首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Flow dialysis was used to study the binding of MgATP and MgADP to the nitrogenase proteins of Azotobacter vinelandii. Both reduced and oxidized Av2 bind two molecules of MgADP, with the following dissociation constants: reduced Av2, K1 = 0.091 +/- 0.021 mM and K2 = 0.044 +/- 0.009 mM; oxidized Av2, K1 = 0.024 +/- 0.015 mM and K2 = 0.039 +/- 0.022 mM. Binding of MgADP to reduced Av2 shows positive co-operativity. Oxidized Av2 binds two molecules of MgATP with dissociation constants K1 = 0.049 +/- 0.016 mM and K2 = 0.18 +/- 0.05 mM. Binding data of MgATP to reduced Av2 can be fitted by assuming one binding site, but a better fit was obtained by assuming two binding sites on the protein with negative co-operativity and with dissociation constants K1 = 0.22 +/- 0.03 mM and K2 = 1.71 +/- 0.50 mM. It was found that results concerning the number of binding sites and the dissociation constants of MgATP-Av2 and MgADP-Av2 complexes depend to a great extent on the specific activity of the Av2 preparation used, and that it is difficult to correct binding data for inactive protein. No binding of MgADP to Av1 could be demonstrated. Binding studies of MgADP to a mixture of Av1 and Av2 showed that Av1 did not affect the binding of MgADP to either oxidized or reduced Av2. Inhibition studies were performed to investigate the interaction of MgATP and MgADP binding to oxidized and reduced Av2. All the experimental data can be explained by the minimum hypothesis, i.e. the presence of two adenine nucleotide binding sites on Av2. MgATP and MgADP compete for these two binding sites on the Fe protein.  相似文献   

2.
Oxidized Fe protein from Azotobacter vinelandii (Av2(0)) was reduced by dithionite (DT) in the absence and presence of nucleotides, over the temperature range 10-40 degrees C, over the pH range 7-8, and in various buffers--inorganic phosphate, TES, HEPES, and Tris. The reduction of each species of Fe protein--Av2(0), Av2(0)(MgATP)2, and Av2(0)(MgADP)2--was resolved into at least three exponential phases, with relative amplitudes of each phase varying over the range of experimental conditions, suggesting a dynamic population shift of kinetically distinct species. The rapid phase of Av2(0) reduction predominated at low temperature and pH, and in Tris buffer; rapid Av2(0)(MgATP)2 reduction was favored at high temperature and pH, and in phosphate buffer; and Av2(0)(MgADP)2 reduction was favored under more physiologically relevant conditions of 20 degrees C, pH 7.5, and in phosphate buffer. The rates of reduction of Fe protein species did not change with buffer, but temperature and pH do have an effect on the rates. With the appropriate constants, an empirically derived equation estimates the rate of Fe protein reduction at any temperature and pH within the limits 10-40 degrees C and pH 7-8, for a given species of Fe protein, and a given phase of the reaction. At 23.0 degrees C and pH 7.4, the rate of the dominant phase of Av2(0) reduction is 1.9 x 10(8) M(-1) s(-1). Under the same conditions, the rates of the two dominant phases of Av2(0)(MgATP)2 reduction are 1.2 x 10(6) and 1.5 x10 (5) M(-1) s(-1); and the rate of the dominant phase of Av2(0)(MgADP)2 reduction is 3.5 x 10(6) in M(-1) s(-1). Thermodynamic activation parameters for each phase of reduction were calculated. No breaks in the Arrhenius plots for any Fe protein species were observed.  相似文献   

