首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of antiarrhythmic drugs with ion channels is often described within the context of the modulated receptor hypothesis, which explains the action of drugs by proposing that the binding site has a variable affinity for drugs, depending upon whether the channel is closed, open, or inactivated. Lack of direct evidence for altered gating of cardiac Na channels allowed for the suggestion of an alternative model for drug interaction with cardiac channels, which postulated a fixed affinity receptor with access limited by the conformation of the channel (guarded receptor hypothesis). We report measurement of the gating currents of Na channels in canine cardiac Purkinje cells in the absence and presence of QX-222, a quaternary derivative of lidocaine, applied intracellularly, and benzocaine, a neutral local anesthetic. These data demonstrate that the cardiac Na channel behaves as a modulated rather than a guarded receptor in that drug-bound channels gate with altered kinetics. In addition, the results suggest a new interpretation of the modulated receptor hypothesis whereby drug occupancy reduces the overall voltage- dependence of gating, preventing full movement of the voltage sensor.  相似文献   

2.
Single sodium channel openings have been recorded from cell-attached patches of isolated guinea pig ventricular myocytes. A paired pulse protocol was used to test the hypothesis that channel openings are required for lidocaine block. While the averaged ensemble current during the test pulse was much reduced, there was no correlation between the appearance of channel openings during the conditioning pulse and the subsequent test pulse. Analysis of single channel records demonstrated that the unit conductance of open channels was not changed by lidocaine. The block of ensemble INa was explained by roughly equal reductions in number of open channel events, and in the average duration of opening for each event. These results suggest that lidocaine binding to Na+ channels is dependent upon voltage, but may occur before channel opening. A lidocaine-modified channel can still open, but will be less likely to remain open than a drug-free channel. These results are consistent with block of a pre-open state of the channel.  相似文献   

3.
Human heart (hH1), human skeletal muscle (hSkM1), and rat brain (rIIA) Na channels were expressed in cultured cells and the activation and inactivation of the whole-cell Na currents measured using the patch clamp technique. hH1 Na channels were found to activate and inactivate at more hyperpolarized voltages than hSkM1 and rIIA. The conductance versus voltage and steady state inactivation relationships have midpoints of -48 and -92 mV (hH1), -28 and -72 mV (hSkM1), and -22 and -61 mV (rIIA). At depolarized voltages, where Na channels predominately inactivate from the open state, the inactivation of hH1 is 2-fold slower than that of hSkM1 and rIIA. The recovery from fast inactivation of all three isoforms is well described by a single rapid component with time constants at -100 mV of 44 ms (hH1), 4.7 ms (hSkM1), and 7.6 ms (rIIA). After accounting for differences in voltage dependence, the kinetics of activation, inactivation, and recovery of hH1 were found to be generally slower than those of hSkM1 and rIIA. Modeling of Na channel gating at hyperpolarized voltages where the channel does not open suggests that the slow rate of recovery from inactivation of hH1 accounts for most of the differences in the steady-state inactivation of these Na channels.  相似文献   

4.
Voltage-gated sodium channels (Nav) are complex glycoproteins comprised of an alpha subunit and often one to several beta subunits. We have shown that sialic acid residues linked to Nav alpha and beta1 subunits alter channel gating. To determine whether beta2-linked sialic acids similarly impact Nav gating, we co-expressed beta2 with Nav1.5 or Nav1.2 in Pro5 (complete sialylation) and in Lec2 (essentially no sialylation) cells. Beta2 sialic acids caused a significant hyperpolarizing shift in Nav1.5 voltage-dependent gating, thus describing for the first time an effect of beta2 on Nav1.5 gating. In contrast, beta2 caused a sialic acid-independent depolarizing shift in Nav1.2 gating. A deglycosylated mutant, beta(2-DeltaN), had no effect on Nav1.5 gating, indicating further the impact of beta2 N-linked sialic acids on Nav1.5 gating. Conversely, beta(2-DeltaN) modulated Nav1.2 gating virtually identically to beta2, confirming that beta2 N-linked sugars have no impact on Nav1.2 gating. Thus, beta2 modulates Nav gating through multiple mechanisms possibly determined by the associated alpha subunit. Beta1 and beta2 were expressed together with Nav1.5 or Nav1.2 in Pro5 and Lec2 cells. Together beta1 and beta2 produced a significantly larger sialic acid-dependent hyperpolarizing shift in Nav1.5 gating. Under fully sialylating conditions, the Nav1.2.beta1.beta2 complex behaved like Nav1.2 alone. When sialylation was reduced, only the sialic acid-independent depolarizing effects of beta2 on Nav1.2 gating were apparent. Thus, the varied effects of beta1 and beta2 on Nav1.5 and Nav1.2 gating are apparently synergistic and highlight the complex manner, through subunit- and sugar-dependent mechanisms, by which Nav activity is modulated.  相似文献   

