首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dietary nitrate inhibits stress-induced gastric mucosal injury in the rat   总被引:5,自引:0,他引:5  
Dietary nitrate is reduced to nitrite by some oral bacteria and the resulting nitrite is converted to nitric oxide (NO) in acidic gastric juice. The aim of this study is to elucidate the pathophysiological role of dietary nitrate in the stomach. Intragastric administration of nitrate rapidly increased nitrate and NO in plasma and the gastric headspace, respectively. Water-immersion-restraint stress (WIRS) increased myeloperoxidase (MPO) activity in gastric mucosa and induced hemorrhagic erosions by a nitrate-inhibitable mechanism. In animals that had received either cardiac ligation or oral treatment with povidone-iodine, a potent bactericidal agent, administration of nitrate failed to increase gastric levels of NO and to inhibit WIRS-induced mucosal injury. WIRS decreased gastric mucosal blood flow by a mechanism which was inhibited by administration of nitrate. These data suggested that the enterosalivary cycle of nitrate and related metabolites consisted of gastrointestinal absorption and salivary secretion of nitrate, its conversion to nitrite by oral bacteria and then to NO in the stomach might play important roles in the protection of gastric mucosa from hazardous stress.  相似文献   

2.
Recently, it has been suggested that the supposedly inert nitrite anion is reduced in vivo to form bioactive nitric oxide with physiological and therapeutic implications in the gastrointestinal and cardiovascular systems. Intake of nitrate-rich food such as vegetables results in increased levels of circulating nitrite in a process suggested to involve nitrate-reducing bacteria in the oral cavity. Here we investigated the importance of the oral microflora and dietary nitrate in regulation of gastric mucosal defense and blood pressure. Rats were treated twice daily with a commercial antiseptic mouthwash while they were given nitrate-supplemented drinking water. The mouthwash greatly reduced the number of nitrate-reducing oral bacteria and as a consequence, nitrate-induced increases in gastric NO and circulating nitrite levels were markedly reduced. With the mouthwash the observed nitrate-induced increase in gastric mucus thickness was attenuated and the gastroprotective effect against an ulcerogenic compound was lost. Furthermore, the decrease in systemic blood pressure seen during nitrate supplementation was now absent. These results suggest that oral symbiotic bacteria modulate gastrointestinal and cardiovascular function via bioactivation of salivary nitrate. Excessive use of antiseptic mouthwashes may attenuate the bioactivity of dietary nitrate.  相似文献   

3.
In gastric mucosal injury, nitric oxide (NO) plays both cytoprotective and cytotoxic roles, and the NO level is one determinant of these dual roles. We employed electron paramagnetic resonance (EPR)-spectrometry combined with an NO-trapping technique to directly evaluate NO production in ethanol-induced gastric injury in rats. The rat stomach, mounted on an ex vivo chamber, was perfused with ethanol (12.5 and 43%), and NO levels in mucosal tissues were measured during perfusion. Luminal nitrite/nitrate (NOx) content, mucosal blood flow, area of mucosal injury, transmucosal potential difference (PD), and luminal pH were simultaneously monitored with/without preadministration of the NO synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME). NO levels in the gastric tissue increased during ethanol perfusion, and luminal NOx levels increased after the perfusion, accompanying an increase in the area of mucosal injury and changes in physiological parameters. Preadministration of L-NAME aggravated the gastric mucosal damage and suppressed increases in mucosal blood flow in a dose-dependent manner. These results demonstrate that endogenous NO produced in ethanol-induced gastric injury contributes to maintenance of mucosal integrity via regulation of mucosal blood flow.  相似文献   