3.
The effects of nitric oxide (NO) on the individual components of Azotobacter vinelandii nitrogenase have been examined by kinetic and spectroscopic methods. Incubation of the Fe protein (Av2) for 1 h with stoichiometries of 4- and 8-fold molar excesses of NO to Av2 dimer resulted in a complete loss of activity of Av2 in C2H2-reduction assays. The kinetics of inactivation indicated that the minimum stoichiometry of NO to Av2 required to fully inactivate Av2 lies between 1 and 2. The rate of inactivation of Av2 activity by NO was stimulated up to 2-fold by the presence of MgATP and MgADP but was unaffected by the presence of sodium dithionite. Unexpectedly, complete inactivation of Av2 by low ratios of NO to Av2 also resulted in a complete loss of its ability to bind MgATP and MgADP. UV-visible spectroscopy indicated that the effect of NO on Av2 involves oxidation of the [4Fe-4S] center. EPR spectroscopy revealed that the loss of activity during inactivation of Av2 by NO correlated with the loss of the S = 1/2 and S = 3/2 signals. Appearance of the classical and intense iron-nitrosyl signal (g = 20.3) was only observed when Av2 was incubated with large molar excesses of NO and the appearance of this signal did not correlate with the loss of Av2 activity. The effects of NO on the MoFe protein (Av1) were more complex than for Av2. A time-dependent inactivation of Av1 activity (C2H2 reduction) was observed which required considerably higher concentrations of NO than those required to inactivate Av2 (up to 10 kPa).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Clarke TA  Maritano S  Eady RR 《Biochemistry》2000,39(37):11434-11440
It has been well documented that the combination of the MoFe protein of Azotobacter vinelandii nitrogenase (Av1) with the Fe protein (Cp2) from Clostridium pasteurianum nitrogenase produces an inactive, stable complex. However, we report that this heterologous nitrogenase has a low level of activity for H(2) evolution, with a specific activity of 12 nmol min(-)(1) mg(-)(1) of Av1. This activity does not arise from contaminating hydrogenase since it required the presence of both Cp2 and Av1 and showed saturation kinetics when increasing amounts of Cp2 were added to the assay. Incubation of the two proteins at a 4:1 Cp2:Av1 ratio in the absence of MgATP followed by analytical gel filtration showed, surprisingly, that the stoichiometry of the isolated complex was Av1.Cp2 instead of Av1.(Cp2)(2) as determined previously. The presence of MgATP in the elution buffer did not change the elution profile of the complex. The hydrodynamic radius of the isolated complex determined by dynamic light scattering was 5.93 +/- 0.14 nm, intermediate between Av1 and a stable 2:1 nitrogenase complex, consistent with a 1:1 assignment for the Av1.Cp2 complex. When assayed with Av2, the isolated Av1.Cp2 complex showed full half-site reactivity with a specific activity of 750 nmol of C(2)H(2) reduced min(-)(1) mg(-)(1) of Av1. The EPR spectrum of the isolated complex showed the Cp2 to be oxidized and the Av1 to retain the S = (3)/(2) signal characteristic of FeMoco. In the presence of MgATP, under turnover conditions at a 2:1 ratio of Cp2:Av1, the [4Fe-4S] center of Cp2 was protected from the chelator 2,2'-bipyridyl. This is consistent with the formation of a tight 2:1 complex of Av1.(Cp2)(2) which is more stable than the homologous Cp nitrogenase. Assuming that the Lowe-Thorneley model for nitrogenase applies and that a rate-limiting dissociation of the complex is required for H(2) evolution, then with a rate of 0.032 s(-)(1) the 1:1 complex is too stable to be involved in catalysis. The differences in the stability of the 2:1 and 1:1 complexes indicate cooperativity between the Fe protein binding sites of Av1, which structural data show to be separated by 105 A. On the basis of these observations, we propose a model for nitrogenase catalysis in which the stable 1:1 complex formed between oxidized Fe protein and the one-electron-reduced MoFe protein plays an essential role. In this scheme, the two Fe protein binding sites of the MoFe protein alternately bind and release Fe protein in a shuttle mechanism associated with long-range conformational changes in the MoFe protein.  相似文献   

