首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous molecular diet analysis identified lake sturgeon (Acipenser fulvescens, Rafinesque, 1817) DNA in the gastrointestinal tracts of stream-resident rainbow darters (Etheostoma caeruleum, Storer, 1845) during the egg incubation, free embryo, and larval drift stages. The objectives of this experimental study were to: (a) quantify levels of predation by rainbow darters on lake sturgeon at the egg and free-embryo stages; and (b) evaluate whether predation varied as a function of substrate size and rainbow darter body size. We conducted experimental trials in 23-L polycarbonate tanks 0.41 m (L) × 0.33 m (W) × 0.30 m (D) with a standardized benthic area of 0.14 m2. The tanks were randomly assigned one of two different substrate size classes: large rock (51.35 mm ± 0.91 mm) or small rock (27.68 mm ± 0.57 mm). We stocked individual rainbow darter, which were deprived of feed for 48 hr, with lake sturgeon (133 individuals/m2) in each of 12 replicates per ontogenetic stage and substrate type. The number of surviving lake sturgeon was quantified following a 24-hr predation exposure period. We used a generalized linear model with a binomial distribution to assess the influence of ontogenetic stage, substrate size, and rainbow darter body size on proportional lake sturgeon survival. Predation on lake sturgeon occurred at both egg (6.25 ± 1.16 individuals, mean ± 2SE) and free embryo (3.08 ± 1.08 individuals, mean ± 2SE) stages. Egg proportional survival was generally lower than at the free embryo stage in both substrate sizes; however, free embryo proportional survival was greater in small substrate trials. Rainbow darter total length did not affect the probability of lake sturgeon survival at either developmental stage. Results demonstrate that rainbow darters prey on early ontogenetic stages of lake sturgeon, corroborating previous results based on genetic diet analysis. Results fill a major knowledge gap concerning the vulnerability of pre-drift sturgeon to predation by an abundant river resident species that was previously discounted as a predator for early ontogenetic stages of lake sturgeon due to its small body size.  相似文献   

2.
Knowledge of the effects of environment and genotype on behavior during early ontogenetic stages of many fish species including lake sturgeon (Acipenser fulvescens) is generally lacking. Understanding these effects is particularly important at a time when human activities are fundamentally altering habitats and seasonal and diel physical and biotic stream features. Artificial stream channels were used in a controlled experiment to quantify lake sturgeon yolk‐sac larvae dispersal distance and stream substrate preference from different females (N = 2) whose eggs were incubated at different temperatures (10 and 18°C) that simulated stream conditions during early and late spawning and incubation periods in the Black River, Michigan. Data revealed that yolk‐sac larvae exhibited considerable variability in dispersal distance as a function of family (genotype), temperature experienced during previous (embryonic) ontogenetic stages, and environmental ‘grain’. Yolk‐sac larvae dispersal distance varied as a function of the juxtaposition of substrate to location of egg hatch. Lake sturgeon yolk‐sac larvae dispersed from mesh screens attached to bricks and settled exclusively in gravel substrate. Dispersal distance also varied as a function of family and egg incubation temperatures, reflecting differences in offspring body size and levels of endogenous yolk reserves (yolk sac area) at hatch. Expression of plasticity in dispersal behavior may be particularly important to individual survival and population levels of recruitment contingent upon the location, size, and degree of fragmentation of suitable (gravel) habitats between adult spawning and yolk‐sac larvae rearing areas.  相似文献   

3.
We assessed reproductive status, fecundity, egg size, and spawning dynamics of shovelnose sturgeon Scaphirhynchus platorynchus in the lower Platte River. Shovelnose sturgeon were captured throughout each year during 2011 and 2012 using a multi‐gear approach designed to collect a variety of fish of varying sizes and ages. Fish were collected monthly for a laboratory assessment of reproductive condition. Female shovelnose sturgeon reached fork length at 50% maturity (FL50) at 547 mm and at a minimum length of 449 mm. The average female spawning cycle was 3–5 years. Mean egg count for adult females was 16 098 ± 1103 (SE), and mean egg size was 2.401 ± 0.051 (SE) mm. Total fecundity was positively correlated with length (r2 = 0.728; P < 0.001), mass (r2 = 0.896; P < 0.001), and age (r2 = 0.396; P = 0.029). However, fish size and age did not correlate to egg size (P > 0.05). Male shovelnose sturgeon reached FL50 at 579 mm and at a minimum length of 453 mm. The average male spawning cycle was 1–2 years. Reproductively viable male and female sturgeon occurred during the spring (March–May) and autumn (September–October) in both years, indicating spring and potential autumn spawning events. Shovelnose sturgeon in the lower Platte River are maturing at a shorter length and younger age compared to populations elsewhere. Although it is unknown if the change is plastic or evolutionary, unfavorable environmental conditions or over‐harvest may lead to hastened declines compared to other systems.  相似文献   

