首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binding of thyrotropin-releasing hormone (TRH) to specific receptors on membranes isolated from GH4C1 pituitary cells was inhibited by monovalent cations and guanyl nucleotides. NaCl and LiCl inhibited TRH binding by 70%, with half-maximal inhibition at 30 mM; RbCl and KCl inhibited only 10% at concentrations up to 150 mM. NaCl decreased both the apparent number and the affinity of TRH receptors and increased the rate of dissociation of TRH from both membrane and Triton X-100-solubilized receptors. Guanyl nucleotides inhibited TRH binding up to 80%, with guanyl-5'-yl imidodiphosphate (Gpp(NH)p) approximately GTP much greater than GDP approximately ATP greater than GMP. GTP and Gpp(NH)p exerted half-maximal effects at 0.3 microM and decreased receptor affinity to one-third of control but did not change receptor number. Gpp(NH)p accelerated the dissociation of TRH from membranes but not from solubilized receptors. The effects of NaCl were independent of temperature, while GTP and Gpp(NH)p were much more inhibitory at 22 degrees C (70%) than at 0 degrees C (10%). Inhibition by NaCl could be reversed by washing the membranes, and inhibition by GTP was reversed if membranes were chilled to 0 degrees C. The inhibitory effects of low concentrations of NaCl and Gpp(NH)p were additive. Neither monovalent cations nor GTP prevented the TRH-receptor complex from undergoing transformation from a state with rapid dissociation kinetics to a slower dissociating form. The results suggest that sodium ion regulates TRH binding by interacting with a site on the receptor, while guanyl nucleotides regulate TRH binding indirectly.  相似文献   