5.
The effect of salts on the catalytic activity of the molybdenum-containing nitrogenase complex from Azotobacter vinelandii has been investigated. NaCl was found to inhibit the reduction of the substrates, protons, acetylene, and dinitrogen by a common mechanism. The pattern of inhibition is sigmoidal, indicating a highly cooperative interaction involving multiple inhibitor sites. Sixteen other salts that were investigated also exhibited this pattern of inhibition. NaCl functions as a dead-end inhibitor without altering the number of MgATP hydrolyzed/electron transferred to substrate. The level of expressed inhibition is sensitive to MgATP concentration, the molar ratio of the MoFe-protein (Av1) to the Fe-protein (Av2), and total protein concentration. In addition, NaCl is an inhibitor of the MgATP-dependent, iron chelation of Av2. Although the inhibition is exhibited over the same salt concentration range as that for inhibition of substrate reduction, the pattern of inhibition is hyperbolic. A model based upon simple equilibrium interactions among the enzyme species, nucleotides, and inhibitor has been developed which quantitatively accounts for the observed effects of salt. In this model, the formation of the active complex between Av1 and Av2 is abolished by salts. Likewise, the apparent affinity of Av2 for MgATP is reduced. An additional prediction based upon the model is that the affinity between Av2 and Av1 is independent of nucleotide binding.  相似文献   

6.
Thiol reactivity of the nitrogenase Fe-protein from Azotobacter vinelandii   总被引:8,自引:0,他引:8  
A procedure has been developed to examine some of the functional roles of the 14 cysteinyl residues in the nitrogenase Fe-protein (Av2) from Azotobacter vinelandii. The reduced form of Av2 was alkylated with iodo[2-14C]acetic acid under a variety of experimental conditions, e.g. reaction in the presence of nucleotides, alpha,alpha'-dipyridyl and nucleotides, or denaturants. The labeled cysteinyl residues were identified and quantified using an analytical DEAE-Sepharose ion exchange chromatography peptide mapping technique based upon the known amino acid sequence (Hausinger, R. P., and Howard, J. B. (1982) J. Biol. Chem. 257, 2483-2490). From the results of the labeling experiments, the following features of the Av2 structure have been proposed. 1) Av2 contains no disulfides, hyperreactive thiols, or surface thiols as defined by reaction with iodoacetic acid. 2) Cysteines 97 and 132 are the probable ligands for the Av2 Fe:S center which is bound symmetrically between subunits. 3) MgATP partially protects cysteine 85 from carboxymethylation by iodoacetic acid and may be part of the nucleotide-binding site. 4) Of the five nonligand thiols only cysteines 5 and 184 are completely alkylated when Av2 is denatured in hexamethylphosphoramide, whereas all five nonligand thiols appear to rapidly exchange at the Fe:S center if the protein is denatured in the absence of alkylating reagents. 5) Both Av2 and apo-Av2 appear to undergo a reversible conformational change upon binding MgATP.  相似文献   

7.
The interaction of chelators and reducing agents is of particular importance in understanding iron-associated pathology since catalytic iron undergoes cyclic reduction and oxidation in vivo. Therefore, we treated plasmid DNA with free or chelated Fe(III) in the presence of biological reductants, and simultaneously measured the number of single strand breaks (SSBs) and oxidative base modification (8-hydroxy-2'-deoxyguanosine; 8-OHdG) by quantitative gel electrophoresis and HPLC with electrochemical detection, respectively. Production of SSBs and 8-OHdG was linearly correlated suggesting that these two different lesions share a common chemical mechanism. The levels of both lesions were enhanced when Fe(III) was chelated to citrate or nitrilotriacetic acid. Reducing agents showed different potency in inducing DNA damage catalyzed by chelated iron (L-ascorbate > L-cysteine > H2O2). Chelation increased SSB formation by approximately 8-fold and 8-OHdG production by approximately 4-fold. The ratio of SSB/8-OHdG catalyzed by chelated iron, which is twice as high as by unchelated iron, indicates that chelation affects iron-catalyzed oxidative DNA damage in a specific way favoring strand breakage over base modification. Since iron is mostly chelated in biological systems, the production of genomic and mitochondrial DNA damage, particularly strand breaks, in diseases involving iron overload is likely to be higher than previously predicted from studies using unchelated iron.  相似文献   