4.
Nitrate is abundant in our diet with particularly high levels in many vegetables. Ingested nitrate is concentrated in saliva and reduced to nitrite by bacteria in the oral cavity. We recently reported that application of nitrite-containing saliva to the gastric mucosa increases superficial blood flow and mucus generation via acid-catalyzed formation of bioactive nitrogen oxides including nitric oxide. Here we studied if dietary supplementation with nitrate would protect against gastric damage caused by a nonsteroidal anti-inflammatory drug. Rats received sodium nitrate in the drinking water for 1 week in daily doses of 0.1 or 1 mmol kg(-1). Control rats received 1 mmol kg(-1) sodium chloride. Diclofenac (30 mg kg(-1)) was then given orally and the animals were examined 4 h later. In separate experiments we studied the effects of dietary nitrate on intragastric NO levels and mucus formation. Luminal levels of NO gas were greatly increased in nitrate-fed animals. The thickness of the mucus layer increased after nitrate supplementation and gene expression of MUC6 was upregulated in the gastric mucosa. Nitrate pretreatment dose dependently and potently reduced diclofenac-induced gastric lesions. Inflammatory activity was reduced in the rats receiving nitrate as indicated by lower mucosal myeloperoxidase activity and expression of inducible NO synthase. We conclude that dietary nitrate protects against diclofenac-induced gastric ulcers likely via enhanced nitrite-dependent intragastric NO formation and concomitant stimulation of mucus formation. Future studies will reveal if a diet rich in nitrate can offer an additional nutritional approach to preventing and treating peptic ulcer disease.  相似文献   

5.
Synthetic nitric oxide donors are known to protect the gastric mucosa from damage and dietary nitrate is known to release NO in the stomach. Mast cells have been found to be involved in gastric mucosal damage in humans or in rodents, and recent studies have pointed out the possibility of nitric oxide from endogenous or exogenous origin to modulate mast cell reactivity. This study aimed to determine whether the protective effect afforded by dietary nitrate against gastric mucosal damage was linked to mast cell stabilization. Mast cell involvement in iodoacetamide-induced gastritis was investigated in rats receiving oral administration of iodoacetamide together with the mast cell stabilizer doxantrazole (ip) or its solvent. The effects of dietary nitrate on mast cells during gastritis were investigated in rats receiving iodoacetamide orally, associated or not with KNO3. Control groups were given water instead of iodoacetamide either with or without KNO3, doxantrazole or its solvent. After sacrifice, blood samples were taken to determine RMCP II serum level and the stomach was resected in order to determine myeloperoxidase (MPO) activity and mucosal mast cell (MMC) number. Iodoacetamide significantly increased gastric MPO activity but did not modify RMCP II serum level or MMC number. Doxantrazole and KNO3 significantly reduced iodoacetamide-induced increase in gastric MPO activity, increased MMC number, and decreased RMCP II serum level in basal conditions. Only doxantrazole was able to modify all parameters under inflammatory conditions. These results suggest that nitric oxide released by dietary nitrate in the stomach stabilizes mast cells in basal conditions but exerts its protective effect against experimental gastritis through other pathways.  相似文献   

6.
This study was done to examine the role of CCK in gastric mucosal defense and to assess the gastroprotective roles of nitric oxide and blood flow. In rats, the CCK secretagogues oleate and soybean trypsin inhibitor augmented gastric mucosal blood flow and prevented gastric injury from luminal irritants. Type A CCK receptor blockade negated CCK secretagogue-induced gastroprotection and exacerbated gastric injury from bile and ethanol but did not block adaptive cytoprotection. CCK secretagogue-induced gastroprotection and hyperemia were negated by nonselective nitric oxide synthase (NOS) inhibition (N(G)-nitro-L-arginine methyl ester) but not by selective inducible NOS inhibition (aminoguanidine). Gastric mucosal calcium-dependent NOS activity, but not calcium-independent NOS activity, was increased following CCK and CCK secretagogues. The release of endogenous CCK plays a role in the intrinsic gastric mucosal defense system against injury from luminal irritants. The protective mechanism appears to involve increased production of nitric oxide from primarily the constitutive isoforms of NOS and a resultant increase in blood flow.  相似文献   