2.
The existence of multiple affinity states for the opiate receptor in neuroblastoma x glioma NG108-15 hybrid cells has been demonstrated by competition binding studies with tritiated diprenorphine and [D-Ala2, D-Leu5]enkephalin (DADLE). In the presence of 10 mM Mg2+, all receptors exist in a high affinity state with Kd = 1.88 +/- 0.16 nM. Addition of 10 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p) decreased the affinity of DADLE to Kd = 8.08 +/- 0.93 nM. However, in the presence of 100 mM Na+, which is required for opiate inhibition of adenylate cyclase activity, analysis of competition binding data revealed three sites: the first, consisting of 17.5% of total receptor population has a Kd = 0.38 +/- 0.18 nM; the second, 50.6% of the population, has a Kd = 6.8 +/- 2.2 nM; and the third, 31.9% of the population, has a Kd of 410 +/- 110 nM. Thus, in the presence of sodium, a high affinity complex between receptor (R), GTP binding component (Ni), and ligand (L) was formed which was different from that formed in the absence of sodium. These multiple affinity states of receptor in the hybrid cells are agonist-specific, and the percentage of total opiate receptor in high affinity state is relatively constant in various concentrations of Na+. Multiple affinity states of opiate receptor can be demonstrated further by Scatchard analysis of saturation binding studies with [3H]DADLE. In the presence of Mg2+, or Gpp(NH)p, analysis of [3H]DADLE binding demonstrates that opiate receptor can exist in a single affinity state, with apparent Kd values of [3H]DADLE in 10 mM Mg2+ = 1.75 +/- 0.28 nM and in 10 microM Gpp(NH)p = 0.85 +/- 0.12 nM. There is a reduction of Bmax value from 0.19 +/- 0.02 nM in the presence of Mg2+ to 0.14 +/- 0.03 nM in the presence of Gpp(NH)p. In the presence of 100 mM Na+, Scatchard analysis of saturation binding of [3H]DADLE reveals nonlinear plots; two-site analysis of the curves yields Kd = 0.43 +/- 0.09 and 7.9 +/- 3.2 nM. These Kd values are analogous to that obtained with competition binding studies. Again, this conversion of single site binding Scatchard plots to multiple sites binding plots in the presence of Na+ is restricted to 3H-agonist binding only.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
A study of the onset of cation and guanine nucleotide regulation of delta, mu, and kappa rat brain opioid receptors during postnatal development was undertaken. Site-specific binding assays were utilized for each receptor type and the effects of 0.5 mM MnCl2, 100 mM NaCl, and/or 50 microM guanosine-5'-(beta, gamma-imido) triphosphate [Gpp(NH)p] were assessed. The most pronounced changes of opioid binding were seen in the presence of Mn2+. In adults, agonist binding to delta sites was stimulated by Mn2+, whereas that to mu sites was not affected and kappa binding was inhibited. The postnatal development of Mn2+ regulation for the three receptor subtypes was distinctly different. The largest effects were seen on delta sites detected in the early neonatal period, Mn2+ eliciting a 68% stimulation of binding over controls at day 1. Significant inhibition of kappa site binding by Mn2+ was detected only after the third postnatal week. Mn2+ caused a significant reversal of Gpp(NH)p inhibition of delta binding in the early neonatal period, exceeding that in the absence of regulators. Inhibition of mu and delta receptor binding by Na+ was greater, and the Mn2+ reversal of this effect was smaller, in the first 2 postnatal weeks than in adults. Gpp(NH)p + Na+ regulation did not change appreciably during the postnatal period. However, Mn2+ reversal of the considerable inhibition elicited by the combination of Na+ and Gpp(HN)p was developmental time-dependent. The data are discussed in terms of multiple sites of interaction for guanine nucleotides and cations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The kappa nature of opioid binding sites in a brush border membrane (BBM) fraction from human placenta has been confirmed: these sites display considerably higher apparent affinity (KI = 1.2 nM) for the kappa selective ligand U-50488 than they do for the mu and delta selective ligands [D-Ala2, MePhe4, Glyol5] enkephalin (KI = 1.5-2 microM) and [D-Thr2, Leu5] enkephalyl-Thr (KI = 10-15 microM), respectively. The BBM fraction from human placenta was incubated either with the agonist 3H-etorphine or with the antagonist 3H-diprenorphine and subsequently solubilized with digitonin. The solubilized macromolecular radioactivity was found to behave as a homogeneous entity both in molecular exclusion chromatography (app. rs = 6.1 nm) and in linear sucrose gradients (app. S20.w = 12 S). Two lines of evidence indicated that the placental kappa opioid receptor is capable of interacting with a guanine nucleotide regulatory (G) protein: (i) equilibrium binding of the agonist 3H-etorphine in the BBM fraction was clearly inhibited by 5'-guanylylimidodiphosphate (Gpp(NH)p), especially in the presence of Na+ ions while binding of the antagonist 3H-diprenorphine was significantly less so and (ii) the sedimentation velocity of the kappa opioid receptor was decreased down to about 10 S when the BBM fraction was prelabeled with radioligand in the presence of Gpp(NH)p prior to its solubilization with digitonin. The G protein that mediates the effect of Gpp(NH)p might be neither Gs nor Gi since no adenylate cyclase activity could be demonstrated in the BBM fraction from human placenta.  相似文献   

5.
Abstract

Many radiolabelled receptors coupled to intracellular adenylate cyclase activity have been found to be modulated by physiological modulators such as GTP (guanosine triphosphate) and Gpp(NH)p (guanosine-imido-diphosphate). In particular, the apparent affinity of agonists competing for the binding of 3H-antagonist-labelled receptors is reduced in the presence of GTP and Gpp(NH)p. We report herein the agonist-specific effects of GTP and Gpp(NH)p on rat brain cortical S2 serotonin receptors. The agonists serotonin, 5-methoxytryptamine, bufotenine, and tryptamine display threefold lower affinities for S2 serotonin receptors in the presence of 10-4M GTP or Gpp(NH)p than in the absence of the nucleotides. The antagonists spiperone, cinanserin, cyproheptadine and methysergide are unaffected by the guanine nucleotides. The Hill coefficients of the agonists increase from between 0.70–0.80 to 0.90–1.00 due to guanine nucleotides. ATP, ADP, and GDP have little or no effect. This pattern of guanine nucleotide effects has been found with receptors which are modulated by a guanine nucleotide regulatory protein and may indicate that the S2 serotonin receptor may be coupled to intracellular adenylate cyclase activity.  相似文献   