8.
The nitrogenase complex from Azotobacter vinelandii is composed of the MoFe protein (Av1), an alpha 2 beta 2 tetramer, and the Fe protein (Av2), a gamma 2 dimer. During turnover of the enzyme, electrons are transferred from Av2 to Av1 in parallel with the hydrolysis of MgATP. Using the cross-linking reagent, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, we have identified some of the properties of the complex between the two components. The cross-linking reaction was highly specific yielding a single apparent Mr = 97,000 protein. The amount of cross-linked product was essentially independent of whether MgATP or MgADP were in the reaction. Also, the amount was maximum at high ratios of Av2 to Av1. The Mr = 97,000 protein was characterized by amino acid analysis and Edman degradation and was found to be consistent with a 1:1 complex of an Av2 gamma subunit and an Av1 beta subunit (the amino terminal serine subunit). The complex was no longer active in the nitrogenase reaction which supports, but does not prove, the requirement for dissociation of the complex after each electron transferred. Nitrogenase activity and cross-linking were inhibited in an identical way by NaCl, which suggests that electrostatic forces are critical to the formation of the electron transfer complex.  相似文献   

9.
nifB-MoFe protein (nifB-Av1), AnifE MoFe protein (△nifE Av1) and AnifZ MoFe protein (△nifZ Av1) were obtained by chromatography on DE52, Sephacryl S-300 and Q-Sepharose columns from nifB point-mutated, nifE deleted and nifZ deleted mutant stains (UW45, DJ35 and DJ194) of Azotobacter vinelandii Llpmann, respectively. When complemented with nltrogenase Fe protein (Av2), AnifZ Av1 had partial activity and both nifB-Avl and △nifE Av1 had hardly any activity, but could be obviously activated by FeMoco extracted from wild-type MoFe protein (OP Av1) or △nifZ Av1. After being Incubated with excess O-phenanthrollne (O-phen) for 150 mln at 30 ℃ and subjected to chromatography on a Sephadex G-25 column In an Ar atmosphere, nifB- Av1C, △nifE Av1C and △nifZ Av1C were obtained, respectively. Based on a calculation of Fe atoms In the Ophen-Fe compound with ε 512nm = 11 100, lost Fe atoms of nifB-Av1, △nifE Av1 and △nifZ Av1 were estimated to be 1.35, 2.89 and 8.44 per molecule of protein, respectively. As a result of the Fe loss, △nifZ Av1 loses Its original activity. In the presence of both MgATP and Av2, these Fe-loslng proteins, but not the original proteins untreated with O-phen, could be significantly activated by reconstltuent solution (RS) composed of dlthlothreltol, ferric homocltrate, Na2S and Na2MoO4, or K2CrO4, or KMnO4. But In the absence of MgATP or Av2, the activation did not occur, with the exception that △nifZ AvlC was partially activated, and the activity was only 17%. These findings Indicate that: (I) △nifZ Avl with half P-cluster content Is somewhat different from FeMoco-deflclent nifB-Avl and ,△nifE Av1 with respect to protein conformation either before or after treatment with O-phen; (11) full activation of these proteins with RS requires pretreatment with O-phen and the simultaneous presence of MgATP and Av2.  相似文献   

10.
ATP and the divalent cations Mg2+ and Ca2+ regulated K+ stimulation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum vesicles. Millimolar concentrations of total ATP increased the K+-stimulated ATPase activity of the Ca2+ pump by two mechanisms. First, ATP chelated free Mg2+ and, at low ionized Mg2+ concentrations, K+ was shown to be a potent activator of ATP hydrolysis. In the absence of K+ ionized Mg2+ activated the enzyme half-maximally at approximately 1 mM, whereas in the presence of K+ the concentration of ionized Mg2+ required for half-maximal activation was reduced at least 20-fold. Second MgATP apparently interacted directly with the enzyme at a low affinity nucleotide site to facilitate K+-stimulation. With a saturating concentration of ionized Mg2+, stimulation by K+ was 2-fold, but only when the MgATP concentration was greater than 2 mM. Hill plots showed that K+ increased the concentration of MgATP required for half-maximal enzymic activation approx. 3-fold. Activation of K+-stimulated ATPase activity by Ca2+ was maximal at an ionized Ca2+ concentration of approx. 1 microM. At very high concentrations of either Ca2+ or Mg2+, basal Ca2+-dependent ATPase activity persisted, but the enzymic response to K+ was completely inhibited. The results provide further evidence that the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum has distinct sites for monovalent cations, which in turn interact allosterically with other regulatory sites on the enzyme.  相似文献   

