首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemokine receptor CXCR4 is involved in the growth and metastasis of tumor cells. However, the expression of its ligand, the chemokine CXCL12, in tumors and its role in regulating the accumulation of immune cells within the tumors is not clear. Using ELISA and immunohistochemistry we found that CXCL12 is expressed in the majority of nonsmall cell lung cancer tissue sections obtained from stage IA to IIB nonsmall cell lung cancer patients undergoing operation. Histopathologic examination of these sections indicated that high CXCL12 expression correlated with increased tumor inflammation. In addition, disease recurrence rates in a subgroup of adenocarcinoma patients showed a tendency to correlate with high CXCL12 expression in the tumor. Isolation of adenocarcinoma-infiltrating immune cells demonstrated an increase in the percentage of CD4+CD69+CXCR4+ T cells as compared with normal lung tissue. About 30% of these cells expressed the regulatory T cell markers CD25high and FoxP3. The percentage of CD8 T cells within the tumor did not change, however; the percentage of NK and NK T cells was significantly reduced. In correlation with CXCR4 expression, CD4 T cells showed increased migration in response to CXCL12 compared with CD8 T cells and NK cells. Overall, these observations suggest that CXCL12 expression may influence tumor progression by shaping the immune cell population infiltrating lung adenocarcinoma tumors.  相似文献   

2.
Interferon-gamma-inducible protein-10 (IP-10)/CXCL10 is a CXC chemokine that attracts T lymphocytes and NK cells through activation of CXCR3, the only chemokine receptor identified to date that binds IP-10/CXCL10. We have found that several nonhemopoietic cell types, including epithelial and endothelial cells, have abundant levels of a receptor that binds IP-10/CXCL10 with a Kd of 1-6 nM. Surprisingly, these cells expressed no detectable CXCR3 mRNA. Furthermore, no cell surface expression of CXCR3 was detectable by flow cytometry, and the binding of 125I-labeled IP-10/CXCL10 to these cells was not competed by the other high affinity ligands for CXCR3, monokine induced by IFN-gamma/CXCL9, and I-TAC/CXCL11. Although IP-10/CXCL10 binds to cell surface heparan sulfate glycosaminoglycan (GAG), the receptor expressed by these cells is not GAG, since the affinity of IP-10/CXCL10 for this receptor is much higher than it is for GAG, its binding is not competed by platelet factor 4/CXCL4, and it is present on cells that are genetically incapable of synthesizing GAG. Furthermore, in contrast to IP-10/CXCL10 binding to GAG, IP-10/CXCL10 binding to these cells induces new gene expression and chemotaxis, indicating the ability of this receptor to transduce a signal. These high affinity IP-10/CXCL10-specific receptors on epithelial cells may be involved in cell migration and, perhaps, in the spread of metastatic cells as they exit from the vasculature. (All of the lung cancer cells we examined also expressed CXCR4, which has been shown to play a role in breast cancer metastasis.) CXCR3-negative endothelial cells may also use this receptor to mediate the angiostatic activity of IP-10/CXCL10, which is also expressed by these cells in an autocrine manner.  相似文献   

3.
Follicular dendritic cells (FDCs) up-regulate the chemokine receptor CXCR4 on CD4 T cells, and a major subpopulation of germinal center (GC) T cells (CD4(+)CD57(+)), which are adjacent to FDCs in vivo, expresses high levels of CXCR4. We therefore reasoned that GC T cells would actively migrate to stromal cell-derived factor-1 (CXCL12), the CXCR4 ligand, and tested this using Transwell migration assays with GC T cells and other CD4 T cells (CD57(-)) that expressed much lower levels of CXCR4. Unexpectedly, GC T cells were virtually nonresponsive to CXCL12, whereas CD57(-)CD4 T cells migrated efficiently despite reduced CXCR4 expression. In contrast, GC T cells efficiently migrated to B cell chemoattractant-1/CXCL13 and FDC supernatant, which contained CXCL13 produced by FDCs. Importantly, GC T cell nonresponsiveness to CXCL12 correlated with high ex vivo expression of regulator of G protein signaling (RGS), RGS13 and RGS16, mRNA and expression of protein in vivo. Furthermore, FDCs up-regulated both RGS13 and RGS16 mRNA expression in non-GC T cells, resulting in their impaired migration to CXCL12. Finally, GC T cells down-regulated RGS13 and RGS16 expression in the absence of FDCs and regained migratory competence to CXCL12. Although GC T cells express high levels of CXCR4, signaling through this receptor appears to be specifically inhibited by FDC-mediated expression of RGS13 and RGS16. Thus, FDCs appear to directly affect GC T cell migration within lymphoid follicles.  相似文献   