6.
Recent evidence suggests that the molecular interactions of agonists with beta-adrenergic receptors differ from those of antagonists. Most of this evidence has come from studies of agonist inhibition of radiolabeled antagonist binding. We have examined agonist binding directly in rat lung membranes using radiolabeled hydroxybenzylisoproterenol (3H-HBI). Specific binding of 3H-HBI was stereoselective and was inhibited by catecholamines with a potency order characteristic of beta 2-adrenergic receptors. Gpp(NH)p increased the rates of association and dissociation of 3H-HBI from the receptor. In the absence of Gpp(NH)p, Scatchard plots were curvilinear suggesting a complex interaction of the agonist with the receptor. The total number of 3H-HBI binding sites was similar to that of 125I-IHYP binding sites. In the presence of increasing concentrations of Gpp(NH)p, the affinity of 3H-HBI was decreased and Scatchard plots became linear. Sodium chloride mimicked the effect of Gpp(NH)p in lowering the affinity of the receptor for 3H-HBI. Magnesium chloride had the opposite effect in that it promoted high affinity binding. The effect of sodium chloride was largely overcome by the presence of magnesium chloride.  相似文献   

7.
The inhibition of adenylate cyclase from rat striatal plasma membranes by guanyl-5'-yl-imidodiphosphate [Gpp(NH)p] and morphine was compared to determine whether Gpp(NH)p-mediated inhibition accurately reflected hormone-mediated inhibition in this system. Inhibition of adenylate cyclase activity by Gpp(NH)p and morphine was examined with respect to temperature, divalent cation concentration, and the presence of Ca2+/calmodulin (Ca2+/CaM). Gpp(NH)p-mediated inhibition was dependent on the presence of Ca2+/CaM at 24 degrees C; the inhibition was independent of Ca2+/CaM at 18 degrees C; and inhibition could not be detected in the presence, or absence, of Ca2+/CaM at 30 degrees C. In contrast, naloxone-reversible, morphine-induced inhibition of adenylate cyclase was independent of both temperature and the presence of Ca2+/CaM. Mg2+ dose-response curves also reinforced the differences in the Ca2+/CaM requirement for Gpp(NH)p- and morphine-induced inhibition. Because Gpp(NH)p-mediated inhibition was independent of Ca2+/CaM at low basal activities (i.e., 18 degrees C, or below 1 mM Mg2+) and dependent on the presence of Ca2+/CaM at higher basal activities (24 degrees C, or above 1 mM Mg2+), the inhibitory effects of Gpp(NH)p were examined at 1 mM Mg2+ in the presence of 100 nM forskolin. Under these conditions, both Gpp(NH)p- and morphine-induced inhibition of adenylate cyclase were independent of Ca2+/CaM. The results demonstrate that the requirement for Ca2+/CaM to observe Gpp(NH)p-mediated inhibition depends on the basal activity of adenylate cyclase, whereas hormone-mediated inhibition is Ca2+/CaM independent under all conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
This study tested the hypothesis that an A1 adenosine receptor capable of inhibiting adenylate cyclase activity is present in porcine coronary vascular smooth muscle cells. In the absence of blockade of the A2 adenosine receptor, the A1 adenosine receptor agonists phenylisopropyladenosine (PIA) and cyclopentyladenosine (CPA) (10(-9) M) failed to inhibit Gpp(NH)p stimulated adenylate cyclase activity. However, after blockade of the A2 adenosine receptor with 30 nM CGS 15943A, cyclopentyladenosine (10(-9) M) inhibited Gpp(NH)p stimulated adenylate cyclase activity by 27 +/- 3% (4.3 +/- 0.7, Mean +/- SEM; pmoles/min/mg vs 5.9 +/- 0.8, P less than .05). The data demonstrate that both A1 and A2 adenosine receptors are present in coronary vascular smooth muscle. The results indicate that adenosine may mediate both vasodilation and vasoconstriction in the coronary circulation via A2 and A1 adenosine receptors, respectively.  相似文献   