5.
The hypothesis that there is a highlyconserved, positively charged region distal to the second transmembranedomain in -ENaC (epithelial sodium channel) that acts as a putativereceptor site for the negatively charged COOH-terminal - and-ENaC tails was tested in mutagenesis experiments. After expressionin Xenopus oocytes, -ENaC constructs in which positivelycharged arginine residues were converted into negatively chargedglutamic acids could not be inhibited by blocking peptides. Theseobservations provide insight into the gating machinery of ENaC.

  相似文献   

6.
D E Patton  A L Goldin 《Neuron》1991,7(4):637-647
We have utilized molecular biological techniques to demonstrate that rat IIA sodium channels expressed in Xenopus oocytes were blocked by tetrodotoxin (TTX) in a use-dependent manner. This use dependence was the result of an increased affinity of the channels for TTX upon depolarization, most likely due to a conformational change in the channel. Using a mutant with a slower macroscopic rate of inactivation, we have demonstrated that this conformational change is not the transition into the fast-inactivated state. The transition is probably one occurring during activation of the channel, as suggested by the fact that one sodium channel mutant demonstrated comparable depolarizing shifts in the voltage dependence of both activation and use-dependent block by TTX. The transition occurred at potentials more negative than those resulting in channel conductance, suggesting that the conformational change that causes use-dependent block by TTX is a closed-state voltage-dependent gating transition.  相似文献   

7.
We have identified two kinetically distinct modes of block, by lidocaine, of cardiac sodium channels, activated by batrachotoxin and incorporated into planar lipid bilayers. Here, we analyze the slow blocking mode which appears as a series of nonconducting events that increase in frequency and duration with increasing lidocaine concentrations. This type of block occurred rarely, if at all, for the skeletal muscle sodium channel subtype. Kinetic analysis showed that a linear open-closed-blocked model is sufficient to account for the major features of our data. Slow block occurs from a long closed state that is a distinguishing characteristic of cardiac channels under these conditions. Slow block showed no significant voltage dependence in the range of -60 to -20 mV for which the detailed kinetic analysis was performed, and was not elicited by application of the permanently charged lidocaine derivative QX-314. By contrast, the fast block, described in the companion paper, results from drug binding to the open state, and is similar for cardiac and skeletal muscle sodium channels. Application of trypsin to the cytoplasmic end of the channel eliminates both the spontaneous, long, gating closures and slow block. Thus, the lidocaine-sensitive closed state of batrachotoxin-activated cardiac sodium channels exhibits a protease susceptibility resembling that of the inactivated state of unmodified sodium channels. It is the slow block caused by lidocaine binding to this closed state that underlies the channel-subtype specificity of lidocaine action in our experiments.  相似文献   