4.
Lake sturgeon, Acipenser fulvescens, are considered threatened or endangered throughout most of their North American Range. Current hatchery rearing for re-stocking programs utilise conventional methods with little to no understanding of the relationship between rearing conditions and the development of the hypothalamic-pituitary-interrenal (HPI) stress axis. In the present study we examined the effects of substrate type and temperature on the development of the HPI stress axis in prolarval and larval lake sturgeon. Lake sturgeon raised over either gravel or no substrate did not consistently show an increase in whole body cortisol at the prolarval stage. However, after the onset of exogenous feeding a consistent increase in whole body cortisol following a stress was evident. Lake sturgeon larvae raised in gravel substrate demonstrated a sustained increase in whole body cortisol for at least 240 min post stress whereas whole body cortisol in larvae raised in no substrate returned to baseline within 240 min post stress. Lake sturgeon larvae raised at 9, 12 and 15°C exhibited markedly different cortisol responses with baseline whole body cortisol being, 38.6 ± 3, 5.67 ± 0.41 and 25.38 ± 2.84 ng.g−1 respectively. Furthermore, the chase induced increases in whole body cortisol at the larval stage were significantly different for each temperature treatment. These experiments demonstrate that physical environment has a significant impact on the development of the HPI stress axis in lake sturgeon.  相似文献   

5.
Information on growth during the larval and young‐of‐year life stages in natural river environments is generally lacking for most sturgeon species. In this study, methods for estimating ages and quantifying growth were developed for field‐sampled larval and young‐of‐year shovelnose sturgeon Scaphirhynchus platorynchus in the upper Missouri River. First, growth was assessed by partitioning samples of young‐of‐year shovelnose sturgeon into cohorts, and regressing weekly increases in cohort mean length on sampling date. This method quantified relative growth because ages of the cohorts were unknown. Cohort increases in mean length among sampling dates were positively related (P < 0.05, r2 > 0.59 for all cohorts) to sampling date, and yielded growth rate estimates of 0.80–2.95 mm day−1 (2003) and 0.44–2.28 mm day−1 (2004). Highest growth rates occurred in the largest (and earliest spawned) cohorts. Second, a method was developed to estimate cohort hatch dates, thus age on date of sampling could be determined. This method included quantification of post‐hatch length increases as a function of water temperature (growth capacity; mm per thermal unit, mm TU−1), and summation of mean daily water temperatures to achieve the required number of thermal units that corresponded to post‐hatch lengths of shovelnose sturgeon on sampling dates. For six of seven cohorts of shovelnose sturgeon analyzed, linear growth models (r2 ≥ 0.65, P < 0.0001) or Gompertz growth models (r2 ≥ 0.83, P < 0.0001) quantified length‐at‐age from hatch through 55 days post‐hatch (98–100 mm). Comparisons of length‐at‐age derived from the growth models indicated that length‐at‐age was greater for the earlier‐hatched cohorts than later‐hatched cohorts. Estimated hatch dates for different cohorts were corroborated based on the dates that newly‐hatched larval shovelnose sturgeon were sampled in the drift. These results provide the first quantification of growth dynamics for field‐sampled age‐0 shovelnose sturgeon in a natural river environment, and provide an accurate method for estimating age of wild‐caught individuals. Methods of age determination used in this study have applications to sturgeons in other regions, but require additional testing and validation.  相似文献   