9.
10.
Abstract

We have investigated the thermodynamic parameters of various opioid ligands interacting with their receptors in rat brain membranes. Affinity constants (Ka), enthalpy and entropy values were obtained from homologous displacement experiments performed at 0, 24 and 33°C. It was found that all the opioid agonists tested ([3H]dihydromorphine (DHM) μ alkaloid; [3H]DAMGO μ peptide; [3H]deltorphin-B δ peptide) display endothermic binding accompanied with a large entropy increase, regardless of their chemical structure (alkaloid or peptide), or of their μ or δ receptor selectivity. In contrast, binding of the antagonist naloxone is exothermic, mainly enthalpy driven. Na+ or Mg2+ results only in quantitative changes of the thermodynamic parameters. In the presence of the GTP-analog Gpp(NH)p; or Gpp(NH)p + Na+; or Gpp(NH)p + Na+ + Mg2+ the affinity of DHM binding dramatically decreases which might reflect functional uncoupling of the receptor-ligand complex and G-proteins. This altered molecular interactions are also indicated by curvilinear van't Hoff plot and entropy increase. It is concluded that the thermodynamic analysis provides means of determining the underlying driving forces of ligand binding and helps to delineate its mechanism.  相似文献   

11.
Forskolin-induced change of the size of adenylate cyclase   总被引:3,自引:0,他引:3  
Forskolin, a potent activator of cyclic AMP generating systems, has been proposed to act directly on the catalytic unit of adenylate cyclase. Nevertheless, some arguments indicate a possible role of the guanosine triphosphate-binding regulatory protein in forskolin action on adenylate cyclase. In this study, we have observed an increase in the apparent sedimentation coefficient of solubilized adenylate cyclase, elicited by forskolin, both in rat liver (from 6.4 +/- 0.1 to 7.2 +/- 0.1 S) and rat striatum (from 6.7 +/- 0.1 to 7.6 +/- 0.1 S). On both systems, a similar increase in the sedimentation coefficient was observed after preactivation of the enzyme with guanosine 5'-(beta, gamma-imido)triphosphate (Gpp(NH)p). In contrast to the Gpp(NH)p effect, the forskolin action was found to be reversible. Simultaneous pretreatments of adenylate cyclase with forskolin and Gpp(NH)p did not induce additive increases of the apparent sedimentation coefficient of adenylate cyclase. The modification of the size of solubilized adenylate cyclase was corroborated by gel filtration studies. In rat liver membranes, the Stokes radius of the solubilized enzyme increased from 59 +/- 1 A for basal state to 65 +/- 1 A for forskolin preactivated state. A possible explanation of our findings is that forskolin may stabilize the complex between the GTP-binding regulatory protein and the catalytic unit of adenylate cyclase in a reversible manner.  相似文献   

12.
Computer-assisted quantitative analysis of radioligand binding to rat cortical S2 serotonin receptors indicates the existence of two affinity states of the same receptor population. Monophasic antagonist competition curves for [3H]ketanserin-labelled sites suggest a uniform population of receptors with one affinity state for antagonists. Biphasic competition curves of agonists suggest that agonists discriminate high- and low-agonist-affinity forms of the S2 receptors. The affinities of agonists for the high- and low-affinity states, and the apparent percentages of high agonist-affinity forms varies with different agonists. The guanine nucleotides GTP and guanyl-5'-imido-diphosphate [Gpp(NH)p], as well as divalent cations, modulate the proportion of the sites with high affinity for agonists as evidenced by their ability to shift the agonist competition curves for [3H]ketanserin-labelled S2 receptors. GTP and Gpp(NH)p effects appear to be agonist-specific, as they do not affect antagonist competition for [3H]ketanserin-labelled S2 receptors, or [3H]ketanserin binding to S2 receptors. ATP and ADP have little or no effect on the binding properties of S2 serotonin receptors, whereas GDP is less potent than GTP. The presence of these specific nucleotide effects are the first evidence suggesting involvement of a guanine nucleotide-binding protein in the mechanism of agonist interaction with the S2 serotonin receptor. In general, the binding properties of [3H]ketanserin-labelled S2 serotonin receptors strongly resemble those of adenylate-cyclase coupled receptors such as the beta-adrenergic, the alpha 2-receptor, and the D-2 dopamine receptor. This may indicate the S2 serotonin receptor is coupled to adenylate cyclase activity, through a GTP binding protein.  相似文献   

