首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary The use of -blockers has emerged as a beneficial treatment for cardiac hypertrophy. Hypoxia-inducible factor-1 (HIF-1) is tightly regulated in the ventricular myocardium. However, the expression of HIF-1 in cardiac hypertrophy due to pressure overload and after treatment with -blocker is little known. To evaluate the effect of carvedilol on both myocardial HIF-1 expression and cardiac hypertrophy, infra-renal aortic banding was performed for 4 weeks in adult Sprague-Dawley rats to induce cardiac hypertrophy. Carvedilol at 50 mg/kg body weight per day after surgery was given. Heart weight and the ratio of heart weight and body weight increased significantly after aortic banding for 4 weeks in the absence of drug treatment. Mean arterial pressure increased from 80 ± 9 mmHg in the sham group to 94 ±5 mmHg (p < 0.001) in the banding group. Echocardiography showed concentric hypertrophy after aortic banding. Mean arterial pressure decreased after treatment with carvedilol. The increased wall thickness and heart weight was reversed to normal by carvedilol. Western blot showed that HIF-1, vascular endothelial growth factor (VEGF) and brain natriuretic peptide (BNP) proteins were up-regulated and nerve growth factor- (NGF-) down-regulated in the banding group. Treatment with valsartan, doxazosin, or N-acetylcysteine did not significantly affect HIF-1 and VEGF proteins expression in the banding groups. Real-time polymerase chain reaction showed that mRNA of HIF-1, VEGF and BNP increased and mRNA of NGF- decreased in the banding group. Treatment with carvedilol reversed both protein and mRNA of HIF-1, VEGF, BNP, and NGF- to the baseline values. Increased immunohistochemical labeling of HIF-1, VEGF, and BNP in the ventricular myocardium was observed in the banding group and carvedilol again normalized the labeling. In conclusion, HIF-1, VEGF, and BNP mRNA and protein expression were up-regulated, while NGF- mRNA and protein was downregulated in the rat model of pressure-overloaded cardiac hypertrophy. Treatment with carvedilol is associated with a reversal of abnormal regulation of HIF-1,VEGF, BNP, and NGF- in the hypertrophic myocardium.  相似文献   

3.
4.
Transforming growth factor-β (TGF-β) is a multifunctional cytokine that is known to modulate various aspects of endothelial cell (EC) biology. Retinal pigment epithelium (RPE) is important for regulating angiogenesis of choriocapillaris and one of the main cell sources of TGF-β secretion, particularly TGF-β2. However, it is largely unclear whether and how TGF-β2 affects angiogenic responses of ECs. In the current study, we demonstrated that TGF-β2 reduces vascular endothelial growth factor receptor-2 (VEGFR-2) expression in ECs and thereby inhibits vascular endothelial growth factor (VEGF) signaling and VEGF-induced angiogenic responses such as EC migration and tube formation. We also demonstrated that the reduction of VEGFR-2 expression by TGF-β2 is due to the suppression of JNK signaling. In coculture of RPE cells and ECs, RPE cells decreased VEGFR-2 levels in ECs and EC migration. In addition, we showed that TGF-β2 derived from RPE cells is involved in the reduction of VEGFR-2 expression and inhibition of EC migration. These results suggest that TGF-β2 plays an important role in inhibiting the angiogenic responses of ECs during the interaction between RPE cells and ECs and that angiogenic responses of ECs may be amplified by a decrease in TGF-β2 expression in RPE cells under pathologic conditions.  相似文献   