8.
9.
Tetrodotoxin (TTX) block of cardiac sodium channels was studied in rabbit Purkinje fibers using a two-microelectrode voltage clamp to measure sodium current. INa decreases with TTX as if one toxin molecule blocks one channel with a dissociation constant KD approximately equal to 1 microM. KD remains unchanged when INa is partially inactivated by steady depolarization. Thus, TTX binding and channel inactivation are independent at equilibrium. Interactions between toxin binding and gating were revealed, however, by kinetic behavior that depends on rates of equilibration. For example, frequent suprathreshold pulses produce extra use-dependent block beyond the tonic block seen with widely spaced stimuli. Such lingering aftereffects of depolarization were characterized by double-pulse experiments. The extra block decays slowly enough (tau approximately equal to 5 s) to be easily separated from normal recovery from inactivation (tau less than 0.2 s at 18 degrees C). The amount of extra block increases to a saturating level with conditioning depolarizations that produce inactivation without detectable activation. Stronger depolarizations that clearly open channels give the same final level of extra block, but its development includes a fast phase whose voltage- and time-dependence resemble channel activation. Thus, TTX block and channel gating are not independent, as believed for nerve. Kinetically, TTX resembles local anesthetics, but its affinity remains unchanged during maintained depolarization. On this last point, comparison of our INa results and earlier upstroke velocity (Vmax) measurements illustrates how much these approaches can differ.  相似文献   

10.
Phasic block of rat cardiac Na+ current by saxitoxin was assessed using pulse trains and two-pulse voltage clamp protocols, and the results were fit to several kinetic models. For brief depolarizations (5 to 50 ms) the depolarization duration did not affect the rate of development or the amplitude of phasic block for pulse trains. The pulse train data were well described by a recurrence relation based upon the guarded receptor model, and it provided rate constants that accurately predicted first-pulse block as well as recovery time constants in response to two-pulse protocols. However, the amplitudes and rates of phasic block development at rapid rates (> 5 Hz) were less than the model predicted. For two pulse protocols with a short (10 ms) conditioning step to -30 mV, block developed only after repolarization to -150 mV and then recovered as the interpulse interval was increased. This suggested that phasic block under these conditions was caused by binding with increased affinity to a state that exists transiently after repolarization to -150 mV. This "post-repolarization block" was fit to a three-state model consisting of a transient state with high affinity for the toxin, the toxin bound state, and the ultimate resting state of the channel. This model accounted for the biphasic post-repolarization block development and recovery observed in two-pulse protocols, and it more accurately described phasic block in pulse trains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Lidocaine block of cardiac sodium channels   总被引:20,自引:7,他引:20       下载免费PDF全文
Lidocaine block of cardiac sodium channels was studied in voltage-clamped rabbit purkinje fibers at drug concentrations ranging from 1 mM down to effective antiarrhythmic doses (5-20 μM). Dose-response curves indicated that lidocaine blocks the channel by binding one-to-one, with a voltage-dependent K(d). The half-blocking concentration varied from more than 300 μM, at a negative holding potential where inactivation was completely removed, to approximately 10 μM, at a depolarized holding potential where inactivation was nearly complete. Lidocaine block showed prominent use dependence with trains of depolarizing pulses from a negative holding potential. During the interval between pulses, repriming of I (Na) displayed two exponential components, a normally recovering component (τless than 0.2 s), and a lidocaine-induced, slowly recovering fraction (τ approximately 1-2 s at pH 7.0). Raising the lidocaine concentration magnified the slowly recovering fraction without changing its time course; after a long depolarization, this fraction was one-half at approximately 10 μM lidocaine, just as expected if it corresponded to drug-bound, inactivated channels. At less than or equal to 20 μM lidocaine, the slowly recovering fraction grew exponentially to a steady level as the preceding depolarization was prolonged; the time course was the same for strong or weak depolarizations, that is, with or without significant activation of I(Na). This argues that use dependence at therapeutic levels reflects block of inactivated channels, rather than block of open channels. Overall, these results provide direct evidence for the “modulated-receptor hypothesis” of Hille (1977) and Hondeghem and Katzung (1977). Unlike tetrodotoxin, lidocaine shows similar interactions with Na channels of heart, nerve, and skeletal muscle.  相似文献   