6.
The sequence and timing of the embryonic development of Adriatic sturgeon (Acipenser naccarii) are described at a constant temperature (17 ± 1 °C), from fertilisation to hatch in a hatchery. Fertilised eggs, obtained from one female and two males, were held in a flow‐through system. On the first day, embryos were sampled every 20 min during the first 12 h, and every 40 min in the following 12 h. Embryos were sampled hourly on the second day. On the third and fourth days, embryos were sampled every 2 h, and every 3 h on the fifth and sixth days. The first cleavage furrow appeared at 1 h 40 min postfertilisation. Blastulation concluded at 12 HPF (hours postfertilisation), when the dorsal blastopore lip formed. The completion of gastrulation was at 18 HPF, closing of the neural tube at 23 HPF and formation of the s‐shape heart at 31 HPF. The mass hatch occurred at 120 HPF. A. naccarii is a relatively common sturgeon species in aquaculture and possesses similar developmental patterns to those of other sturgeons; hence, we can use this species as a model for further studies about sturgeon species which are more difficult to breed artificially. Information about the embryonic development of the Adriatic sturgeon could assist restocking programmes.  相似文献   

7.
Movement of Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) and lake sturgeon (A. fulvescens) in the St. Lawrence Estuary (Québec, Canada) are not fully understood. To assess the movement extent of both species, a mark–recapture study was conducted in collaboration with commercial fishermen operating in the St. Lawrence Estuary. Between 1981 and 2015, 3,367 Atlantic sturgeon (fork length 21.8–199.5 cm) and 3,180 lake sturgeon (fork length 17.8–190.8 cm) were tagged and released. Of these, 673 Atlantic sturgeon and 42 lake sturgeon were recaptured. The maximum distances traveled between capture and recapture locations were 1,307 km for Atlantic sturgeon (8 years after initial capture) and 252 km for lake sturgeon (less than 1 year after initial capture). Statistical analyses identified differences in the dispersal distance of both species as revealed by a first component characterized by individuals with short dispersal distances (98% and <35 km for Atlantic sturgeon; 58% and <1 km for lake sturgeon) and a second component characterized by individuals with longer dispersal distances (2% and >600 km for Atlantic sturgeon; 42% and >190 km for lake sturgeon). We suggest that the short dispersal distances detected in the vast majority of Atlantic sturgeon recaptures likely reflect strong site fidelity, highlighting the importance of the St. Lawrence Estuary as a preferred habitat for juveniles and subadults. Although recaptures were low for lake sturgeon because this species is only marginally targeted by commercial fishermen in the St. Lawrence Estuary, our results also showed that this species uses estuarine habitats and that half of the population seems to exhibit strong site fidelity (67% of individuals were recaptured within 2 km).  相似文献   

8.
Monitoring trends in a long-lived species such as lake sturgeon (Acipenser fulvescens) has it challenges. Targeting the correct life stage to monitor can provide different and contrasting results. Early life stages experience high variable mortality and are often not a good predictor of population trend. Juvenile lake sturgeon (i.e., 5–10 years) experience high survival and could be a good life stage to monitor for assessing population trends. A structured, randomized gillnetting program, Broad-scale Monitoring, which was selective to juvenile lake sturgeon, was conducted over three cycles (i.e., 5 + years apart) in three contiguous Ottawa River reaches supporting lake sturgeon. In this study, we assessed spatiotemporal changes in juvenile lake sturgeon abundance among cycles, among and within the three river reaches. Density rasters based on catch records of lake sturgeon spatially were created using multilevel B-splines. Spatial differences in abundance among cycles was determined by obtaining the difference between the rasters. Three cycles of Broad-scale Monitoring sampled 334 lake sturgeon at a mean CPUE of 0.90 (0.12 SE) sturgeon • gang−1 and a mean total length 673 mm (115 SD) from all three reaches. The relative abundance of juvenile lake sturgeon did not significantly vary among sample cycles, however, CPUE varied within reaches among cycles. There was a spatiotemporal change in density with a decrease in the lowest reach whereas juvenile lake sturgeon density increased the most in the upper reach. The approach used in this study has the potential to monitor spatiotemporal changes in juvenile lake sturgeon abundance populations and may prove effective when assessing rehabilitation or fisheries management efforts.  相似文献   