11.
经DEAE纤维素、Sephacryl S-300和Q-Sepharose柱层析分离纯化,从缺失nifE的棕色固氮菌(Azotobactervinelandii Lipmann)突变种(DJ35)的无细胞粗提物中得到△nifE MoFe蛋白(△nifE Av1).SDS凝胶电泳分析表明,△nifE Av1的亚单位种类和分子量分别与棕色固氮菌野生型(OP)MoFe蛋白(Av1)的α和β亚单位相似.当与固氮酶Fe蛋白(Av2)活性互补时,△nifE Av1不具有还原质子的能力,但从OP Av1中抽提的FeMoco却可使其激活.经过量的邻菲啰啉(o-phen)厌氧处理并经Sephadex G-25柱层析分离后,便得到△nifE Av1 .在同时存在Av2和MgATP发生系统的条件下,△nifE Av1 ,而不是△nifE Av1,可为由KMnO4、高柠檬酸铁、Na2S、Na2S2O4和二硫苏糖醇组成的含Mn重组液(RS-Mn)显著激活.但在缺少MgATP或Av2的条件下,RS-Mn则不能激活△nifE Av1 .这就表明,RS-Mn对△nifE Av1 的激活需要o-phen的预先处理及同时存在Av2和MgATP的这二个条件.  相似文献   

12.
6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the transfer of pyrophosphate from ATP to 6-hydroxymethyl-7, 8-dihydropterin, the first reaction in the folate biosynthetic pathway. Like other enzymes in the folate pathway, HPPK is an ideal target for development of antimicrobial agents because the enzyme is essential for microorganisms but is absent from humans and animals. Using 3'(2')-o-anthraniloyladenosine 5'-triphosphate as a fluorescent probe, a fluorometric competitive binding assay has been developed for measuring the dissociation constants of various compounds that bind to the ATP site of HPPK. The fluorometric assay has been used to determine the nucleotide specificity and dissect the energetics of the binding of MgATP. The order of affinity of various nucleoside triphosphates for HPPK is MgATP>MgGTP>MgITP>MgXTP approximately MgUTP approximately MgCTP. The affinity of MgATP for HPPK (K(d)=2.6+/-0.06 microM) is 260-fold higher than that of MgGTP and more than 1000-fold higher than those of the other nucleoside triphosphates, indicating that HPPK is highly specific with respect to the base moiety of the nucleotide. The affinity of ATP for HPPK in the presence of Mg(2+) is 15 times that in the absence of Mg(2+), indicating that the metal ion is important for the binding of the nucleotide. Removal of the gamma-phosphate from MgATP reduces its affinity for HPPK by a factor of approximately 21. The affinity of AMP for HPPK is about one third that of ADP and almost the same as that of adenosine. The result suggests that among the three phosphoryl groups of MgATP, the gamma-phosphoryl group is most critical for binding to HPPK and the alpha-phosphoryl group contributes little to the binding of the nucleotide. The affinity of MgATP is 18 times that of MgdATP, indicating that the 2'-hydroxyl group of MgATP is also important for binding. van't Hoff analysis suggests that binding of MgATP is mainly driven by enthalpy at 25 degrees C and the entropy of binding is also in favor of the formation of the HPPK.MgATP complex.  相似文献   

13.
The intensity of light scattered by chemically skinned rabbit psoas fibers in relaxed, rigor, and activated states was monitored at 90 degrees to the incident beam. In the relaxed state, scattering varied in proportion to the volume of muscle in the beam. Scattering increased to 2.3 times the resting value when rigor was induced by withdrawal of MgATP or when the myofibrils were activated by the caffeine-induced release of Ca from the sarcoplasmic reticulum. The rigor-induced increase in scattering decreased monotonically when MgATP was reintroduced stepwise (0-100 microM). This decrease in scattering was accompanied by an increase in tension up to an optimum MgATP level of approximately 10 microM, and then tension decreased at higher concentrations (10-100 microM). The increase in scattering during both rigor and activation was dependent upon fiber length. At lengths when thick-thin filament overlap was near zero, the light signal due to rigor and activation fell to within 10% of the signal for the relaxed fiber at that length. The signal during rigor increased only minimally (approximately 10%) when stretch (approximately 1%) was applied. This increase in signal was small despite a measured 5- to 10-fold increase in tension and an estimated twofold increase in stiffness. Thus, the increased light scattering caused by rigor and activation depends on filament overlap and not tension, stiffness, or substrate binding.  相似文献   