5.
6.
Insulin resistance, reduced β-cell mass, and hyperglucagonemia are consistent features in type 2 diabetes mellitus (T2DM). We used pancreas and islets from humans with T2DM to examine the regulation of insulin signaling and cell-cycle control of islet cells. We observed reduced β-cell mass and increased α-cell mass in the Type 2 diabetic pancreas. Confocal microscopy, real-time PCR and western blotting analyses revealed increased expression of PCNA and down-regulation of p27-Kip1 and altered expression of insulin receptors, insulin receptor substrate-2 and phosphorylated BAD. To investigate the mechanisms underlying these findings, we examined a mouse model of insulin resistance in β-cells--which also exhibits reduced β-cell mass, the β-cell-specific insulin receptor knockout (βIRKO). Freshly isolated islets and β-cell lines derived from βIRKO mice exhibited poor cell-cycle progression, nuclear restriction of FoxO1 and reduced expression of cell-cycle proteins favoring growth arrest. Re-expression of insulin receptors in βIRKO β-cells reversed the defects and promoted cell cycle progression and proliferation implying a role for insulin-signaling in β-cell growth. These data provide evidence that human β- and α-cells can enter the cell-cycle, but proliferation of β-cells in T2DM fails due to G1-to-S phase arrest secondary to defective insulin signaling. Activation of insulin signaling, FoxO1 and proteins in β-cell-cycle progression are attractive therapeutic targets to enhance β-cell regeneration in the treatment of T2DM.  相似文献   

7.
8.
Low frequency of durable responses in patients treated with immune checkpoint inhibitors (ICIs) demands for taking complementary strategies in order to boost immune responses against cancer. Transforming growth factor-β (TGF-β) is a multi-tasking cytokine that is frequently expressed in tumours and acts as a critical promoter of tumour hallmarks. TGF-β promotes an immunosuppressive tumour microenvironment (TME) and defines a bypass mechanism to the ICI therapy. A number of cells within the stroma of tumour are influenced from TGF-β activity. There is also evidence of a relation between TGF-β with programmed death-ligand 1 (PD-L1) expression within TME, and it influences the efficacy of anti-programmed death-1 receptor (PD-1) or anti-PD-L1 therapy. Combination of TGF-β inhibitors with anti-PD(L)1 has come to the promising outcomes, and clinical trials are under way in order to use agents with bifunctional capacity and fusion proteins for bonding TGF-β traps with anti-PD-L1 antibodies aiming at reinvigorating immune responses and promoting persistent responses against advanced stage cancers, especially tumours with immunologically cold ecosystem.  相似文献   

9.
BackgroundWidely used NAPDH oxidase (Nox) inhibitor, apocynin is a prodrug that needs to be converted to its pharmacologically active form by myeloperoxidase. In myeloperoxidase deficient non phagocytic cells such as vascular smooth muscle cells (VSMCs) apocynin stimulates the production of ROS. ROS is generated by the activation of many signalling pathways, thus we have used apocynin as a pharmacological tool to characterise the role of endogenous ROS in activating the transforming growth factor beta receptor (TGFBR1) without the activation of other pathways.MethodsThe in vitro study utilized human VSMCs. Western blotting and quantitative real time PCR were performed to assess signalling pathways and gene expression, respectively. Intracellular ROS levels was measured using fluorescence detection assay.ResultsTreatment with apocynin of human VSMCs stimulated ROS production and the phosphorylation of TGFBR1 and subsequent activation of TGFBR1 signalling leading to the formation of phosphorylated Smad2 which consequently upregulates the mRNA expression of glycosaminoglycan synthesizing enzyme.ConclusionsThese findings outline a specific involvement of ROS production in TGFBR1 activation. Furthermore, because apocynin stimulates Nox and ROS production, apocynin must be used with considerable care in vitro as its actions clearly extend beyond the stimulation of Nox enzymes and it has consequences for cellular signalling.General significanceApocynin can stimulate Nox leading to the production of ROS and the outcome is completely dependent upon the redox properties of the cell.  相似文献   

10.
Pancreatic cancer is a common malignant digestive disease. Epidemiological and clinical studies have demonstrated that pancreatic cancer is closely related to diabetes mellitus. Diabetic patients are more likely to develop pancreatic cancer, which is linked with poor outcomes. Pancreatic cancer is complicated with abnormal blood sugar and insulin resistance and promotes the development of diabetes mellitus. Understanding the molecular mechanisms linking diabetes mellitus and pancreatic cancer is essential for the treatment of diabetes cancer patients. The transforming growth factor-β (TGF-β) signaling pathway is deregulated in cancer and has a dual role in different stages of cancer as a suppressor or a promoter. More important, The TGF-β signaling pathway is also another important reason for diabetic complications. This review summarizes the relationship between diabetes and pancreatic cancer, in particular, focusing on the role of the TGF-β signaling pathway. It is possible to find drugs like metformin that can prevent and treat pancreatic cancer by targeting the TGF-β signaling pathway.  相似文献   