9.
Lake sturgeon Acipenser fulvescens spawn at the base of Kakabeka Falls, a 39 m waterfall on the Kaministiquia River, a tributary to Lake Superior. Access to this historical spawning site can be restricted or delayed due to hydroelectric flow fluctuations that coincide with the A. fulvescens spawning season. The objectives of this study were to determine (a) the necessary flow conditions that facilitate spawning site access; (b) quantity and duration of flow required for successful spawning and dispersal of larvae; and (c) evaluate recruitment of juvenile A. fulvescens in relation to flow. A. fulvescens spawning migrations were tracked using a stationary telemetry receiver that logged the movements of 166 A. fulvescens fitted with radio-transmitters. Unrestricted access to the spawning site was facilitated when spawning flow was controlled at 23 m3 s−1 in 2004 and 17 m3 s−1 in 2006. Fluctuating (0.5–8.5 m3 s−1) and delayed spawning flows resulted in restricted and delayed access to the spawning site. Flow duration for successful egg incubation, hatch and larval dispersal was determined by sampling larvae using drift nets and quantified using cumulative temperature units (CTU). Over 10 years, 10,083 larvae were captured between 31 May and 20 July with 97% of the drift occurring prior to 30 June. From the date of first spawning to the end of larval dispersal took an average of 38.6 days, and the mean CTU value was 398.6. In general, a minimum flow of approximately 14.5 m3 s−1 from the date of initial spawning to the accumulation of c. 400 CTU ensured successful hatch and larval dispersal. During the timeframe of this study, recruitment was variable. This study described the complex and variable reproductive life history of A. fulvescens and defined spawning flow requirements ecologically, which can be used to develop operational provisions at hydropower facilities to ensure successful reproduction.  相似文献   

10.
The green sturgeon is a long-lived, highly migratory species with populations that are currently listed as threatened. Their anadromous life history requires that they make osmo- and ionoregulatory adjustments in order to maintain a consistent internal milieu as they move between fresh-, brackish-, and seawater. We acclimated juvenile green sturgeon (121 ± 10.0 g) to 0 (freshwater; FW), 15 (estuarine; EST), and 24 g/l (SF Bay water; BAY) at 18°C for 2 weeks and measured the physiological and biochemical responses with respect to osmo- and ionoregulatory mechanisms. Plasma osmolality in EST- and BAY-acclimated sturgeon was elevated relative to FW-acclimated sturgeon (P < 0.01), but there was no difference in muscle water content or abundance of stress proteins. Branchial Na+, K+-ATPase (NKA) activity was also unchanged, but abundance within mitochondrion-rich cells (MRC) was greater in BAY-acclimated sturgeon (P < 0.01). FW-acclimated sturgeon had the greatest NKA abundance when assessed at the level of the entire tissue (P < 0.01), but there were no differences in v-type H+ATPase (VHA) activity or abundance between salinities. The Na+, K+, 2Cl co-transporter (NKCC) was present in FW-acclimated sturgeon gills, but the overall abundance was lower relative to sturgeon in EST or BAY water (P < 0.01) where this enzyme is crucial to hypoosmoregulation. Branchial caspase 3/7 activity was significantly affected by acclimation salinity (P < 0.05) where the overall trend was for activity to increase with salinity as has been commonly observed in teleosts. Sturgeon of this age/size class were able to survive and acclimate following a salinity transfer with minimal signs of osmotic stress. The presence of the NKCC in FW-acclimated sturgeon may indicate the development of SW-readiness at this age/size.  相似文献   

11.
Mortality that occurs during larval dispersal as a consequence of environmental, maternal, and genetic effects and their interactions can affect annual recruitment in fish populations. We studied larval lake sturgeon (Acipenser fulvescens) drift for two consecutive nights to examine whether larvae from different females exposed to the same environmental conditions during dispersal differed in relative levels of mortality. We estimated proportional contributions of females to larval collections and relative larval loss among females as larvae dispersed downstream between two sampling sites based on genetically determined parentage. Larval collections were composed of unequal proportions of offspring from different females that spawned at upstream and downstream locations (~0.8 km apart). Hourly dispersal patterns of larvae produced from females spawning at both locations were similar, with the largest number of larvae observed during 22:00–23:00 h. Estimated relative larval loss did not differ significantly among females as larvae were sampled at two sites approximately 0.15 and 1.5 km from the last section downstream of spawning locations. High inter- and intra-female variation in larval contributions and relative larval loss between nights may be a common feature of lake sturgeon and other migratory fish species, and likely is a source of inter-annual and intra-annual variation in fish recruitment.  相似文献   