7.
Inorganic nitrite (NO(2)(-)) is emerging as a regulator of physiological functions and tissue responses to ischemia, whereas the more stable nitrate anion (NO(3)(-)) is generally considered to be biologically inert. Bacteria express nitrate reductases that produce nitrite, but mammals lack these specific enzymes. Here we report on nitrate reductase activity in rodent and human tissues that results in formation of nitrite and nitric oxide (NO) and is attenuated by the xanthine oxidoreductase inhibitor allopurinol. Nitrate administration to normoxic rats resulted in elevated levels of circulating nitrite that were again attenuated by allopurinol. Similar effects of nitrate were seen in endothelial NO synthase-deficient and germ-free mice, thereby excluding vascular NO synthase activation and bacteria as the source of nitrite. Nitrate pretreatment attenuated the increase in systemic blood pressure caused by NO synthase inhibition and enhanced blood flow during post-ischemic reperfusion. Our findings suggest a role for mammalian nitrate reduction in regulation of nitrite and NO homeostasis.  相似文献   

8.
Up to 25% of the circulating nitrate in blood is actively taken up, concentrated, and secreted into saliva by the salivary glands. Salivary nitrate can be reduced to nitrite by the commensal bacteria in the oral cavity or stomach and then further converted to nitric oxide (NO) in vivo, which may play a role in gastric protection. However, whether salivary nitrate is actively secreted in human beings has not yet been determined. This study was designed to determine whether salivary nitrate is actively secreted in human beings as an acute stress response and what role salivary nitrate plays in stress-induced gastric injury. To observe salivary nitrate function under stress conditions, alteration of salivary nitrate and nitrite was analyzed among 22 healthy volunteers before and after a strong stress activity, jumping down from a platform at the height of 68 m. A series of stress indexes was analyzed to monitor the stress situation. We found that both the concentration and the total amount of nitrate in mixed saliva were significantly increased in the human volunteers immediately after the jump, with an additional increase 1 h later (p<0.01). Saliva nitrite reached a maximum immediately after the jump and was maintained 1 h later. To study the biological functions of salivary nitrate and nitrite in stress protection, we further carried out a water-immersion-restraint stress (WIRS) assay in male adult rats with bilateral parotid and submandibular duct ligature (BPSDL). Intragastric nitrate, nitrite, and NO; gastric mucosal blood flow; and gastric ulcer index (UI) were monitored and nitrate was administrated in drinking water to compensate for nitrate secretion in BPSDL animals. Significantly decreased levels of intragastric nitrate, nitrite, and NO and gastric mucosal blood flow were measured in BPSDL rats during the WIRS assay compared to sham control rats (p<0.05). Recovery was observed in the BPSDL rats upon nitrate administration. The WIRS-induced UI was significantly higher in the BPSDL animals compared to controls, and nitrate administration rescued the WIRS-induced gastric injury in BPSDL rats. In conclusion, this study suggests that stress promotes salivary nitrate secretion and nitrite formation, which may play important roles in gastric protection against stress-induced injury via the nitrate-dependent NO pathway.  相似文献   

9.
Endothelial production of nitric oxide (NO) is critical for vascular homeostasis. Nitrite and nitrate are formed endogenously by the stepwise oxidation of NO and have, for years, been regarded as inactive degradation products. As a result, both anions are routinely used as surrogate markers of NO production, with nitrite as a more sensitive marker. However, both nitrite and nitrate are derived from dietary sources. We sought to determine how exogenous nitrite affects steady-state concentrations of NO metabolites thought to originate from nitric oxide synthase (NOS)-derived NO as well as blood pressure and myocardial ischemia-reperfusion (I/R) injury. Mice deficient in endothelial nitric oxide synthase (eNOS-/-) demonstrated decreased blood and tissue nitrite, nitrate, and nitroso proteins, which were further reduced by low-nitrite (NOx) diet for 1 week. Nitrite supplementation (50 mg/L) in the drinking water for 1 week restored NO homeostasis in eNOS-/- mice and protected against I/R injury. Nitrite failed to alter heart rate or mean arterial blood pressure at the protective dose. These data demonstrate the significant influence of dietary nitrite intake on the maintenance of steady-state NO levels. Dietary nitrite and nitrate may serve as essential nutrients for optimal cardiovascular health and may provide a novel prevention/treatment modality for disease associated with NO insufficiency.  相似文献   