14.
Pham AS  Reinhart GD 《Biochemistry》2001,40(13):4150-4158
Using enzymatic assays and steady-state fluorescence emission, we performed a linkage analysis of the three-ligand interaction of fructose 6-phosphate (Fru-6-P), phosphoenolpyruvate (PEP), and MgATP on E187A mutant Escherichia coli phosphofructokinase (PFK). PEP allosterically inhibits Fru-6-P binding to E. coli PFK. The magnitude of antagonism is 90-fold in the absence and 60-fold in the presence of a saturating concentration of MgATP [Johnson, J. J., and Reinhart, G. D. (1997) Biochemistry 36, 12814-12822]. Substituting an alanine for the glutamate at position 187, located in the allosteric site (i.e., mutant E187A), activates Fru-6-P binding and inhibits the maximal rate of enzyme turnover [Lau, F. T.-K., and Fersht, A. R. (1987) Nature 326, 811-812]. The allosteric action of PEP appears to depend on the presence of the cosubstrate MgATP. In the presence of a saturating concentration of MgATP, PEP enhances the binding of Fru-6-P to the enzyme by a modest 2-fold. Decreasing the concentration of MgATP mitigates the extent of activation. At MgATP concentrations approaching 25 microM, PEP becomes insensitive to the binding of Fru-6-P. At MgATP concentrations < 25 microM, PEP "crosses over" and becomes antagonistic toward substrate binding. The present study examines the role of Glu 187 at the allosteric site in the binding of Fru-6-P and offers a more complex explanation of the mechanism than that described by traditional allosteric mechanistic models.  相似文献   

15.
In the present work, determination of the structure of the nitrogenase Leu 127 deletion variant Fe protein with MgATP bound is presented, along with density functional theory calculations, to provide insights into the roles of MgATP in the nitrogenase reaction mechanism. Comparison of the MgATP-bound structure of this Fe protein to the nucleotide-free form indicates that the binding of MgATP does not alter the overall structure of the variant significantly with only small differences in the conformation of amino acids in direct contact with the two bound MgATP molecules being seen. The earlier observation of splitting of the [4Fe-4S] cluster into two [2Fe-2S] clusters was observed to be unaltered upon binding MgATP. Density functional theory was used to probe the assignment of ligands to the two [2Fe-2S] rhombs. The Mg(2+) environment in the MgATP-bound structure of the Leu127 deletion Fe protein is similar to that observed for the Fe protein in the nitrogenase Fe protein: MoFe protein complex stabilized by MgADP and tetrafluoroaluminate suggesting that large scale conformational change implicated for the Fe protein may not be mediated by changes in the Mg(2+) coordination. The results presented here indicated that MgATP may enhance the stability of an open conformation and prohibit intersubunit interactions, which have been implicated in promoting nucleotide hydrolysis. This could be critical to the tight control of MgATP hydrolysis observed within the nitrogenase complex and may be important for maintaining unidirectional electron flow toward substrate reduction.  相似文献   