12.
The restoration of threatened species involves understanding multiple aspects of the life history and ecology of the target species. One important consideration in the restoration of threatened species is feeding ecology. We examined the summer diet of reintroduced juvenile lake sturgeon (Acipenser fulvescens) in the Genesee (n = 119, ages 1 and 2) and the St. Regis rivers (n = 40, ages 1, 2, 5, 6, and 7) of New York State, USA, in the summer of 2005. The most common taxa consumed were Diptera (88% of prey biomass) in the Genesee River and Ephemeroptera (35% of prey biomass) and Diptera (29%) in the St. Regis River. Diptera: (Chironomidae) was the major prey taxon in both benthic communities. Selectivity analysis showed a positive selection of Diptera by Genesee River lake sturgeon and an avoidance of Diptera by St. Regis River lake sturgeon. The St. Regis River lake sturgeon showed avoidance of Coleoptera, but positive selection of Ephemeroptera, Trichoptera, and Oligochaeta. Results indicate that the reintroduced juvenile lake sturgeon are growing and successfully finding prey in these two rivers and appear to actively select specific prey types.  相似文献   

13.
Quantifying interannual variation in effective adult breeding number (Nb) and relationships between Nb, effective population size (Ne), adult census size (N) and population demographic characteristics are important to predict genetic changes in populations of conservation concern. Such relationships are rarely available for long‐lived iteroparous species like lake sturgeon (Acipenser fulvescens). We estimated annual Nb and generational Ne using genotypes from 12 microsatellite loci for lake sturgeon adults (= 796) captured during ten spawning seasons and offspring (= 3925) collected during larval dispersal in a closed population over 8 years. Inbreeding and variance Nb estimated using mean and variance in individual reproductive success derived from genetically identified parentage and using linkage disequilibrium (LD) were similar within and among years (interannual range of Nb across estimators: 41–205). Variance in reproductive success and unequal sex ratios reduced Nb relative to N on average 36.8% and 16.3%, respectively. Interannual variation in Nb/N ratios (0.27–0.86) resulted from stable N and low standardized variance in reproductive success due to high proportions of adults breeding and the species' polygamous mating system, despite a 40‐fold difference in annual larval production across years (437–16 417). Results indicated environmental conditions and features of the species' reproductive ecology interact to affect demographic parameters and Nb/N. Estimates of Ne based on three single‐sample estimators, including LD, approximate Bayesian computation and sibship assignment, were similar to annual estimates of Nb. Findings have important implications concerning applications of genetic monitoring in conservation planning for lake sturgeon and other species with similar life histories and mating systems.  相似文献   

14.
Coloration in three of four species of the genus Neurergus including N. microspilotus is characterized by the presence of yellow spots on a dark skin, but there is no available information about changes in spot configuration, speed of development and degree of association between melanophore‐free region and the lateral line. In this study, spot numbers, spot circularity, spot size and spot asymmetry were studied during larval to adult growth in N. microspilotus during July 2012 to June 2015. The mean numbers of spots increased during the late larval stage till postmetamorphic period from 13.33 ± 3.77 to 22.53 ± 4.09 and reached 42.62 ± 4.06 in adults. At the same time, the extent of spots gradually decreased in size from 5.80 ± 1.00 to 3.57 ± 0.97 mm2 and reached 3.55 ± 1.42 mm2 in adults, but the spot circularity increased from 0.48 ± 0.23 to 0.78 ± 0.49 and reached 0.80 ± 0.15 in adults. In adults, the numbers, circularity, size and asymmetry of spots remain stable with little but non‐significant changes during the study period. Histological study shows that formation of a melanophore‐free region correlates with the development of the lateral line receptors. This study demonstrates that the effects of lateral line on chromatophores persist through middle larval stages but diminish as metamorphosis completes.  相似文献   