10.
BACKGROUND--AIMS:The mechanisms of somatostatin-mediated gastroprotection are not fully understood. Aims of this study were to determine in the rat the role of nitric oxide (NO) in somatostatin-induced effects on gastric mucosal protection and blood flow (GMBF) in the absence and in the presence of intraluminal ethanol. METHODS: Ethanol (70% v/v)-induced gastric mucosal injury after orogastric dosing was quantitated at 30 min and GMBF determined in an ex vivo gastric chamber preparation. RESULTS: Somatostatin (4 microg/kg; i.p.) protection against ethanol-induced ulceration was prevented by the NO inhibitor L-NNA and restored by L-arginine, but not D-arginine. Somatostatin (1-8 microg/kg; i.p.) did not effect basal GMBF. The gastroprotective dose of somatostatin (4 microg/kg; i.p.) prevented the decrease in GMBF caused by ethanol. L-NNA reversed this vascular effect of somatostatin. CONCLUSION: Somatostatin-induced gastroprotection and restoration of GMBF during ethanol exposure involve mechanisms which are dependent on NO generation.  相似文献   

11.
The effect of different opioid peptides on acidified ethanol- and indomethacin-induced gastric mucosal lesions was studied following intracerebroventricular (i.c.v.) administration. It was found that both the selective delta opioid receptor agonists--deltorphin II, [D-Ala(2), D-Leu(5)]-enkephalin (DADLE), [D-Pen(2), D-Pen(5)]-enkephalin (DPDPE)-, mu-opioid receptor agonist--[D-Ala(2), Phe(4), GlyT-ol]-enkephalin (DAGO)--as well as beta-endorphin inhibited the mucosal damage induced by both ethanol and indomethacin in pmolar dose range. In contrast, the gastric acid secretion was not influenced by DADLE in the dose of 16 nmol/rat and only a slight reduction (40%) was induced by DAGO in the dose of 1.9 nmol/rat. The protective effect was abolished in both ulcer models by bilateral cervical vagotomy. N(G)-nitro-L-arginine, an inhibitor of NO synthase, reduced the protective action in ethanol-induced, but not in indomethacin-induced gastric damage. The results suggest that activation of supraspinal delta and mu-opioid receptors resulted in inhibition of gastric mucosal lesions elicited by ethanol or indomethacin. The gastroprotective action is independent from the effect of opioids on acid secretion. Vagal nerve is involved in conveying the central action to the periphery. The mechanism of the gastroprotective effect of opioids is different in ethanol- and indomethacin-ulcer models: prostaglandins and nitric oxide are likely to be involved in the protective action of opioid peptides in ethanol-, but not in the indomethacin-ulcer model.  相似文献   

12.
Probiotic bacteria elicit a number of beneficial effects in the gut but the mechanisms for these health promoting effects are not entirely understood. Recent in vitro data suggest that lactobacilli can utilise nitrate and nitrite to generate nitric oxide, a gas with immunomodulating and antibacterial properties. Here we further characterised intestinal NO generation by bacteria. In rats, dietary supplementation with lactobacilli and nitrate resulted in a 3-8 fold NO increase in the small intestine and caecum, but not in colon. Caecal NO levels correlated to nitrite concentration in luminal contents. In neonates, colonic NO levels correlated to the nitrite content of breast milk and faeces. Lactobacilli and bifidobacteria isolated from the stools of two neonates, generated NO from nitrite in vitro, whereas S. aureus and E. coli rapidly consumed NO. We here show that commensal bacteria can be a significant source of NO in the gut in addition to the mucosal NO production. Intestinal NO generation can be stimulated by dietary supplementation with substrate and lactobacilli. The generation of NO by some probiotic bacteria can be counteracted by rapid NO consumption by other strains. Future studies will clarify the biological role of the bacteria-derived intestinal NO in health and disease.  相似文献   