16.
Black DJ  Leonard J  Persechini A 《Biochemistry》2006,45(22):6987-6995
The relationship between the free Ca2+ concentration and the apparent dissociation constant for the complex between calmodulin (CaM) and the neuromodulin IQ domain consists of two phases. In the first phase, Ca2+ bound to the C-ter EF hand pair in CaM increases the Kd for the complex from the Ca2+-free value of 2.3 +/- 0.1 microM to a value of 14.4 +/- 1.3 microM. In the second phase, Ca2+ bound to the N-ter EF hand pair reduces the Kd for the complex to a value of 2.5 +/- 0.1 microM, reversing the effect of the first phase. Due to energy coupling effects associated with these phases, the mean dissociation constant for binding of Ca2+ to the C-ter EF hand pair is increased approximately 3-fold, from 1.8 +/- 0.1 to 5.1 +/- 0.7 microM, and the mean dissociation constant for binding of Ca2+ to the N-ter EF hand pair is decreased by the same factor, from 11.2 +/- 1.0 to 3.5 +/- 0.6 microM. These characteristics produce a bell-shaped relationship between the apparent dissociation constant for the complex and the free Ca2+ concentration, with a distance of 5-6 microM between the midpoints of the rising and falling phases. Release of CaM from the neuromodulin IQ domain therefore appears to be promoted over a relatively narrow range of free Ca2+ concentrations. Our results demonstrate that CaM-IQ domain complexes can function as biphasic Ca2+ switches through opposing effects of Ca2+ bound sequentially to the two EF hand pairs in CaM.  相似文献   

17.
Nitrogenase activity for Clostridium pasteurianum (Cp) at a Cp2:Cp1 ratio of 1.0 and Azotobacter vinelandii (Av) at Av2:Av1 protein ratios (R) of 1, 4 and 10 is determined as a function of increasing MoFe protein concentration from 0.01 to 5 microM. The rates of ethylene and hydrogen evolution for these ratios and concentrations were measured to determine the effect of extreme dilution on nitrogenase activity. The experimental results show three distinct types of kinetic behavior: (1) a finite intercept along the concentration axis (approximately 0.05 microM MoFe); (2) a non-linear increase in the rate of product formation with increasing protein concentration (approximately 0.2 microM MoFe) and (3) a limiting linear rate of product formation at high protein concentrations (>0.4 microM MoFe). The data are fitted using the following rate equation derived from a mechanism for which two Fe proteins interact cooperatively with a single half of the MoFe protein. (see equation) The equation predicts that the cubic dependence in MoFe protein gives rise to the non-linear rate of product formation (the dilution effect) at very low MoFe protein concentrations. The equation also predicts that the rate will vary linearly at high MoFe protein concentrations with increasing MoFe protein concentration. That these limiting predictions are in accord with the experimental results suggests that either two Fe proteins interact cooperatively with a single half of the MoFe protein, or that the rate constants in the Thorneley and Lowe model are more dependent upon the redox state of MoFe protein than previously suspected [R.N. Thornley and D. J. Lowe, Biochem. J. 224 (1984) 887-894]. Previous Klebsiella pneumoniae and Azotobacter chroococcum dilution results were reanalyzed using the above equation. Results from all of these nitrogenases are consistent and suggest that cooperativity is a fundamental kinetic aspect of nitrogenase catalysis.  相似文献   

18.
M F Bruist  G G Hammes 《Biochemistry》1981,20(22):6298-6305
The solubilized coupling factor from spinach chloroplasts (CF1) contains one nondissociable ADP/CF1 which exchanges slowly with medium ADP in the presence of Ca2+, Mg2+, or EDTA; medium ATP also exchanges in the presence of Ca2+ or EDTA, but it is hydrolyzed, and only ADP is found bound to CF1. The rate of ATP exchange with heat-activated CF1 is approximately 1000 times slower than the rate of ATP hydrolysis. In the presence of Mg2+, both latent CF1 and heat-activated CF1 bind one ATP/CF1, in addition to the ADP. This MgATP is not removed by dialysis, by gel filtration, or by the substrate CaATP during catalytic turnover; however, it is released when the enzyme is stored several days as an ammonium sulfate precipitate. The photoaffinity label 3'-O-[3-[N-(4-azido-2-nitrophenyl)amino]-propionyl]-ATP binds to the MgATP site, and photolysis results in labeling of the beta subunit of CF1. Equilibrium binding measurements indicate that CF1 has two identical binding sites for ADP with a dissociation constant of 3.9 microM (in addition to the nondissociable ADP site). When MgATP is bound to CF1, one ADP binding site with a dissociation constant of 2.9 microM is found. One ATP binding site is found in addition to the MgATP site with a dissociation constant of 2.9 microM. Reaction of CF1 with the photoaffinity label 3'-O-[3-[N-(4-azido-2-nitrophenyl)amino]propionyl]-ADP indicates that the ADP binding site which is not blocked by MgATP is located near the interface of alpha and beta subunits. No additional binding sites with dissociation constants less than 200 micro M are observed for MgATP with latent CF1 and for CaADP with heat-activated CF1. Thus, three distinct nucleotide binding sites can be identified on CF1, and the tightly bound ADP and MgATP are not at the catalytic site. The active site is either the third ADP and ATP binding site or a site not yet detected.  相似文献   