12.
Fast and slow gating of sodium channels encoded by a single mRNA   总被引:13,自引:0,他引:13  
We investigated the kinetics of rat brain type III Na+ currents expressed in Xenopus oocytes. We found distinct patterns of fast and slow gating. Fast gating was characterized by bursts of longer openings. Traces with slow gating occurred in runs with lifetimes of 5 and 30 s and were separated by periods with lifetimes of 5 and 80 s. Cycling of fast and slow gating was present in excised outside-out patches at 10 degrees C, suggesting that metabolic factors are not essential for both forms of gating. It is unlikely that more than one population of channels was expressed, as patches with purely fast or purely slow gating were not observed. We suggest that structural mechanisms for fast and slow gating are encoded in the primary amino acid sequence of the channel protein.  相似文献   

13.
We have investigated block of sodium channels by diethylamide and phenol, which resemble the hydrophilic tertiary amine head and the hydrophobic aromatic tail of the lidocaine molecule, respectively. Diethylamide and phenol separately mimicked the fast and slow modes of block caused by lidocaine. Experiments were performed using single batrachotoxin-activated bovine cardiac and rat skeletal muscle sodium channels incorporated into neutral planar lipid bilayers. Diethylamide, only from the intracellular side, caused a voltage-dependent reduction in apparent single channel amplitude ('fast' block). Block was similar for cardiac and skeletal muscle channels, and increased in potency when extracellular sodium was replaced by N-methylglucamine, consistent with an intrapore blocking site. Thus, although occurring at 15-fold higher concentrations, block by diethylamide closely resembles the fast mode of block by lidocaine (Zamponi, G. W., D. D. Doyle, and R. J. French. 1993. Biophys. J. 65:80-90). For cardiac sodium channels, phenol bound to a closed state causing the appearance of long blocked events whose duration increased with phenol concentration. This slow block depended neither on voltage nor on the side of application, and disappeared upon treatment of the channel with trypsin. For skeletal muscle channels, slow phenol block occurred with only very low probability. Thus, phenol block resembles the slow mode of block observed for lidocaine (Zamponi, G. W., D. D. Doyle, and R. J. French. 1993. Biophys. J. 65:91-100). Our data suggest that there are separate sites for fast lidocaine block of the open channel and slow block of the "inactivated" channel. Fast block by diethylamide inhibited the long, spontaneous, trypsin-sensitive (inactivation-like) closures of cardiac channels, and hence secondarily antagonized slow block by phenol or lidocaine. This antagonism would potentiate shifts in the balance between the two modes of action of a tertiary amine drug caused by changes in the relative concentrations of the charged (fast blocking) and neutral (slow blocking) forms of the drug.  相似文献   

14.
Sodium-channel behavior has been modeled in order to determine the answer to the following question: How large must a population of “on-off” Sodium pores be before the inherently random behavior of the individual channels becomes smoothed to yield the expected gating current-conductance relationships which would be predicted from an infinite pore array? Results of this analysis show that for the “opening” situation, an excellent fit was obtained whenever more than about 10 pores were considered. Significant discrepanciesd were observed in the “Closeing” situation, however, for pore arrays of 50 or less. Marked hysteresis is apparent in the behavior of small pore populations.  相似文献   

15.
Single channel currents of sodium channels purified from rat brain and reconstituted into planar lipid bilayers were recorded. The kinetics of channel gating were investigated in the presence of batrachotoxin to eliminate inactivation and an analysis was conducted on membranes with a single active channel at any given time. Channel opening is favored by depolarization and is strongly voltage dependent. Probability density analysis of dwell times in the closed and open states of the channel indicates the occurrence of one open state and several distinct closed states in the voltage (V) range-120 mV less than or equal to V less than or equal to +120 mV. For V less than or equal to 0, the transition rates between stages are exponentially dependent on the applied voltage, as described in mouse neuroblastoma cells (Huang, L. M., N. Moran, and G. Ehrenstein. 1984. Biophysical Journal. 45:313-322). In contrast, for V greater than or equal to 0, the transition rates are virtually voltage independent. Autocorrelation analysis (Labarca, P., J. Rice, D. Fredkin, and M. Montal. 1985. Biophysical Journal. 47:469-478) shows that there is no correlation in the durations of successive open or closing events. Several kinetic schemes that are consistent with the experimental data are considered. This approach may provide information about the mechanism underlying the voltage dependence of channel activation.  相似文献   