4.
Small-cell lung cancer (SCLC) is a particularly aggressive form of lung cancer. Responsible for this highly malignant phenotype is an early and widespread metastasis with a high propensity of SCLC cells for bone marrow involvement and the ability to develop resistance against chemotherapeutic agents. Tumor cell migration and metastasis share many similarities with leukocyte trafficking, which is critically regulated by chemokines and adhesion molecules. There is growing evidence that the chemokine stromal derived factor-1 (SDF-1/CXCL12) and its receptor CXCR4 (CD184) regulate migration and metastasis of a variety of cancers including SCLC. SCLC cells express high levels of functional CXCR4 receptors. Engagement of CXCR4 by CXCL12 leads to an upregulation of integrin-mediated adhesion in SCLC and other tumor cells. Activation of CXCR4 chemokine receptors and integrins on SCLC cells promotes adhesion to accessory cells (such as stromal cells) and extracellular matrix molecules within the tumor microenvironment. These adhesive interactions result in an increased resistance of SCLC cells to chemotherapy. As such, inhibitors of the CXCR4/CXCL12 axis and/or integrin activation may increase the chemosensitivity of SCLC cells and lead to new therapeutic avenues for patients with SCLC.  相似文献   

5.
CXCL13/CXCR5 and CCL19/CCR7 play a quite important role in normal physiological conditions, but the functions of both chemokine/receptor pairs in pathophysiological events are not well-investigated. We have investigated expression and functions of CXCL13/CXCR5 and CCL19/CCR7 in CD23+CD5+ and CD23+CD5- B cells from cord blood (CB) and patients with B cell lineage acute or chronic lymphocytic leukemia (B-ALL or B-CLL). CXCR5 and CCR7 are selectively expressed on B-ALL, B-CLL, and CB CD23+CD5+ B cells at high frequency, but not on CD23+CD5- B cells. Although no significant chemotactic responsiveness was observed, CXCL13 and CCL19 cooperatively induce significant resistance to TNF-alpha-mediated apoptosis in B-ALL and B-CLL CD23+CD5+ B cells, but not in the cells from CB. B-ALL and B-CLL CD23+CD5+ B cells express elevated levels of paternally expressed gene 10 (PEG10). CXCL13 and CCL19 together significantly up-regulate PEG10 expression in the same cells. We have found that CXCL13 and CCL19 together by means of activation of CXCR5 and CCR7 up-regulate PEG10 expression and function, subsequently stabilize caspase-3 and caspase-8 in B-ALL and B-CLL CD23+CD5+ B cells, and further rescue the cells from TNF-alpha-mediated apoptosis. Therefore, we suggest that normal lymphocytes, especially naive B and T cells, use CXCL13/CXCR5 and CCL19/CCR7 for migration, homing, maturation, and cell homeostasis as well as secondary lymphoid tissues organogenesis. In addition, certain malignant cells take advantages of CXCL13/CXCR5 and CCL19/CCR7 for infiltration, resistance to apoptosis, and inappropriate proliferation.  相似文献   

6.
Most breast cancer mortality is due to clinical relapse associated with metastasis. CXCL12/CXCR4-dependent cell migration is a critical process in breast cancer progression; however, its underlying mechanism remains to be elucidated. Here, we show that the water/glycerol channel protein aquaporin-3 (AQP3) is required for CXCL12/CXCR4-dependent breast cancer cell migration through a mechanism involving its hydrogen peroxide (H2O2) transport function. Extracellular H2O2, produced by CXCL12-activated membrane NADPH oxidase 2 (Nox2), was transported into breast cancer cells via AQP3. Transient H2O2 accumulation was observed around the membrane during CXCL12-induced migration, which may be facilitated by the association of AQP3 with Nox2. Intracellular H2O2 then oxidized PTEN and protein tyrosine phosphatase 1B (PTP1B) followed by activation of the Akt pathway. This contributed to directional cell migration. The expression level of AQP3 in breast cancer cells was related to their migration ability both in vitro and in vivo through CXCL12/CXCR4- or H2O2-dependent pathways. Coincidentally, spontaneous metastasis of orthotopic xenografts to the lung was reduced upon AQP3 knockdown. These findings underscore the importance of AQP3-transported H2O2 in CXCL12/CXCR4-dependent signaling and migration in breast cancer cells and suggest that AQP3 has potential as a therapeutic target for breast cancer.  相似文献   