19.
We report the properties and reactivity of the catalytically active heterologous nitrogenase formed between the Fe protein from Clostridium pasteurianum (Cp2) and the MoFe protein from Klebsiella pneumoniae (Kp1). Under turnover conditions, in the presence of MgATP, a stable 2:1 (Cp2)2Kp1 electron transfer complex is formed, in which the [4Fe-4S]+ centre of Cp2 is protected from chelation by alpha,alpha'-bipyridyl. However, the two Fe protein-binding sites on Kp1 are not equivalent, since a 1:1 Cp2.Kp1 complex was isolated by gel filtration. The non-equivalence of the Fe protein binding sites was also indicated by the inhibition pattern of Klebsiella nitrogenase by Cp2. The EPR spectrum of the isolated 1:1 Cp2.Kp1 complex showed an S=1/2 signal characteristic of dithionite-reduced Cp2 and signals with g values of 4.27, 3.73, 2.01 and 4.32, 3.63, 2.00 characteristic of the high- and low-pH forms of the FeMoco centre of Kp1, respectively. The unoccupied binding site of Kp1 of the isolated 1:1 Cp2Kp1 complex was shown to be catalytically fully functional in combination with Kp2. In contrast to homologous nitrogenases, which require MgATP for detectable rates of electron transfer from the Fe protein, stopped-flow kinetic studies revealed that electron transfer from Cp2 to Kp1 occurred in the absence of MgATP with a rate constant of 0.065 s(-1). Subsequently, a slower transient decrease and restoration of absorption in the electronic spectrum in the 500-700 nm region was observed. These changes corresponded with those in the intensity of the S=3/2 EPR signal of the FeMoco centres of Kp1 and were consistent with the transient reduction of the FeMoco centre of Kp1 to an EPR-silent form, followed by restoration of the signal at longer reaction times. These changes were not associated with catalysis since no evolution of H2 was detectable.  相似文献   

20.
The type I form of cAMP-dependent protein kinase binds MgATP with a high affinity, and binding of MgATP decreases the affinity of the holoenzyme for cAMP [Hofmann et al. (1975) J. Biol. Chem. 250, 7795]. Holoenzyme was formed here with a mutant form of the bovine recombinant type I regulatory subunit where the essential arginine in site A, Arg-209, was replaced with Lys. Although this mutation does not significantly change the high-affinity binding of MgATP to the holoenzyme, it does abolish high-affinity binding of cAMP to site A. In the absence of MgATP, binding of cAMP to site B is sufficient to promote dissociation of the holoenzyme complex and activation of the catalytic subunit [Bubis et al. (1988) J. Biol. Chem. 263, 9668]. In the presence of MgATP however, holoenzyme formed with this mutant regulatory subunit is very resistant to cAMP. The Kd(cAMP) was greater than 1 microM, and the Ka(cAMP) increased 60-fold from 130 nM to 6.5 microM in the presence of MgATP. Thus, MgATP serves as a lock that selectively stabilizes the holoenzyme and inhibits activation. Both site A and site B are shielded from cAMP in the presence of MgATP. These results suggest that Arg-209 may play a role in stabilizing the MgATP.holoenzyme complex in addition to its role in binding the exocyclic oxygens of cAMP when cAMP is bound to the regulatory subunit. The catalytic subunit also reassociates rapidly with this mutant regulatory subunit, and in contrast to the wild-type regulatory subunit, holoenzyme formation does not require MgATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号