13.
The role of NO in inflammatory bowel disease is controversial. Studies indicate that endothelial nitric oxide synthase (eNOS) might be involved in protecting the mucosa against colonic inflammation. The aim of this study was to investigate the involvement of nitric oxide (NO) in regulating colonic mucosal blood flow in two different colitis models in rats. In anesthetized control and colitic rats, the distal colon was exteriorized and the mucosa visualized. Blood flow (laser-Doppler flowmetry) and arterial blood pressure were continuously monitored throughout the experiments, and vascular resistance was calculated. Trinitrobenzene sulfonic acid (TNBS) or dextran sulfate sodium (DSS) was used to induce colitis. All groups were given the NOS inhibitor N(omega)-nitro-l-arginine (l-NNA) or the inducible NOS (iNOS) inhibitor l-N(6)-(1-iminoethyl)-lysine (l-NIL). iNOS, eNOS, and neuronal NOS (nNOS) mRNA in colonic samples were investigated with real-time RT-PCR. Before NOS inhibition, colonic mucosal blood flow, expressed as perfusion units, was higher in both colitis models compared with the controls. The blood flow was reduced in the TNBS- and DSS-treated rats during l-NNA administration but was not altered in the control group. Vascular resistance increased more in the TNBS- and DSS-treated rats than in the control rats, indicating a higher level of vasodilating NO in the colitis models. l-NIL did not alter blood pressure or blood flow in any of the groups. iNOS and eNOS mRNA increased in both colitis models, whereas nNOS remained at the control level. TNBS- and DSS-induced colitis results in increased colonic mucosal blood flow, most probably due to increased eNOS activity.  相似文献   

14.
Nitrite and nitrate in body fluids and tissues result from dietary source, endogenous nitric oxide (NO) production and from NO and its higher oxides (NOx) present as pollutants in the atmosphere. Nitrite and nitrate in human blood serum and plasma or urine are commonly used as biomarkers and measures of endogenous NO synthesis. In addition to dietary intake of nitrite and nitrate, our study indicates that NOx naturally present in the laboratory air may be an abundant source for nitrite and nitrate in human serum, plasma, and urine ex vivo. These artifacts can be effectively reduced by closing sample-containing vials during sample treatment.  相似文献   

15.
In the rat stomach, evidence has been provided that capsaicin-sensitive sensory nerves (CSSN) are involved in a local defense mechanism against gastric ulcer. In the present study capsaicin or resiniferatoxin (RTX), a more potent capsaicin analogue, was used to elucidate the role of these sensory nerves in gastric mucosal protection, mucosal permeability, gastric acid secretion and gastrointestinal blood flow in the rat. In the rat stomach and jejunum, intravenous RTX or topical capsaicin or RTX effected a pronounced and long-lasting enhancement of the microcirculation at these sites, measured by laser Doppler flowmetry technique. Introduction of capsaicin into the rat stomach in very low concentrations of ng-microg x mL(-1) range protected the gastric mucosa against damage produced by topical acidified aspirin, indomethacin, ethanol or 0.6 N HCl. Resiniferatoxin exhibited acute gastroprotective effect similar to that of capsaicin and exerted marked protective action on the exogenous HCl, or the secretagogue-induced enhancement of the indomethacin injury. The ulcer preventive effect of both agents was not prevented by atropine or cimetidine treatment. Capsaicin given into the stomach in higher desensitizing concentrations of 6.5 mM markedly enhanced the susceptibility of the gastric mucosa and invariably aggravated gastric mucosal damage evoked by later noxious challenge. Such high desensitizing concentrations of capsaicin, however, did not reduce the cytoprotective effect of prostacyclin (PGI2) or beta-carotene. Capsaicin or RTX had an additive protective effect to that of atropine or cimetidine. In rats pretreated with cysteamine to deplete tissue somatostatin, capsaicin protected against the indomethacin-induced mucosal injury. Gastric acid secretion of the pylorus-ligated rats was inhibited with capsaicin or RTX given in low non-desensitizing concentrations, with the inhibition being most marked in the first hour following pylorus-ligation. Low intragastric concentrations of RTX reduced gastric hydrogen ion back-diffusion evoked by topical acidified salicylates. It is concluded that the gastropotective effect of capsaicin-type agents involves primarily an enhancement of the microcirculation effected through local release of mediator peptides from the sensory nerve terminals. A reduction in gastric acidity may contribute to some degree in the gastric protective action of capsaicin-type agents. The vasodilator and gastroprotective effects of capsaicin-type agents do not depend on vagal efferents or sympathetic neurons, involve prostanoids, histaminergic or cholinergic pathways.  相似文献   