7.
We have previously demonstrated that a stromal cell-derived factor-1 (SDF-1; CXCL12)/CXCR4 system is involved in the establishment of metastasis in oral cancer. Recently, small non coding RNAs, microRNAs (miRNAs) have been shown to be involved in the metastatic process of several types of cancers. However, the miRNAs that contribute to metastases induced by the SDF-1/CXCR4 system in oral cancer are largely unknown. In this study, we examined the metastasis-related miRNAs induced by the SDF-1/CXCR4 system using B88-SDF-1 oral cancer cells, which exhibit functional CXCR4 and distant metastatic potential in vivo. Through miRNA microarray analysis, we identified the upregulation of miR-518c-5p in B88-SDF-1 cells, and confirmed the induction by real-time PCR analysis. Although an LNA-based miR-518c-5p inhibitor did not affect cell growth of B88-SDF-1 cells, it did significantly inhibit the migration of the cells. Next, we transfected a miR-518c expression vector into parental B88 cells and CAL27 oral cancer cells and isolated stable transfectants, B88-518c and CAL27-518c cells, respectively. The anchorage-dependent and -independent growth of miR-518c transfectants was significantly enhanced compared with the growth of mock cells. Moreover, we detected the enhanced migration of these cells. The LNA-based miR-518c-5p inhibitor significantly impaired the enhanced cell growth and migration of miR-518c transfectants, indicating that these phenomena were mainly dependent on the expression of miR-518c-5p. Next, we examined the function of miR-518c-5p in vivo. miR-518c transfectants or mock transfectants were inoculated into the masseter muscle or the blood vessels of nude mice. Tumor volume, lymph nodes metastasis, and lung metastasis were significantly increased in the mice inoculated with the miR-518c transfectants. These results indicated that miR-518c-5p regulates the growth and metastasis of oral cancer as a downstream target of the SDF-1/CXCR4 system.  相似文献   

8.
9.
Chemokines and their receptors function in migration and homing of cells to target tissues. Recent evidence suggests that cancer cells use a chemokine receptor axis for metastasis formation at secondary sites. Previously, we showed that binding of the chemokine CXCL12 to its receptor CXCR4 mediated signaling events resulting in matrix metalloproteinase-9 expression in prostate cancer bone metastasis. A variety of methods, including lipid raft isolation, stable overexpression of CXCR4, cellular adhesion, invasion assays, and the severe combined immunodeficient-human bone tumor growth model were used. We found that (a) CXCR4 and HER2 coexist in lipid rafts of prostate cancer cells; (b) the CXCL12/CXCR4 axis results in transactivation of the HER2 receptor in lipid rafts of prostate cancer cells; (c) Src kinase mediates CXCL12/CXCR4 transactivation of HER2 in prostate cancer cells; (d) a pan-HER inhibitor desensitizes CXCR4-induced transactivation and subsequent matrix metalloproteinase-9 secretion and invasion; (e) lipid raft-disrupting agents inhibited raft-associated CXCL12/CXCR4 transactivation of the HER2 and cellular invasion; (f) overexpression of CXCR4 in prostate cancer cells leads to increased HER2 phosphorylation and migratory properties of prostate cancer cells; and (g) CXCR4 overexpression enhances bone tumor growth and osteolysis. These data suggest that lipid rafts on the cell membrane are the key site for CXCL12/CXCR4-induced HER2 receptor transactivation. This transactivation contributes to enhanced invasive signals and metastatic growth in the bone microenvironment.  相似文献   

10.
Colorectal cancer (CRC) is characterized by a distinct metastatic pattern resembling chemokine-induced leukocyte trafficking. This prompted us to investigate expression, signal transduction and specific functions of the chemokine receptor CXCR4 in CRC cells and metastases. Using RT-PCR analysis and Western blotting, we demonstrated CXCR4 and CXCL12 expression in CRC and CRC metastases. Cell differentiation increases CXCL12 mRNA levels. Moreover, CXCR4 and its ligand are inversely expressed in CRC cell lines with high CXCR4 and low or not detectable CXCL12 expression. CXCL12 activates ERK-1/2, SAPK/JNK kinases, Akt and matrix metalloproteinase-9. These CXCL12-induced signals mediate reorganization of the actin cytoskeleton resulting in increased cancer cell migration and invasion. Moreover, CXCL12 increases vascular endothelial growth factor (VEGF) expression and cell proliferation but has no effect on CRC apoptosis. Therefore, the CXCL12/CXCR4 system is an important mediator of invasion and metastasis of CXCR4 expressing CRC cells.  相似文献   

