tescalcin (TESC) axis in pituitary adenoma (PA) by regulating the nuclear factor-kappa B (NF-κB) signaling pathway. We observed that TUG1 was upregulated in PA tissues and was associated with invasion, knosp grade and tumor size. TUG1 particularly bound to miR-187-3p. TUG1 knockdown inhibited cell proliferation, invasion, migration, and epithelial–mesenchymal transition, promoted apoptosis, and regulated the expression of NF-κB p65 and inhibitor of κB (IκB)-α in PA cells lines in vitro, and also inhibited tumor growth in vivo, and these effects were reversed by miR-187-3p reduction. Similarly, miR-187-3p elevation inhibited PA cell malignant behaviors and modulated the expression of NF-κB p65 and IκB-α in PA cells, and reduced in vivo tumor growth as well. TUG1 inhibition downregulated TESC, which was targeted by miR-187-3p. In conclusion, this study suggests that TUG1 sponges miR-187-3p to affect PA development by elevating TESC and regulating the NF-κB signaling pathway.Subject terms: Cell biology, Diseases  相似文献   

19.
Wu  Yikun  Shi  Hua  Xu  Yuangao  Pei  Jun  Song  Shang  Chen  Wei  Xu  Shuxiong 《Molecular and cellular biochemistry》2022,477(6):1873-1885

Renal ischemia–reperfusion (I/R) injury is one of the most common causes of chronic kidney disease (CKD). It brings unfavorable outcomes to the patients and leads to a considerable socioeconomic burden. The study of renal I/R injury is still one of the hot topics in the medical field. Ebselen is an organic selenide that attenuates I/R injury in various organs. However, its effect and related mechanism underlying renal I/R injury remains unclear. In this study, we established a rat model of renal I/R injury to study the preventive effect of ebselen on renal I/R injury and further explore the potential mechanism of its action. We found that ebselen pretreatment reduced renal dysfunction and tissue damage caused by renal I/R. In addition, ebselen enhanced autophagy and inhibited oxidative stress. Additionally, ebselen pretreatment activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. The protective effect of ebselen was suppressed by autophagy inhibitor wortmannin. In conclusion, ebselen could ameliorate renal I/R injury, probably by enhancing autophagy, activating the Nrf2 signaling pathway, and reducing oxidative stress.

  相似文献   

20.
Our current research aimed to decipher the role and underlying mechanism with regard to miR-29b-3p involving in myocardial ischemia/reperfusion (I/R) injury. In the present study, cardiomyocyte H9c2 cell was used, and hypoxia/reoxygenation (H/R) model was established to mimic the myocardial I/R injury. The expressions of miR-29b-3p and pentraxin 3 (PTX3) were quantified deploying qRT-PCR and Western blot, respectively. The levels of LDH, TNF-α, IL-1β and IL-6 were detected to evaluate cardiomyocyte apoptosis and inflammatory response. Cardiomyocyte viability and apoptosis were examined employing CCK-8 assay and flow cytometry, respectively. Verification of the targeting relationship between miR-29b-3p and PTX3 was conducted using a dual-luciferase reporter gene assay. It was found that miR-29b-3p expression in H9c2 cells was up-regulated by H/R, and a remarkable down-regulation of PTX3 expression was demonstrated. MiR-29b-3p significantly promoted of release of inflammatory cytokines of H9c2 cells, and it also constrained the proliferation and promoted the apoptosis of H9c2 cells. Additionally, PTX3 was inhibited by miR-29b-3p at both mRNA and protein levels, and it was identified as a direct target of miR-29b-3p. PTX3 overexpression could reduce the inflammatory response, increase the viability of H9c2 cells, and inhibit apoptosis. Additionally, PTX3 counteracted the function of miR-29b-3p during the injury of H9c2 cells induced by H/R. In summary, miR-29b-3p was capable of aggravating the H/R injury of H9c2 cells by repressing the expression of PTX3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号