13.
In rat striatum A(2A) adenosine receptors activate adenylyl cyclase through coupling to G(s)-like proteins, mainly G(olf) that is expressed at high levels in this brain region. In this study we report that the sulfhydryl alkylating reagent, N-ethylmaleimide (NEM), causes a concentration- and time-dependent inhibition of [3H] 2-p-(2-carboxyethyl)phenylethylamino)-5'-N-ethylcarboxamido adenosine ([3H]CGS21680) binding to rat striatal membranes. Membrane treatment with [14C]N-ethylmaleimide ([14C]NEM) labels numerous proteins while addition of 5'-guanylylimidodiphosphate (Gpp(NH)p) reduces labeling of only three protein bands that migrate in SDS-polyacrylamide gel electrophoresis with apparent molecular masses of approximately 52, 45 and 39 kDa, respectively. The 52- and 45-kDa labeled bands show electrophoretic motilities as Galpha(s)-long and Galpha(s)-short/Galpha(olf) subunits. An anti-Galpha(s/olf) antiserum immunoprecipitates two 14C labeled bands of 44 and 39 kDa. The band density decreases by 21-26% when membranes are treated with NEM in the presence of Gpp(NH)p. An anti-A(2A) receptor antibody also immunoprecipitates two 14C labeled bands of 40 and 38 kDa, respectively. However, such protein bands do not show any decrease of their density upon membrane treatment with NEM plus Gpp(NH)p. These results indicate that in rat striatal membranes NEM alkylates sulfhydryl groups of both Galpha(s/olf) subunits and A(2A) adenosine receptors. In addition, cysteine residues of Galpha(s/olf) are easily accessible to modification when the subunit is in the GDP-bound form. The 39- and 38-kDa labeled proteins may represent proteolytic fragments of Galpha(s/olf) and A(2A) adenosine receptor, respectively.  相似文献   

14.
The mechanism of receptor-induced activation of adenylate cyclase has been proposed to involve an enhanced exchange of GDP for GTP. The kinetics of this process have not been investigated so far in the brain due to a spontaneous activation of the enzyme by guanyl nucleotides, which precludes the ability to follow receptor-dependent events. We show that it is possible to investigate the mechanism of receptor action in such systems by using a combination of guanosine 5'-(beta-gamma-imino)triphosphate (Gpp(NH)p) and guanosine 5'-(2-O-thio)diphosphate (GDP beta S). In pineal membranes, beta-adrenergic agonists increase the rate of adenylate cyclase activation by 10 or 100 microM Gpp(NH)p about 40-fold (0.023-0.9 min-1 kact) and decrease the inhibitory potency of GDP beta S nearly 1000-fold. As a result, 100 microM GDP beta S which blocks 90% of the activation by 10 microM Gpp(NH)p has no inhibitory effect in the presence of 10 microM Gpp(NH)p and 10 microM noradrenaline or isoproterenol. In caudate nucleus, dopamine does not appear to increase the rate of activation of adenylate cyclase by 10 microM Gpp(NH)p. Nevertheless, 100 microM GDP beta S blocks 90% of the activation by 10 microM Gpp(NH)p but has no inhibitory effects in the presence of dopamine. Thus, one can demonstrate that even weakly activating receptors have the capacity to facilitate a functional exchange of GDP beta S for Gpp(NH)p and measure the efficacy of the interaction between the receptor and the functionally linked guanyl nucleotide subunit.  相似文献   