11.
The chemokine CXCL12 regulates multiple cell functions through its receptor, CXCR4. However, recent studies have shown that CXCL12 also binds a second receptor, CXCR7, to potentiate signal transduction and cell activity. In contrast to CXCL12/CXCR4, few studies have focused on the role of CXCR7 in vascular biology and its role in human brain microvascular endothelial cells (HBMECs) remains unclear. In this report, we used complementary methods, including immunocytofluorescence, Western blot, and flow cytometry analyses, to demonstrate that CXCR7 was expressed on HBMECs. We then employed short hairpin RNA (shRNA) technology to knockdown CXCR7 in HBMECs. Knockdown of CXCR7 in HBMECs resulted in significantly reduced HBMEC proliferation, tube formation, and migration, as well as adhesion to matrigel and tumor cells. Blocking CXCR7 with a specific antibody or small molecule antagonist similarly disrupted HBMEC binding to matrigel or tumor cells. We found that tumor necrosis factor (TNF)-α induced CXCR7 in a time and dose-response manner and that this increase preceded an increase in vascular cell adhesion molecule-1 (VCAM-1). Knockdown of CXCR7 resulted in suppression of VCAM-1, suggesting that the reduced binding of CXCR7-knockdown HBMECs may result from suppression of VCAM-1. Collectively, CXCR7 acted as a functional receptor for CXCL12 in brain endothelial cells. Targeting CXCR7 in tumor vasculature may provide novel opportunities for improving brain tumor therapy.  相似文献   

12.
Slit, which mediates its function by binding to the Roundabout (Robo) receptor, has been shown to regulate neuronal and CXCR4-mediated leukocyte migration. Slit-2 was shown to be frequently inactivated in lung and breast cancers because of hypermethylation of its promoter region. Furthermore, the CXCR4/CXCL12 axis has been reported recently to be actively involved in breast cancer metastasis to target organs such as lymph nodes, lung, and bone. In this study, we sought to characterize the effect of Slit (=Slit-2) on the CXCL12/CXCR4-mediated metastatic properties of breast cancer cells. We demonstrate here that breast cancer cells and tissues derived from breast cancer patients express Robo 1 and 2 receptors. We also show that Slit treatment inhibits CXCL12/CXCR4-induced breast cancer cell chemotaxis, chemoinvasion, and adhesion, the fundamental components that promote metastasis. Slit had no significant effect on the CXCL12-induced internalization process of CXCR4. In addition, characterization of signaling events revealed that Slit inhibits CXCL12-induced tyrosine phosphorylation of focal adhesion components such as RAFTK/Pyk2 at residues 580 and 881, focal adhesion kinase at residue 576, and paxillin. We found that Slit also inhibits CXCL12-induced phosphatidylinositol 3-kinase, p44/42 MAP kinase, and metalloproteinase 2 and 9 activities. However, it showed no effect on JNK and p38 MAP kinase activities. To our knowledge, this is the first report to analyze in detail the effect of Slit on breast cancer cell motility as well as its effect on the critical components of the cancer cell chemotactic machinery. Studies of the Slit-Robo complex may foster new anti-chemotactic approaches to block cancer cell metastasis.  相似文献   

13.
14.
15.
Restoration of the epithelial barrier following acute lung injury is critical for recovery of lung homeostasis. After injury, alveolar type II epithelial (ATII) cells spread and migrate to cover the denuded surface and, eventually, proliferate and differentiate into type I cells. The chemokine CXCL12, also known as stromal cell-derived factor 1α, has well-recognized roles in organogenesis, hematopoiesis, and immune responses through its binding to the chemokine receptor CXCR4. While CXCL12/CXCR4 signaling is known to be important in immune cell migration, the role of this chemokine-receptor interaction has not been studied in alveolar epithelial repair mechanisms. In this study, we demonstrated that secretion of CXCL12 was increased in the bronchoalveolar lavage of rats ventilated with an injurious tidal volume (25 ml/kg). We also found that CXCL12 secretion was increased by primary rat ATII cells and a mouse alveolar epithelial (MLE12) cell line following scratch wounding and that both types of cells express CXCR4. CXCL12 significantly increased ATII cell migration in a scratch-wound assay. When we treated cells with a specific antagonist for CXCR4, AMD-3100, cell migration was significantly inhibited. Knockdown of CXCR4 by short hairpin RNA (shRNA) caused decreased cell migration compared with cells expressing a nonspecific shRNA. Treatment with AMD-3100 decreased matrix metalloproteinase-14 expression, increased tissue inhibitor of metalloproteinase-3 expression, decreased matrix metalloproteinase-2 activity, and prevented CXCL12-induced Rac1 activation. Similar results were obtained with shRNA knockdown of CXCR4. These findings may help identify a therapeutic target for augmenting epithelial repair following acute lung injury.  相似文献   