16.
When lidocaine is given systemically, cardiac Na channels are blocked preferentially over those in skeletal muscle and nerve. This apparent increased affinity is commonly assumed to arise solely from the fact that cardiac Na channels spend a large fraction of their time in the inactivated state, which exhibits a high affinity for local anesthetics. The oocyte expression system was used to compare systematically the sensitivities of skeletal (mu 1-beta 1) and cardiac (hH1-beta 1) Na channels to block by lidocaine, under conditions in which the only difference was the choice of alpha subunit. To check for differences in tonic block, Na currents were elicited after 3 min of exposure to various lidocaine concentrations at -100 mV, a potential at which both hH1-beta 1 and mu 1-beta 1 channels were fully reprimed. Surprisingly, hH1-beta 1 Na channels were threefold more sensitive to rested-state block by lidocaine (402 +/- 36 microM, n = 4-22) than were mu 1-beta 1 Na channels (1,168 +/- 34 microM, n = 7-19). In contrast, the inactivated state binding affinities determined at partially depolarized holding potentials (h infinity approximately 0.2) were similar (Kd = 16 +/- 1 microM, n = 3-9 for hH1-beta 1 and 12 +/- 2 microM, n = 4-11 for mu 1-beta 1). Lidocaine produced more use- dependent block of peak hH1-beta 1 Na current elicited by trains of short-(10 ms) or long- (1 s) duration step depolarizations (0.5 Hz, -20 mV) than of mu 1-beta 1 Na current. During exposure to lidocaine, hH1- beta 1 channels recover from inactivation at -100 mV after a prolonged delay (20 ms), while mu 1-beta 1 channels begin repriming immediately. The overall time course of recovery from inactivation in the presence of lidocaine is much slower in hH1-beta 1 than in mu 1-beta 1 channels. These unexpected findings suggest that structural differences in the alpha subunits impart intrinsically different lidocaine sensitivities to the two isoforms. The differences in steady state affinities and in repriming kinetics are both in the correct direction to help explain the increased potency of cardiac Na channel block by local anesthetics.  相似文献   

17.
Na channels open upon depolarization but then enter inactivated states from which they cannot readily reopen. After brief depolarizations, native channels enter a fast-inactivated state from which recovery at hyperpolarized potentials is rapid (< 20 ms). Prolonged depolarization induces a slow-inactivated state that requires much longer periods for recovery (> 1 s). The slow-inactivated state therefore assumes particular importance in pathological conditions, such as ischemia, in which tissues are depolarized for prolonged periods. While use- dependent block of Na channels by local anesthetics has been explained on the basis of delayed recovery of fast-inactivated Na channels, the potential contribution of slow-inactivated channels has been ignored. The principal (alpha) subunits from skeletal muscle or brain Na channels display anomalous gating behavior when expressed in Xenopus oocytes, with a high percentage entering slow-inactivated states after brief depolarizations. This enhanced slow inactivation is eliminated by coexpressing the alpha subunit with the subsidiary beta 1 subunit. We compared the lidocaine sensitivity of alpha subunits expressed in the presence and absence of the beta 1 subunit to determine the relative contributions of fast-inactivated and slow-inactivated channel block. Coexpression of beta 1 inhibited the use-dependent accumulation of lidocaine block during repetitive (1-Hz) depolarizations from -100 to - 20 mV. Therefore, the time required for recovery from inactivated channel block was measured at -100 mV. Fast-inactivated (alpha + beta 1) channels were mostly unblocked within 1 s of repolarization; however, slow-inactivated (alpha alone) channels remained blocked for much longer repriming intervals (> 5 s). The affinity of the slow- inactivated state for lidocaine was estimated to be 15-25 microM, versus 24 microM for the fast-inactivated state. We conclude that slow- inactivated Na channels are blocked by lidocaine with an affinity comparable to that of fast-inactivated channels. A prominent functional consequence is potentiation of use-dependent block through a delay in repriming of lidocaine-bound slow-inactivated channels.  相似文献   