15.
Possible coupling of bovine adrenal medullary opioid receptors to islet-activating protein (IAP, pertussis toxin)-sensitive GTP-binding proteins was investigated by studying effects of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) and IAP treatment of membranes on opioid binding. Gpp(NH)p inhibited [3H]D-Ala2-D-Leu5-enkephalin ([3H]DADLE) binding by increasing the dissociation constant of [3H]DADLE and membranes, and enhanced slightly [3H]diprenorphine binding. IAP treatment of membranes reduced [3H]DADLE binding and abolished almost completely the Gpp(NH)p inhibition of [3H]DADLE binding. Treatment of membranes with IAP and [32P]NAD resulted in radio-labeling of membrane proteins of approximately 39,000 dalton. DADLE inhibited adenylate cyclase activity in rat brain caudate nucleus. However, DADLE, beta-endorphin, levorphanol and dynorphin A(1-13) did not show any significant inhibitory action on bovine adrenal medullary adenylate cyclase activity. These results suggest that bovine adrenal medullary opioid (DADLE) receptors are linked to IAP-sensitive GTP-binding proteins which are not directly coupled to adenylate cyclase.  相似文献   

16.
The catecholamine derivatives aminomenthylnorepinephrine (compound 1) and bromoacetylaminomenthylnorepinephrine (compound 2) were synthesized and their interaction with the rat lung beta-adrenoreceptor was characterized. Compared to (-)-isoproterenol, compounds 1 and 2 were 10 and 280 times less potent, respectively, at inhibiting (-)-[3H]dihydroalprenolol binding. At pH 7.4, all 3 compounds induced a loss of receptors (40-60%) which could be recovered by treatment with guanyl-5'-yl imidodiphosphate (Gpp(NH)p). However, at pH 8.1 Gpp(NH)p treatment did not recover those receptors lost by compound 2 only. The compound 2-induced receptor loss at pH 8.1 was time-dependent, prevented by propranolol but unaffected by Gpp(NH)p or after membrane heating at 50 degrees C which prevented the formation of the agonist high affinity binding state. Although, the maximal receptor loss as measured by [3H]dihydroalprenolol was 40-60%, more than 80% of the receptors were lost when measured by direct agonist binding, and the receptors left showed little agonist high affinity binding state formation. In rat reticulocyte membranes, compounds 1 and 2 stimulated adenylate cyclase activity with intrinsic activities of 0.55 and 0.31, respectively. However, at pH 8.1, compound 2 initially stimulated the enzyme followed by a blockade. These data indicated that both compounds 1 and 2 were partial beta-adrenoreceptor agonists and, at pH 8.1, compound 2 appeared to bind irreversibly only to those lung receptors able to form the agonist high affinity binding state. Furthermore, after irreversible binding, compound 2 appeared to act as an antagonist.  相似文献   

17.
In this study we seek to elucidate the mechanism of hormone-independent adenylate cyclase stimulation by Gpp(NH)p in chicken erythrocyte membranes, and the inhibition of this stimulation by propranolol. Membrane treatment with isoprenaline + GMP increased Gpp(NH)p stimulation to near maximal levels [obtainable with isoprenaline + Gpp(NH)p], but reduced stimulation by NaF. The stimulation by Gpp(NH)p was stereoselectively inhibited by propranolol, but not by equal concentrations of the local anaesthetic lignocaine. Propranolol's inhibitory action was abolished following membrane treatment with isoprenaline/GMP. In contrast to its inhibition of Gpp(NH)p stimulation, propranolol did not alter Gpp(NH)p-mediated 3H-GDP release from membranes. The polyene antibiotic filipin, which uncouples receptor (R) from Gs, also abolished Gpp(NH)p stimulation and this effect was partly overcome by membrane treatment. These results are consistent with a model in which free R exists in equilibrium with precoupled R.Gs complexes in the absence of hormone. These complexes are activated by Gpp(NH)p and dissociated by antagonists. The existence of such complexes is a prerequisite for Gpp(NH)p stimulatory action.  相似文献   

18.
Determination of the functional molecular size of vasopressin isoreceptors   总被引:1,自引:0,他引:1  
P Crause  R Boer  F Fahrenholz 《FEBS letters》1984,175(2):383-386
The molecular size of vasopressin receptors in the intact membrane-bound state was determined by radiation inactivation (target size analysis). For the V1 receptor in rat liver a molecular size of (76 +/- 8) kDa was determined. For the V2 receptor in rat kidney and bovine kidney molecular sizes of (95 +/- 4) and (108 +/- 11) kDa were found. Statistical analysis gave evidence for size differences between rat liver and rat kidney receptors or differences between rat liver and bovine kidney receptors, but not between kidney receptors from different species. The results suggest that V1 and V2 receptors can be distinguished by functional properties as well as by their size.  相似文献   