16.
NKT cells play important roles in the regulation of diverse immune responses. Therefore, chemokine receptor expression and chemotactic responses of murine TCRalphabeta NKT cells were examined to define their homing potential. Most NKT cells stained for the chemokine receptor CXCR3, while >90% of Valpha14i-positive and approximately 50% of Valpha14i-negative NKT cells expressed CXCR6 via an enhanced green fluorescent protein reporter construct. CXCR4 expression was higher on Valpha14i-negative than Valpha14i-positive NKT cells. In spleen only, subsets of Valpha14i-positive and -negative NKT cells also expressed CXCR5. NKT cell subsets migrated in response to ligands for the inflammatory chemokine receptors CXCR3 (monokine induced by IFN-gamma/CXC ligand (CXCL)9) and CXCR6 (CXCL16), and regulatory chemokine receptors CCR7 (secondary lymphoid-tissue chemokine (SLC)/CC ligand (CCL)21), CXCR4 (stromal cell-derived factor-1/CXCL12), and CXCR5 (B cell-attracting chemokine-1/CXCL13); but not to ligands for other chemokine receptors. Two NKT cell subsets migrated in response to the lymphoid homing chemokine SLC/CCL21: CD4(-) Valpha14i-negative NKT cells that were L-selectin(high) and enriched for expression of Ly49G2 (consistent with the phenotype of most NKT cells found in peripheral lymph nodes); and immature Valpha14i-positive cells lacking NK1.1 and L-selectin. Mature NK1.1(+) Valpha14i-positive NKT cells did not migrate to SLC/CCL21. BCA-1/CXCL13, which mediates homing to B cell zones, elicited migration of Valpha14i-positive and -negative NKT cells in the spleen. These cells were primarily CD4(+) or CD4(-)CD8(-) and were enriched for Ly49C/I, but not Ly49G2. Low levels of chemotaxis to CXCL16 were only detected in Valpha14i-positive NKT cell subsets. Our results identify subsets of NKT cells with distinct homing and localization patterns, suggesting that these populations play specialized roles in immunological processes in vivo.  相似文献   

17.
Activation of the chemokine receptor CXCR3 by its cognate ligands induces several differentiated cellular responses important to the growth and migration of a variety of hematopoietic and structural cells. In the human respiratory tract, human airway epithelial cells (HAEC) release the CXCR3 ligands Mig/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11. Simultaneous expression of CXCR3 by HAEC would have important implications for the processes of airway inflammation and repair. Accordingly, in the present study we sought to determine whether HAEC also express the classic CXCR3 chemokine receptor CXCR3-A and its splice variant CXCR3-B and hence may respond in autocrine fashion to its ligands. We found that cultured HAEC (16-HBE and tracheocytes) constitutively expressed CXCR3 mRNA and protein. CXCR3 mRNA levels assessed by expression array were approximately 35% of beta-actin expression. In contrast, CCR3, CCR4, CCR5, CCR8, and CX3CR1 were <5% beta-actin. Both CXCR3-A and -B were expressed. Furthermore, tracheocytes freshly harvested by bronchoscopy stained positively for CXCR3 by immunofluorescence microscopy, and 68% of cytokeratin-positive tracheocytes (i.e., the epithelial cell population) were positive for CXCR3 by flow cytometry. In 16-HBE cells, CXCR3 receptor density was approximately 78,000 receptors/cell when assessed by competitive displacement of 125I-labeled IP-10/CXCL10. Finally, CXCR3 ligands induced chemotactic responses and actin reorganization in 16-HBE cells. These findings indicate constitutive expression by HAEC of a functional CXC chemokine receptor, CXCR3. Our data suggest the possibility that autocrine activation of CXCR3 expressed by HAEC may contribute to airway inflammation and remodeling in obstructive lung disease by regulating HAEC migration.  相似文献   