15.
Knowledge of fecundity in fishes is important for understanding life history, modeling population dynamics, developing fisheries management and determining conservation status. Sturgeon species are known for their high fecundity but to date only two populations of Atlantic sturgeon (Acipenser oxyrinchus Mitchill, 1815) have been examined for this aspect of their biology. The species is protected in most regions of eastern North America but the Saint John River, New Brunswick supports one of the two remaining commercial fisheries in Canada. Sixty females selected by this fishery were sampled for total length, weight, age, gonad weight and egg number. Absolute fecundity ranged from 153,630 to 1,306,626 eggs, with a mean fecundity of 582,832 ± 261,806 eggs. Absolute fecundity exhibited a significant positive relationship to increasing body weight but not to total length or age. Relative fecundity ranged from 129 to 216 eggs/g gonad weight and although it declined with both increasing body size and age the relationships were not significant. The Gonadosomatic Index (GSI) ranged from 1.3% to 27.0% with a mean of 7.8% ± 4.94 SD. Relative fecundity found in this study was higher and mean GSI lower than reported for other Atlantic sturgeon populations and other sturgeon species. Differences were probably due to location of the fishery downstream from spawning sites and selection of pre-spawning females by the commercial fishery.  相似文献   

16.
Recent advancements in telemetry have allowed managers and researchers to conduct comprehensive studies on the movement ecology of lake sturgeon (Acipenser fulvescens), a species of conservation concern in most of the Laurentian Great Lakes basin. In Michigan waters of Lake Michigan, drowned river mouth systems (a protected lake-like habitat that connects a river to lake) support 4 of 11 remaining lake sturgeon populations. One of those remnant populations is supported by the Muskegon River, a drowned river mouth system consisting of both Muskegon Lake and the Muskegon River. The objectives of this 6-year telemetry study were to determine whether adult lake sturgeon occupied the Muskegon River system outside of the spawning season (defined as March to July), to quantify their use of the system annually, and to identify and characterize patterns in occurrence. A total of 21 adult lake sturgeon implanted with acoustic transmitters were passively monitored throughout the year during 2012–2017. Eighty-two percent of tagged fish at large were detected ≥1 day in the Muskegon River system annually, and tagged lake sturgeon were frequently detected during both spawning and non-spawning time periods. Residency index (i.e., no. detection days/365 days) values indicated that adult lake sturgeon were not only detected throughout the year but that they occupied the Muskegon River system for an average of 130 days each year (residency index = 0.36 ± 0.05 SE) during our most spatially intensive acoustic monitoring in 2016–2017. Additionally, 24% of tagged lake sturgeon were primary residents (i.e., residency index >0.5) of the Muskegon River system in both years. Adult lake sturgeon followed 1 of 3 patterns of occurrence based on individual detection histories, and those patterns varied temporally and by the relative amount of use (i.e., high, medium, and low). Our findings build on previous research that found drowned river mouth systems in Lake Michigan can be important nursery habitats for juvenile lake sturgeon by showing that these habitats also can be used extensively by adult lake sturgeon throughout the year.  相似文献   

17.
Many populations of shortnose sturgeon, Acipenser brevirostrum, in the southeastern United States continue to suffer from poor juvenile recruitment. High summer water temperatures, which may be exacerbated by anthropogenic activities, are thought to affect recruitment by limiting available summer habitat. However, information regarding temperature thresholds of shortnose sturgeon is limited. In this study, the thermal maximum method and a heating rate of 0.1°C min−1 was used to determine critical and lethal thermal maxima for young-of-the-year (YOY) shortnose sturgeon acclimated to temperatures of 19.5 and 24.1°C. Fish used in the experiment were 0.6 to 35.0 g in weight and 64 to 140 days post hatch (dph) in age. Critical thermal maxima were 33.7°C (±0.3) and 35.1°C (±0.2) for fish acclimated to 19.5 and 24.1°C, respectively. Critical thermal maxima significantly increased with an increase in acclimation temperature (p < 0.0001). Lethal thermal maxima were 34.8°C (±0.1) and 36.1°C (±0.1) for fish acclimated to 19.5 and 24.1°C, respectively. Lethal thermal maxima were significantly affected by acclimation temperature, the log10 (fish weight), and the interaction between log10(fish weight) and acclimation temperature (p < 0.0001). Thermal maxima were used to estimate upper limits of safe temperature, thermal preferences, and optimal growth temperatures of YOY shortnose sturgeon. Upper limits of safe temperature were similar to previous temperature tolerance information and indicate that summer temperatures in southeastern rivers may be lethal to YOY shortnose sturgeon if suitable thermal refuge cannot be found.  相似文献   