19.
The ability of 5'-guanylylimidodiphosphate (Gpp(NH)p) to stimulate irreversibly the adenylate cyclease activity of fat cell membranes has been studied by preincubating the membranes with this or related analogs followed by assaying after thoroughly washing the membranes. Activation can occur in a simple Tris-HCl buffer, in the absence of added divalent cations and in the presence of EDTA. Dithiothreitol enhances the apparent degree of activation, perhaps by stabilization. The importance of utilizing optimal conditions for stabilizing enzyme activity, and of measuring the simultaneous changes in the control enzyme, is illustrated. The organomercurial, p-aminophenylmercuric acetate, inhibits profoundly the activity of the native as well as the Gpp(NH)p-stimulated adenylate cyclase, but in both cases subsequent exposure to dithiothreitol restores fully the original enzyme activity. However, the mercurial-inactivated enzyme does not react with Gpp(NP)p, as evidenced by the subsequent restoration of only the control enzyme activity upon exposure to dithiothreitol. Thus, reaction with Gpp(NH)p requires intact sulfhydryl groups, but the activated state is not irreversibly destroyed by the inactivation caused by sulfhydryl blockade. GTP and, less effectively, GDP and ATP inhibit activation by Gpp(NH)p, but interpretations are complicated by the facts that this inhibition is overcome with time and that GTP and ATP can protect potently from spontaneous inactivation. These two nucleotides can be used in the Gpp(NH)p preincubation to stabilize the enzyme. The Gpp(NH)p-activated enzyme cannot be reversed spontaneously during prolonged incubation at 30 degrees C in the absence or presence of GTP, ATP, MgCl2, glycine, dithiothreitol, NaF or EDTA. The strong nucleophile, neutral hydroxylamine, decreases the Gpp(NH)p-activated enzyme activity and no subsequent activation is detected upon re-exposure to the nucleotide.  相似文献   

20.
The apparent target sizes of the glucagon receptor and the catalytic unit of adenylate cyclase in rat liver plasma membranes have been measured by the technique of radiation inactivation in an electron beam. When irradiated in the uncoupled state, the apparent target size for the catalytic unit assayed by fluoride-stimulated activity was 160 000, and for the receptor assayed by specific 125I-labelled glucagon binding was 217 000. The corresponding target size estimated from glucagon-stimulated activity after irradiation in the uncoupled state was 389 000. When the complexes were irradiated in the coupled state in the presence of glucagon, the apparent target sizes from 125I-labelled glucagon binding, and fluoride- or glucagon-stimulated activities had similar values of 310 000, 380 000 and 421 000, respectively. However, if the complexes were allowed to uncouple by removing glucagon after irradiation and activity was then assayed after readdition of glucagon, the apparent target size from the glucagon-stimulated activity increases from 421 000 to 811 000.The pattern of apparent target sizes obtained under these different conditions has been tested against the pattern predicted for simple models of the coupling mechanism. The only simple model that is consistent with the pattern of target sizes requires the receptors and catalytic units to be present in approximately equal numbers. On binding glucagon, the receptor forms a locking interaction with the catalytic units, so that the complex and its components are inactivated as a single target with an apparent size of about 380 000 (± 15%). After the removal and readdition of glucagon to complexes that were irradiated in the coupled state, the new population of complexes must contain hybrids of active and inactive partners obtained by exchange between active and inactivated complexes, to account for the doubling in apparent target size to 811 000 for glucagon-stimulated activity. This hybridization of catalytic units and receptors is the essential feature of the model that distinguishes it from others in which permanently associated complexes of the two components are activated by lateral dimersation on binding glucagon. Simple models of this type are shown to be physically improbable. It is emphasized that the models described are based only on the relationships between the apparent target sizes of components that are defined by their functions, and the apparent target sizes do not necessarily relate solely to the components that can be defined structurally as the receptor or catalytic unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号