18.
Interaction of ligand-receptor systems between stromal-cell-derived factor-1 (SDF-1) and CXC chemokine receptor 4 (CXCR4) is closely involved in the organ specificity of cancer metastasis. We hypothesized that SDF-1-CXCR4 ligand-receptor system plays an important role in prostate cancer metastasis. To test this hypothesis, expression level of SDF-1 and CXCR4 was analyzed in prostate cancer (PC) cell lines (LNCaP, PC3, and DU145) and normal prostate epithelial cell line (PrEC). We also performed migration assay and MTT assay to investigate the chemotactic effect and growth-promoting effect of SDF-1 on DU145 and PC3 cells, respectively. Furthermore, we performed immunohistochemical analysis of CXCR4 expression in tissues from 35 cases of human prostate cancer. CXCR4 expression was detected in all three prostate cancer cell lines, but not in PrECs. SDF-1 significantly enhanced the migration of PC3 and DU145 cells in a dose-dependent manner, and anti-CXCR4 antibody inhibited this chemotactic effect. However, SDF-1 itself did not significantly stimulate the cell growth rate of prostate cancer cell lines. Positive CXCR4 protein was found in 20 out of 35 clinical PC samples (57.1%). Three patients with lung metastasis showed definitely positive CXCR4 immunostaining. Logistic regression analysis revealed that positive expression of CXCR4 protein was an independent and superior predictor for bone metastasis to Gleason sum (P < 0.05). Furthermore, among PC patients with PSA greater than 20 ng/mL, the positive rate of CXCR4 protein was significantly higher in patients with bone metastasis than in those with no bone metastasis (P = 0.017). These findings suggest that the interaction between SDF-1 and CXCR4 ligand-receptor system is involved in the process of PC metastasis by the activation of cancer cell migration. This is the first report to investigate the role of interaction of ligand-receptor systems between SDF-1 and CXCR4 in prostate cancer metastasis.  相似文献   

19.
Metastasis is considered the obvious mark for most aggressive cancers. However, little is known about the molecular mechanism of the regulation of cancer metastasis. Recent evidence increasingly suggests that the interaction between chemokines and chemokine receptors is pivotal in the process of metastasis. The chemokine receptor CXCR4 and its ligand CXCL12, for example, have been reported to play a vital role in cancer metastasis. Another chemokine and chemokine receptor pair, the CXCL16/CXCR6 axis, has been studied by several independent research groups. Here, we summarize recent advances in our knowledge of the function of CXC chemokine receptor CXCR6 and its ligand CXCL16 in regulating metastasis and invasion of cancer. CXCR6 and CXCL16 are up-regulated in multiple cancer tissue types and cancer cell lines relative to normal tissues and cell lines. In addition, both CXCR6 and CXCL16 levels increase as tumor malignancy increases. Trans-membranous CXCL16 chemokine reduces proliferation while soluble CXCL16 chemokine enhances proliferation and migration. TM-CXCL16 functions as an inducer for lymphocyte build-up around tumor sites. High trans-membranous CXCL16 expression correlates with a good prognosis. Moreover, the Akt/mTOR signal pathway is involved in activating the CXCR6/CXCL16 axis. These findings suggest multiple opportunities for blocking the CXCR6/CXCL16 axis and the Akt/mTOR signal pathway in novel cancer therapies.  相似文献   

20.
Combined phylogenetic and chromosomal location studies suggest that the orphan receptor RDC1 is related to CXC chemokine receptors. RDC1 provides a co-receptor function for a restricted number of human immunodeficiency virus (HIV) isolates, in particular for the CXCR4-using HIV-2 ROD strain. Here we show that CXCL12, the only known natural ligand for CXCR4, binds to and signals through RDC1. We demonstrate that RDC1 is expressed in T lymphocytes and that CXCL12-promoted chemotaxis is inhibited by an anti-RDC1 monoclonal antibody. Concomitant blockade of RDC1 and CXCR4 produced additive inhibitory effects in CXCL12-induced T cell migration. Furthermore, we provide evidence that interaction of CXCL12 with RDC1 is specific, saturable, and of high affinity (apparent KD approximately 0.4 nM). In CXCR4-negative cells expressing RDC1, CXCL12 promotes internalization of the receptor and chemotactic signals through RDC1. Collectively, our data indicate that RDC1, which we propose to rename as CXCR7, is a receptor for CXCL12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号