18.
The aim of the study was to determine the susceptibility to predation of Atlantic sturgeon larvae (Acipenser oxyrinchus) reared under traditional hatchery conditions. Experiments were conducted to determine whether predators would prey on Atlantic sturgeon if alternative prey was available and if the presence of substrate on the tank bottom impacted the number of Atlantic sturgeon consumed. European perch (Perca fluviatilis) was used as the predator, and the alternative prey were three‐spined stickleback (Gasterosteus aculeatus) or gudgeon (Gobio gobio). The predators and alternative prey were obtained from the wild. The mortality of sturgeon (n = 10) and alternative prey (n = 10) caused by four predators was recorded during 15 min trials. Trials with three‐spined stickleback and gudgeon as alternative prey were performed separately. Each experimental trial was repeated five times. The predators consumed significantly more Atlantic sturgeon than alternative prey in both the experimental setups when the bottom of the tank was covered with gravel and stone substrate and when there was no substrate. In trials with three‐spined stickleback the mortality of Atlantic sturgeon in both experimental setups was 94 ± 8.94%, while that of three‐spined stickleback in the setup with substrate was 20 ± 19.23%, and without substrate it was 22 ± 10.00%. European perch also consumed more Atlantic sturgeon than they did gudgeon, and the mean Atlantic sturgeon mortality in the experimental setup with substrate was 94 ± 5.48%, while for gudgeon it was 48 ± 8.37%. In the experimental setup without substrate the predators also consumed substantially more Atlantic sturgeon than gudgeon, with a mean Atlantic sturgeon mortality of 94 ± 8.94%, while for gudgeon it was 76 ± 5.48%. The study indicated that hatchery reared Atlantic sturgeon larvae are susceptible to predation by European perch. Predation could impact the survival of juvenile Atlantic sturgeon in the natural environment, and it could be one of the factors that is impeding the restoration of this species in the Baltic Sea basin.  相似文献   

19.
Amur sturgeon Acipenser schrenckiii Brandt 1869 and kaluga Huso dauricus (Georgi 1775) are critically endangered species with populations showing significant decline from historical levels due to overexploitation, yet little is known about their population structure. Adults are not often captured in the Fuyuan reach of the Amur River, Heilongjiang Province, Northeast China, and the government prioritizes juvenile sturgeon management. This study was conducted to determine the age and length/weight relationships of juvenile Amur sturgeon and kaluga in the Fuyuan reach of the Amur River. We estimated age using pectoral fin spine sections obtained from 65 juvenile Amur sturgeon and 50 juvenile kaluga. We compared the age estimates from two readers, and found 100% between‐reader agreement in 67.7% of the Amur sturgeon and 64.0% of the kaluga. The majority of differences in estimated age were within 1 year. Length/weight relationships (LWR) were calculated, and the LWR of the Amur sturgeon and kaluga were W = 0.0025L3.106 (r2 = 0.966)and W = 0.0022L3.175 (r2 = 0.989), respectively. Our study provides the age structure and LWR in juveniles of two sturgeon species.  相似文献   

20.
Pteromalus cerealellae (Ashmead) (Hymenoptera: Pteromalidae) is an ectoparasitoid of several stored-product insect pests. Very little information has been published on its biology and development in host larvae, which typically are concealed within seeds. We documented the development of P. cerealellae within fourth instar larvae of its concealed host, Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae) infesting cowpea seeds. The preimaginal life stages of the parasitoid were characterized for the first time using morphological structures revealed by microscopic techniques including scanning electron microscopy. Pteromalus cerealellae produces hymenopteriform eggs and larvae. Eggs hatch into 13-segmented first instar larvae with peripneustic condition of spiracles. The larvae have simple, tusk-like mandibles, whereas the mandibles of the pupae and the adults are of the conventional toothed types. Using statistical analyses of the sizes of the larval mandibles and head capsules in conjunction with reliable characters such as the number of exuviae on the body of parasitoid larvae, cuticular folding, and excretion of the meconium, we recorded four larval instars for P. cerealellae. The data showed significant positive correlations between larval mandible lengths and widths of larval head capsules, as well as between mandible lengths and larval instars, suggesting that mandible length is a good predictor of the number of instars in P. cerealellae. Developmental time from egg to adult emergence was ∼12 d for females and ∼11 days for males at 30 ± 1°C, 70 ± 5% r.h. and 12L:12D photoperiod.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号