11.
The selective serotonin re-uptake inhibitor fluoxetine has been shown to protect against monocrotaline (MCT)-induced pulmonary hypertension in rats. To investigate the possible role of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in mediating this protective effect, MCT-treated rats were administered fluoxetine by gavage, at doses of 2?mg/kg body mass or 10?mg/kg once daily for 3 weeks. Changes in pulmonary hemodynamic parameters, pulmonary artery morphologies, and expressions of HIF-1α and VEGF were assessed. Fluoxetine at the 10?mg/kg dose, but not at the 2?mg/kg dose, attenuated the effects of MCT on pulmonary artery pressure, right ventricle index, and medial wall thickness. In addition, 10?mg/kg fluoxetine mitigated the MCT-induced up-regulation of HIF-1α and VEGF protein and reactive oxygen species (ROS) in the lungs. This dosage also decreased pERK1/2 levels and inhibited proliferation of pulmonary arterial smooth muscle cells in MCT-treated rats. In conclusion, fluoxetine can protect against MCT-induced pulmonary arterial remodeling, which linked to reduced ROS generation and decreased HIF-1α and VEGF protein levels via the ERK1/2 phosphorylation pathway.  相似文献   

12.
We have reported previously that pigment epithelium-derived factor (PEDF) can, via γ-secretase-mediated events, inhibit VEGF-induced angiogenesis in microvascular endothelial cells by both (a) cleavage and intracellular translocation of a C-terminal fragment of VEGF receptor-1 (VEGFR1) and (b) inhibition of VEGF-induced phosphorylation of VEGFR1. Using site-direct mutagenesis and transfection of wild type and mutated receptors into endothelial cells, we showed that transmembrane cleavage of VEGFR1 occurs at valine 767 and that a switch from valine to alanine at this position prevented cleavage and formation of a VEGFR1 intracellular fragment. Using siRNA to selectively knock down protein-tyrosine phosphatases (PTPs) in endothelial cells, we demonstrated that vascular endothelial PTP is responsible for dephosphorylation of activated VEGFR1. PEDF up-regulation of full-length presenilin 1 (Fl.PS1) facilitated the association of vascular endothelial PTP and VEGFR1. Knockdown of Fl.PS1 prevented dephosphorylation of VEGFR1, whereas up-regulation of Fl.PS1 stimulated VEGFR1 dephosphorylation. Fl.PS1 associated with VEGFR1 within 15 min after PEDF treatment. In conclusion, we determined the PEDF-mediated events responsible for VEGFR1 signaling and identified full-length presenilin as a critical adaptor molecule in the dephosphorylation of VEGFR1. This greater understanding of the regulation of VEGFR1 signaling will help identify novel anti-VEGF therapeutic strategies.  相似文献   

13.
14.
Pan LL  Liu XH  Gong QH  Wu D  Zhu YZ 《PloS one》2011,6(5):e19766

Background

Hydrogen sulfide (H2S), the third physiologically relevant gaseous molecule, is recognized increasingly as an anti-inflammatory mediator in various inflammatory conditions. Herein, we explored the effects and mechanisms of sodium hydrosulfide (NaHS, a H2S donor) on tumor necrosis factor (TNF)-α-induced human umbilical vein endothelial cells (HUVEC) dysfunction.

Methodology and Principal Findings

Application of NaHS concentration-dependently suppressed TNF-α-induced mRNA and proteins expressions of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), mRNA expression of P-selectin and E-selectin as well as U937 monocytes adhesion to HUVEC. Western blot analysis revealed that the expression of the cytoprotective enzyme, heme oxygenase-1 (HO-1), was induced and coincident with the anti-inflammatory action of NaHS. Furthermore, TNF-α-induced NF-κB activation assessed by IκBα degradation and p65 phosphorylation and nuclear translocation and ROS production were diminished in cells subjected to treatment with NaHS.