18.
Paragracine, isolated from the coelenterate species Parazoanthus gracilis, selectively blocks sodium channels of squid axon membranes in a frequency-dependent manner. The blocking action depends on the direction and magnitude of the sodium current rather than on the absolute value of the membrane potential. Paragracine blocks the channels only from the axoplasmic side and does so only when the current is in the outward direction. This block may be reversed by generating inward sodium currents. In axons in which sodium inactivation has been removed by pronase, the frequency-dependent block persists, and a slow time-dependent block is observed. A slow interaction with its binding site in the channel may account for the frequency-dependent block.  相似文献   

19.
In clonal pituitary (GH3) cells we studied the changes in sodium channel gating caused by substitution of La3+ for Ca2+ ion. Gating of sodium channels was simplified by using intracellular papain to remove inactivation. To quantify La effects, we empirically fitted closing and the late phase of opening of the channels with single exponentials, determined the opening (a) and closing (b) rate, and plotted these rates as a function of Vm (membrane voltage). The midpoint of the fraction open-Vm curve was also determined. Changing from Ca to La shifted the curves for these three measures of Na channel gating along the voltage axis and changed their shape somewhat. Surface charge theory, in the form usually presented, predicts equal shifts of all three curves, with no change in shape. We found, however, that the shift for each of the measurements was different. 2 mM La, for example, shifted opening kinetics by +52 mV (i.e., 52 mV must be added to the depolarization to make activation in 2 mM La as fast as in 2 mM Ca), the fraction open voltage curve by +42.5 mV, and the closing rate curve by +28 mV. The shift was an almost linear function of log [La] for each of the measures. The main finding is that changing from 2 mM Ca to 10 microM La causes a positive shift of the opening rate and fraction open curves, but a negative shift of the closing rate curve. The opposite signs of the two effects cannot be explained in terms of surface charge theory. We briefly discuss some alternatives to this theory.  相似文献   

20.
A new class of sodium channel blocker insecticides (SCBIs), which include indoxacarb, its active metabolite, DCJW, and metaflumizone, preferably block inactivated states of both insect and mammalian sodium channels in a manner similar to that by which local anesthetic (LA) drugs block mammalian sodium channels. A recent study showed that two residues in the cockroach sodium channel, F1817 and Y1824, corresponding to two key LA-interacting residues identified in mammalian sodium channels are not important for the action of SCBIs on insect sodium channels, suggesting unique interactions of SCBIs with insect sodium channels. However, the mechanism of action of LAs on insect sodium channels has not been investigated. In this study, we examined the effects of lidocaine on a cockroach sodium channel variant, BgNa(v)1-1a, and determined whether F1817 and Y1824 are also critical for the action of LAs on insect sodium channels. Lidocaine blocked BgNa(v)1-1a channels in the resting state with potency similar to that observed in mammalian sodium channels. Lidocaine also stabilized both fast-inactivated and slow-inactivated states of BgNa(v)1-1a channels, and caused a limited degree of use- and frequency-dependent block, major characteristics of LA action on mammalian sodium channels. Alanine substitutions of F1817 and Y1824 reduced the sensitivity of the BgNa(v)1-1a channel to the use-dependent block by lidocaine, but not to tonic blocking and inactivation stabilizing effects of lidocaine. Thus, similar to those on mammalian sodium channels, F1817 and Y1824 are important for the action of lidocaine on cockroach sodium channels. Our results suggest that the receptor sites for lidocaine and SCBIs are different on insect sodium channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号