16.
The aim of this study was to investigate the effects of intracerebroventricularly injected glucagon-like peptide-1 (GLP-1) on ethanol-induced gastric mucosal damage and to elucidate the mechanisms involved. Absolute ethanol was administered through an orogastric cannula 5 min before GLP-1 (1 microg/10 microl) injection. One hour later, the rats were decapitated, their stomachs were removed and scored for mucosal damage. GLP-1 inhibited the ethanol-induced gastric mucosal damage by 92%. Centrally injected atropine sulphate, a muscarinic receptor antagonist (5 microg/10 microl), prevented the gastroprotective effect of GLP-1, while mecamylamine, a nicotinic receptor antagonist (25 microg/10 microl), was ineffective. Peripherally injected atropine methyl nitrate (1 mg/kg) did not change the effect of GLP-1, but mecamylamine (5 mg/kg) blocked it. Cysteamine, a somatostatin depletor (280 mg/kg, s.c.), did not affect the protective activity of GLP-1, while inhibition of nitric oxide (NO) synthesis by L-NAME (3 mg/kg, i.v.) significantly abolished the protective effect of GLP-1 on ethanol-induced gastric mucosal lesions. We conclude that central muscarinic and peripheral nicotinic cholinergic receptors and NO, but not somatostatin, contribute to the protective effect of intracerebroventricularly injected GLP-1 on ethanol-induced gastric mucosal damage.  相似文献   

17.
Prostaglandings (PGs), nitric oxide (NO) and capsaicin-sensitive afferent neurons play a pivotal role in the defensive mechanisms against gastric mucosal injury. Glucocorticoid hormones released in response to ulcerogenic stimuli are naturally occurring gastroprotective factors and exert many of the same actions in the stomach as PGs, NO and capsaicin-sensitive afferent neurons. The results reviewed suggest that glucocorticoids exert a pivotal compensatory role in the maintenance of gastric mucosal integrity in the case of impaired gastroprotective mechanisms provided by PGs, NO and capsaicin-sensitive afferent neurons. The compensatory protective action of glucocorticoids may be provided by their maintenance of glucose homeostasis and gastric microcirculation.  相似文献   