Significance

H2S can exert an anti-inflammatory effect in endothelial cells through a mechanism that involves the up-regulation of HO-1.  相似文献   

15.
《Cytokine》2010,49(3):239-245
Discovery of the T-helper (Th) 17 cell lineage and functions in immune responses of mouse and man prompted us to investigate the role of transforming growth factor-beta (TGF-β) and interleukin (IL)-17 in innate resistance to murine schistosomiasis mansoni. Schistosoma mansoni-infected BALB/c and C57BL/6 mice were administered with recombinant TGF-β or mouse monoclonal antibody to TGF-β to evaluate the impact of this cytokine on host immune responses against lung-stage schistosomula, and subsequent effects on adult worm parameters. Developing schistosomula elicited increase in peripheral blood mononuclear cells (PBMC) mRNA expression and/or plasma levels of IL-4, IL-17, and interferon-gamma (IFN-γ), cytokines known to antagonize each other, resulting in impaired Th1/Th2, and Th17 immune responses and parasite evasion. Mice treated with TGF-β showed elevated PBMC mRNA expression of IL-6, IL-17, TGF-β, and TNF-α mRNA and increased IL-23 and IL-17 or TGF-β plasma levels, associated with significantly (P < 0.02–<0.0001) lower S. mansoni adult worm burden compared to controls in both mouse strains, thus suggesting that TGF-β led to heightened Th17 responses that mediated resistance to the infection. Mice treated with antibody to TGF-β showed increase in PBMC mRNA expression and plasma levels of IL-4, IL-12p70, and IFN-γ, and significantly (P < 0.02 and <0.0001) reduced worm burden and liver worm egg counts than untreated mice, indicating that Th1/Th2 immune responses were potentiated, resulting in significant innate resistance to schistosomiasis. The implications of these observations for schistosome immune evasion and vaccination were discussed.  相似文献   

16.
17.
Molecular and Cellular Biochemistry - Renal cell carcinoma (RCC) is a kind of malignant tumor with high recurrence, and it is urgent to find molecular markers for diagnosis and prognosis of RCC....  相似文献   

18.
19.

Background  

Functional antagonism between transforming growth factor beta (TGF-β) and hyaluronidase has been demonstrated. For example, testicular hyaluronidase PH-20 counteracts TGF-β1-mediated growth inhibition of epithelial cells. PH-20 sensitizes various cancer cells to tumor necrosis factor (TNF) cytotoxicity by upregulating proapoptotic p53 and WW domain-containing oxidoreductase (WOX1). TGF-β1 blocks PH-20-increased TNF cytotoxicity. In the present study, the functional antagonism between TGF-β1 and lysosomal hyaluronidases Hyal-1 and Hyal-2 was examined.  相似文献   

20.
The early effects of intracerebrally infused vascular endothelial growth factor (VEGF) on the blood–brain barrier (BBB) to endogenous albumin were studied using a quantitative immunocytochemical procedure. In addition, transmission electron microscopy was used to observe morphological changes induced in brain vasculature. A solution of VEGF in saline (40 ng/10 μl) was infused into the parieto-occipital cortex of mice, which were killed 10 min, 30 min, and 24 h afterwards. Untreated mice and mice that received infusion of saline only were used as controls. For immunocytochemical evaluation, ultrathin sections of immersion-fixed brain samples embedded in Lowicryl K4M were exposed to anti-albumin antiserum followed by protein A-gold. Simultaneously, other brain samples embedded in Spurr resin were used for ultrastructural examination. Morphometric and statistical analysis indicated that as soon as 10 min after infusion of VEGF, 33% of vascular profiles were leaking albumin, and this value increased at 30 min to 92%. This effect of VEGF appears to be of rather short duration because after 24 h, only 27% of vascular profiles showed signs of leakage. The results of ultrastructural observations indicate that VEGF (30 min post-infusion) induces several changes in microvascular segments located in the area of intracerebral infusion of VEGF. These changes consist of the appearance of interendothelial gaps; fragmentation of the endothelium with formation of segmental, fenestrae-like narrowings; degenerative changes of the vascular basement membrane; and the appearance of fibrin gel in the vessel lumen. At 24 h post-infusion, solitary diaphragmed fenestrae appeared in attenuated segments of the endothelium in a few microvascular profiles. These changes, which are interpreted to be preparatory steps for angiogenesis, affect the structural integrity of the vascular segments, leading to extravasation of blood plasma proteins, including albumin. © 1998 Chapman and Hall  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号