18.
BackgroundInorganic nitrate from exogenous and endogenous sources is accumulated in saliva, reduced to nitrite by oral bacteria and further converted to nitric oxide (NO) and other bioactive nitrogen oxides in the acidic gastric lumen. To further explore the role of oral microbiota in this process we examined the gastric mucus layer in germ free (GF) and conventional mice given different doses of nitrate and nitrite.MethodsMice were given either nitrate (100 mg/kg/d) or nitrite (0.55–11 mg/kg/d) in the drinking water for 7 days, with the lowest nitrite dose resembling the levels provided by swallowing of fasting saliva. The gastric mucus layer was measured in vivo.ResultsGF animals were almost devoid of the firmly adherent mucus layer compared to conventional mice. Dietary nitrate increased the mucus thickness in conventional animals but had no effect in GF mice. In contrast, nitrite at all doses, restored the mucus thickness in GF mice to the same levels as in conventional animals. The nitrite-mediated increase in gastric mucus thickness was not inhibited by the soluble guanylyl cyclase inhibitor ODQ. Mice treated with antibiotics had significantly thinner mucus than controls. Additional studies on mucin gene expression demonstrated down regulation of Muc5ac and Muc6 in germ free mice after nitrite treatment.ConclusionOral bacteria remotely modulate gastric mucus generation via bioactivation of salivary nitrate. In the absence of a dietary nitrate intake, salivary nitrate originates mainly from NO synthase. Thus, oxidized NO from the endothelium and elsewhere is recycled to regulate gastric mucus homeostasis.  相似文献   

19.
The review is focused on the action of glucocorticoids released during activation of hypothalamic-pituitary-adrenocortical axis, on the susceptibility of gastric mucosa to injury. The data support the idea that glucocorticoids produced in response to acute stress or other ulcerogenic stimuli have a gastroprotective action but not ulcerogenic one as it has generally been considered for some decades. It has been shown that gastroprotective action of glucocorticoids may be mediated by multiple actions, including maintenance of glucose homeostasis, gastric mucosal blood flow, mucus production and attenuation of enhanced gastric motility and microvascular permeability. For maintenance of gastric mucosal integrity glucocorticoids may cooperate with other gastroprotective factors. Glucocorticoid hormones exert a pivotal role in the maintenance of gastric mucosal integrity in the case of impaired gastroprotective mechanisms provided by prostaglandins, nitric oxide and capsaicin-sensitive sensory neurons. These findings indicate that activation of hypothalamic-pituitary-adrenocortical system could be considered as a significant hormonal gastroprotective component of stress reaction and therefore glucocorticoid hormones are natural gastroprotective factors.  相似文献   

20.
This study aimed to investigate the possible gastroprotective effect of tocotrienol against water-immersion restraint stress (WIRS) induced gastric ulcers in rats by measuring its effect on gastric mucosal nitric oxide (NO), oxidative stress, and inflammatory biomarkers. Twenty-eight male Wistar rats were randomly assigned to four groups of seven rats. The two control groups were administered vitamin-free palm oil (vehicle) and the two treatment groups were given omeprazole (20 mg/kg) or tocotrienol (60 mg/kg) orally. After 28 days, rats from one control group and both treated groups were subjected to WIRS for 3.5 hours once. Malondialdehyde (MDA), NO content, and superoxide dismutase (SOD) activity were assayed in gastric tissue homogenates. Gastric tissue SOD, iNOS, TNF-α and IL1-β expression were measured. WIRS increased the gastric MDA, NO, and pro-inflammatory cytokines levels significantly when compared to the non-stressed control group. Administration of tocotrienol and omeprazole displayed significant protection against gastric ulcers induced by exposure to WIRS by correction of both ulcer score and MDA content. Tissue content of TNF-α and SOD activity were markedly reduced by the treatment with tocotrienol but not omeprazole. Tocotrienol significantly corrected nitrite to near normal levels and attenuated iNOS gene expression, which was upregulated in this ulcer model. In conclusion, oral supplementation with tocotrienol provides a gastroprotective effect in WIRS-induced ulcers. Gastroprotection is mediated through 1) free radical scavenging activity, 2) the increase in gastric mucosal antioxidant enzyme activity, 3) normalisation of gastric mucosal NO through reduction of iNOS expression, and 4) attenuation of inflammatory cytokines. In comparison to omeprazole, it exerts similar effectiveness but has a more diverse mechanism of protection, particularly through its effect on NO, SOD activity, and TNF-α.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号